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ORTHOGONAL DRAWINGS OF SERIES-PARALLEL GRAPHS
WITH MINIMUM BENDS∗

XIAO ZHOU† AND TAKAO NISHIZEKI†

Abstract. In an orthogonal drawing of a planar graph G, each vertex is drawn as a point, each
edge is drawn as a sequence of alternate horizontal and vertical line segments, and any two edges
do not cross except at their common end. A bend is a point where an edge changes its direction. A
drawing of G is called an optimal orthogonal drawing if the number of bends is minimum among all
orthogonal drawings of G. In this paper we give an algorithm to find an optimal orthogonal drawing
of any given series-parallel graph of the maximum degree at most three. Our algorithm takes linear
time, while the previously known best algorithm takes cubic time. Furthermore, our algorithm is
much simpler than the previous one. We also obtain a best possible upper bound on the number of
bends in an optimal drawing.
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1. Introduction. Automatic graph drawings have numerous applications in
VLSI circuit layouts, networks, computer architecture, circuit schematics, etc. [3, 11].
Many graph drawing styles have been introduced [1, 3, 9, 11, 15, 17]. Among them,
an “orthogonal drawing” has attracted much attention due to its various applications,
especially in circuit schematics, entity relationship diagrams, data flow diagrams, etc.
[14, 16, 19, 20]. An orthogonal drawing of a planar graph G is a drawing of G such
that each vertex is mapped to a point, each edge is drawn as a sequence of alternate
horizontal and vertical line segments, and any two edges do not cross except at their
common end. A point where an edge changes its direction in a drawing is called a
bend of the drawing. Figure 1.1(a) depicts an orthogonal drawing of the planar graph
in Figure 1.1(b); the drawing has exactly one bend on the edge joining vertices g and
t. If a planar graph G has a vertex of degree five or more, then G has no orthogonal
drawing. On the other hand, if G has no vertex of degree five or more, that is, the
maximum degree Δ of G is at most four, then G has an orthogonal drawing, but may
need bends. If a planar graph represents a VLSI routing, then one may be interested
in an orthogonal drawing such that the number of bends is as small as possible, be-
cause bends increase the manufacturing cost of a VLSI chip. An orthogonal drawing
of a planar graph G is called an optimal orthogonal drawing if it has the minimum
number of bends among all possible orthogonal drawings of G.

The problem of finding an optimal orthogonal drawing is one of the most famous
problems in the graph drawing literature [3, 11] and has been studied both in the
fixed embedding setting [7, 14, 16, 18, 20] and in the variable embedding setting
[5, 6, 8, 12, 13]. A planar graph with a fixed embedding is called a plane graph.
As a result in the fixed embedding, Tamassia [20] presented an algorithm to find an
optimal orthogonal drawing of a plane graph G in time O(n2 log n), where n is the
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Fig. 1.1. (a) An optimal orthogonal drawing with one bend, (b), (c) two embeddings of the
same planar graph, and (d) an orthogonal drawing with three bends.

number of vertices in G; he reduced the optimal drawing problem to a min-cost flow
problem. Then Garg and Tamassia improved the complexity to O(n7/4

√
log n) [7].

As a result in the variable embedding setting, Garg and Tamassia showed that the
problem is NP-complete for planar graphs of Δ ≤ 4 [8]. However, Di Battista, Liotta,
and Vargiu [5] showed that the problem can be solved in polynomial time for a planar
graph G of Δ ≤ 3. Their algorithm finds an optimal orthogonal drawing among all
possible plane embeddings of G. They use the properties of “spirality,” min-cost flow
techniques, and a data structure, call a SPQ∗R tree that implicitely represents all of
the plane embeddings of G. The algorithm is complicated and takes time O(n5 log n)
for a planar graph of Δ ≤ 3. Using the algorithm, one can find more efficiently an
optimal orthogonal drawing for a biconnected series-parallel simple graph; it takes
time O(n4) if Δ ≤ 4 [5] and takes time O(n3) if Δ ≤ 3 [4, 5]. Note that every
series-parallel graph is planar. Series-parallel graphs arise in a variety of problems
such as scheduling, electrical networks, data-flow analysis, database logic programs,
and circuit layout [21]. On the other hand, Garg and Liotta give an algorithm to find
a nearly optimal orthogonal drawing for a biconnected planar graph of Δ ≤ 3 [6].
Their algorithm finds a drawing having at most three more bends than the optimal
one in time O(n2). The complexities O(n5 log n), O(n4), and O(n3) above for an
exact algorithm in the variable embedding setting are very high, and it is expected
to obtain an efficient algorithm for a particular class of planar graphs of Δ ≤ 3 [2].

In this paper we deal with the class of series-parallel (multi)graphs of Δ ≤ 3
and give a simple linear algorithm to find an optimal orthogonal drawing in the
variable embedding setting. The graph G in Figure 1.1 is series-parallel and has
various plane embeddings; two of them are illustrated in Figures 1.1(b) and (c); there
is no plane embedding having an orthogonal drawing with no bend; however, the
embedding in Figure 1.1(b) has an orthogonal drawing with one bend, as illustrated
in Figure 1.1(a), and hence the drawing is optimal; the embedding in Figure 1.1(c)
needs three bends, as illustrated in Figure 1.1(d); given G, our algorithm finds an
optimal drawing in Figure 1.1(a). Our algorithm works well even if G has multiple
edges or is not biconnected and is much simpler and faster than the algorithms for
biconnected series-parallel simple graphs in [4, 5]; we use neither the min-cost flow
technique nor the SPQ∗R tree, but uses some structural features of series-parallel
graphs, which have not been exploited in [21]. We furthermore obtain a best possible
upper bound on the minimum number of bends. An early version of the paper has
been presented at [22].

The rest of the paper is organized as follows. In section 2 we present some
definitions and our main idea. In section 3 we present an algorithm and an upper
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bound for biconnected series-parallel graphs. In section 4 we present an algorithm
and an upper bound for nonbiconnected series-parallel graphs. Finally section 5 is a
conclusion.

2. Preliminaries. In this section we present some definitions and our main idea.
Let G = (V,E) be an undirected graph, with vertex set V and edge set E. We

denote the number of vertices in G by n(G) or simply by n. For a vertex v ∈ V , we
denote by G− v the graph obtained from G by deleting v. An edge joining vertices u
and v is denoted by uv. We denote by G−uv the graph obtained from G by deleting
uv. We denote the degree of a vertex v in G by d(v,G) or simply by d(v). We denote
the maximum degree of G by Δ(G) or simply by Δ. A connected graph is biconnected
if there is no vertex whose removal results in a disconnected graph or a single-vertex
graph K1. A plane graph is a fixed embedding of a planar graph.

Let G be a planar graph with Δ ≤ 3. We denote by bend(G) the number of bends
of an optimal orthogonal drawing of G in the variable embedding setting. (Thus
bend(G) = 1 for the graph G in Figure 1.1.) Let D be an orthogonal drawing of G.
The number of bends in D is denoted by bend(D). Of course, bend(G) ≤ bend(D).
Let G(D) be a plane graph obtained from a drawing D by replacing each bend in
D with a new vertex. Figures 2.1(a) and (b) depict G(D) for the drawings D in
Figures 1.1(a) and (d), respectively. An angle formed by two edges e and e′ incident
to a vertex v in G(D) is called an angle of vertex v if e and e′ appear consecutively
around v. An angle of a vertex in G(D) is called an angle of the plane graph G(D).
In an orthogonal drawing, every angle is π/2, π, 3π/2, or 2π. Consider a labeling l,
which assigns a label 1, 0, −1, or −2 to every angle of G(D). Labels 1, 0, −1, and −2
correspond to angles π/2, π, 3π/2, and 2π, respectively. We call l a regular labeling
of G(D) if l satisfies the following three conditions (a)–(c) [11, 20]:

(a) for each vertex v of G(D),
(a-1) if d(v) = 1, then the label of the angle of v is −2;
(a-2) if d(v) = 2, then the labels of the two angles of v total to 0; and
(a-2) if d(v) = 3, then the labels of the three angles of v total to 2;

(b) the sum of the labels of each inner face is 4; and
(c) the sum of the labels of the outer face is −4.

Figures 2.1(a) and (b) illustrate regular labelings for the orthogonal drawings in Fig-
ures 1.1(a) and (d), respectively. If D is an orthogonal drawing of G, then clearly G(D)
has a regular labeling. Conversely, every regular labeling of G(D) corresponds to an
orthogonal drawing of G [20]. An orthogonal (geometric) drawing of G can be obtained
from a regular labeling of G(D) in linear time, that is, in time O(n(G) + bend(D))
[11, 20]. Therefore, from now on, we call a regular labeling of G(D) an orthogonal
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Fig. 2.1. Regular labelings of G(D) corresponding to the drawings D in Figures 1.1(a) and (d),
respectively.
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Fig. 2.2. (a) K2, (b) series, and (c) parallel connections.

drawing of a planar graph G or simply, a drawing of G, and obtain a regular labeling
of G in place of an orthogonal (geometric) drawing of G.

For a drawing D of a planar graph G and for a subgraph G′ of G, we denote by
D|G′ the drawing of G′ in D. Clearly

(2.1) bend(G′) ≤ bend(D|G′) ≤ bend(D).

Let G′ be the complement of G′, that is, the subgraph of G induced by all of the
edges that are not contained in G′. Then

(2.2) bend(D) = bend(D|G′) + bend(D|G′).

A series-parallel graph (with terminals s and t) is recursively defined as follows:
(a) A graph G of a single edge is a series-parallel graph. The ends s and t of the

edge are called the terminals of G. (See Figure 2.2(a).)
(b) Let G1 be a series-parallel graph with terminals s1 and t1, and let G2 be a

series-parallel graph with terminals s2 and t2.
(i) A graph G obtained from G1 and G2 by indentifying vertex t1 with

vertex s2 is a series-parallel graph, whose terminals are s = s1 and t =
t2. Such a connection is called a series connection. (See Figure 2.2(b).)

(ii) A graph G obtained from G1 and G2 by identifying s1 with s2 and t1
with t2 is a series-parallel graph, whose terminals are s = s1 = s2 and
t = t1 = t2. Such a connection is called a parallel connection. (See
Figure 2.2(c).)

For example, the graph in Figure 1.1 is series-parallel.
Throughout the paper we assume that the maximum degree of a given series-

parallel graph G is at most three, that is, Δ ≤ 3. We may assume without loss of
generality that G is a simple graph, that is, G has no multiple edges, as follows. If
a series-parallel multigraph G consists of exactly three multiple edges, then G has an
optimal drawing of four bends; otherwise, insert a dummy vertex of degree two into
an edge of each pair of multiple edges in G, and let G′ be the resulting series-parallel
simple graph, then an optimal drawing of the multigraph G can be immediately
obtained from an optimal drawing of the simple graph G′ by replacing each dummy
vertex with a bend.

A drawing D of a series-parallel graph G is outer if the two terminals s and t of G
are drawn on the outer face of D. A drawing D is called an optimal outer drawing of
G if D is outer and bend(D) = bend(G). The graph in Figure 1.1 has an optimal outer
drawing, as illustrated in Figure 1.1(a). On the other hand, the graph in Figure 2.3(a)
has no optimal outer drawing for the specified terminals s and t; the no-bend drawing



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1574 XIAO ZHOU AND TAKAO NISHIZEKI

tt

D D

t
s

s

(b) (c) o

s

(a) G

Fig. 2.3. (a) A biconnected series-parallel graph G, (b) an optimal drawing D, and (c) an outer
drawing Do.

Fig. 2.4. (a)–(c) I-, L-, and U-shaped drawings, and (d)–(f) their schematic representations.

D in Figure 2.3(b) is optimal but is not outer, because s is not on the outer face; and
the drawing Do with one bend in Figure 2.3(c) is outer but is not optimal.

Our main idea is to notice that a series-parallel graph G has an optimal outer
drawing if G is “2-legged.” We say that G is 2-legged if n(G) ≥ 3 and d(s) = d(t) = 1
for the terminals s and t of G. The edge incident to s or t is called a leg of G, and
the neighbor of s or t is called a leg-vertex. For example, the series-parallel graphs in
Figures 2.4(a)–(c) are 2-legged.

We will show in section 3 that every 2-legged series-parallel graph G has an
optimal outer drawing, and the drawing has one of the three shapes: “I-shape,” “L-
shape,” and “U-shape,” defined as follows. An outer drawing D of G is I-shaped
if D intersects neither the north side of terminal s nor the south side of terminal
t after rotating the drawing and renaming the terminals if necessary, as illustrated
in Figure 2.4(a). D is L-shaped if D intersects neither the north side of s nor the
east side of t after rotating the drawing and renaming the terminals if necessary, as
illustrated in Figure 2.4(b). D is U-shaped if D does not intersect the north sides
of s and t after rotating the drawing and renaming the terminals if necessary, as
illustrated in Figure 2.4(c). In Figures 2.4(a)–(c) each side is shaded. The north
side and the south side of a terminal contain the horizontal line passing through the
terminal, while the east side of a terminal contains the vertical line passing through
the terminal. The schematic representations of I-, L-, and U-shaped drawings are
depicted in Figures 2.4(d), (e), and (f), respectively. D is called an optimal X-shaped
drawing, X=I, L and U, if D is X-shaped and bend(D) = bend(G).

More precisely, we will show in section 3 that every 2-legged series-parallel graph
G, with n(G) ≥ 3 has both an optimal I-shaped drawing and an optimal L-shaped
drawing and that G has an optimal U-shaped drawing, too, unless G is a “diamond
graph,” defined as follows. A diamond graph is either a graph in Figure 2.5(a) or
obtained from two diamond graphs G′ and G′′ by connecting them in parallel and
adding two legs, as illustrated in Figures 2.5(b) and (c).

For example, the 2-legged series-parallel graph in Figure 2.6(a) is a diamond graph
and has both an optimal (no-bend) I-shaped drawing and an optimal (no-bend) L-
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Fig. 2.6. (a) Diamond graph, (b) I-shaped drawing, (c) L-shaped drawing, (d) nondiamond
graph, and (e) U-shaped drawing.

shaped drawing, as illustrated in Figures 2.6(b) and (c), but does not have an optimal
(no-bend) U-shaped drawing. On the other hand, the 2-legged series-parallel graph in
Figure 2.6(d) is obtained from the diamond graph in Figure 2.6(a) simply by inserting
a new vertex of degree two in an edge and is not a diamond graph anymore. It has an
optimal (no-bend) U-shaped drawing, too, as illustrated in Figure 2.6(e). Thus the
diamond graph in Figure 2.6(a) has a U-shaped drawing with one bend.

3. Optimal drawing of biconnected series-parallel graph. In this section
we give a linear algorithm to find an optimal drawing of a biconnected series-parallel
graph G of Δ ≤ 3. We first give an algorithm for 2-legged series-parallel graphs
in subsection 3.1. Using the algorithm, we then give an algorithm for biconnected
series-parallel graphs in subsection 3.2.

3.1. 2-legged series-parallel graph. We first have the following lemma on a
diamond graph.

Lemma 3.1. If G is a diamond graph, then
(a) G has both a no-bend I-shaped drawing DI and a no-bend L-shaped drawing

DL;
(b) DI and DL can be found in linear time; and
(c) every no-bend drawing of G is either I-shaped or L-shaped, and hence G does

not have a no-bend U-shaped drawing.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1576 XIAO ZHOU AND TAKAO NISHIZEKI

L−shape

G

DD(a)

L−shape

L−shape

(b)

L−shape

G

G

G

LI

Fig. 3.1. Illustration of the proof of Lemma 3.1.

Proof. We prove the lemma by induction on the number n(G) of vertices of G.
Since G is a diamond graph, G has at least three vertices. If n(G) = 3, as illustrated
in Figure 2.5(a), then (a), (b), and (c) trivially hold true. One may thus assume that
n(G) ≥ 4, and inductively assume that (a), (b), and (c) hold for every diamond graph
of at most n(G) − 1 vertices.

We first prove that (a) holds for G. The definition of a diamond graph implies
that one can obtain two diamond subgraphs G′ and G′′ from G by deleting the two
terminals of G and splitting each of the two leg-vertices into two vertices, as illustrated
in Figures 2.5(b) and (c). By the inductive hypothesis, (a) holds for G′, and hence G′

has a no-bend L-shaped drawing D′
L. Similarly, G′′ has a no-bend L-shaped drawing

D′′
L. Combining a flipped drawing of D′

L with the drawing D′′
L and drawing the two

legs appropriately, one can construct a no-bend I-shaped drawing DI and a no-bend
L-shaped drawing DL of G, as illustrated in Figures 3.1(a) and (b), respectively. Thus
(a) holds true.

One can obtain (regular labelings of) DI and DL from (those of) D′
L and D′′

L in
constant time by deciding the labels of the angles of the terminals and leg vertices of
G. Thus (b) holds true for G.

We now prove that (c) holds for G. Let D∗ be an arbitrary no-bend drawing of
G. Then both the drawing D∗|G′ of G′ in D∗ and the drawing D∗|G′′ of G′′ in D∗ are
no-bend drawings. By the inductive hypothesis, each of D∗|G′ and D∗|G′′ is either
I-shaped or L-shaped. Since D∗ is a no-bend drawing, both D∗|G′ and D∗|G′′ must
be L-shaped and D∗ must be either I-shaped or L-shaped. Thus (c) holds true.

The proof of Lemma 3.1 immediately yields a linear algorithm Diamond(G, DI,
DL), which recursively finds both a no-bend I-shaped drawing DI and a no-bend
L-shaped drawing DL of a given diamond graph G.

The following lemma holds for a 2-legged series-parallel graph G which is not a
diamond graph.

Lemma 3.2. The following (a), (b), and (c) hold for a 2-legged series-parallel
graph G, with n(G) ≥ 3 unless G is a diamond graph:

(a) G has three optimal I-, L-, and U-shaped drawings DI, DL, and DU;
(b) DI, DL, and DU can be found in linear time; and
(c) bend(G) ≤ (n(G) − 2)/3.
Proof. We prove the lemma by induction on the number n(G) of vertices of G.

Assume that G is a 2-legged series-parallel graph, with n(G) ≥ 3, and G is not a
diamond graph. Then n(G) ≥ 4. If n(G) = 4, that is, G is a path of four ver-
tices, then the lemma trivially holds true, as illustrated in Figure 3.2. One may thus
assume n(G) ≥ 5, and inductively assume that the lemma holds for every 2-legged
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Fig. 3.2. Optimal I-, L-, and U-shaped drawings of a path of four vertices.
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Fig. 3.3. Illustration of the proof of Lemma 3.2.

series-parallel graph of at most n(G)−1 vertices. We now prove that the lemma holds
for G.

(a) We first prove that (a) holds for G. Let s and t be the terminals of G, then
d(s) = d(t) = 1. Since G is a 2-legged series-parallel graph, the graph G − s − t
obtained from G by deleting vertices s and t is a series-parallel graph having the
leg-vertices as the terminals, and hence G − s − t is either a series connection or a
parallel connection of two subgraphs.

Consider first the case where G− s− t is a series connection of two subgraphs. In
this case, since Δ(G) ≤ 3, G has a bridge e = uv other than the two legs, that is, G−e
is disconnected, as illustrated in Figure 3.3(a). Then G contains two subgraphs G′ and
G′′; G′ is a 2-legged series-parallel graph with terminals s and v, and G′′ is a 2-legged
series-parallel graph with terminals u and t, as illustrated in Figure 3.3(b). If G′ is
not a diamond graph, then 4 ≤ n(G′) < n(G), and hence by the inductive hypothesis,
G′ has three optimal drawings of I-, L-, and U-shapes. If G′ is a diamond graph, then
by Lemma 3.1(a), G′ has two optimal (no-bend) drawings of I- and L-shapes. Hence,
in either case, G′ has two optimal drawings of I- and L-shapes. Similarly, G′′ has two
optimal drawings of I- and L-shapes. Combining these drawings of G′ and G′′, one
can easily construct three optimal drawings DI, DL, and DU of G, as illustrated in
Figures 3.3(c), (d), and (e). Thus (a) holds true.

Consider next the case where G− s− t is a parallel connection of two subgraphs.
Then G has exactly one biconnected component, and the degrees of the leg-vertices
are three, as illustrated in Figure 3.4(a). Deleting the terminals of G and splitting
the two leg-vertices of G, one can obtain two edge-disjoint 2-legged series-parallel
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Fig. 3.4. Illustration of the proof of Lemma 3.2.

subgraphs G′ and G′′, as illustrated in Figure 3.4(b). Since n(G′), n(G′′) ≥ 2, there
are the following two cases to consider.

Case 1: Either n(G′) = 2 or n(G′′) = 2.
One may assume that n(G′′) = 2, and hence G′′ consists of a single edge. Since

G is a simple graph, we have n(G′) ≥ 3.
Consider first the case where G′ is not a diamond graph. Then 4 ≤ n(G′) < n(G),

and hence by the inductive hypothesis, G′ has an optimal U-shaped drawing D′
U. From

a flipped drawing of D′
U, one can easily construct three optimal drawings DI, DL, and

DU of G, as illustrated in Figure 3.4(c).
Consider next the case where G′ is a diamond graph. Then by Lemma 3.1(a),

G′ has a no-bend L-shaped drawing D′
L. From a flipped drawing of D′

L, one can
easily construct three drawings DI, DL, and DU of G, with one bend, as illustrated in
Figure 3.4(d). Since G′ is a diamond graph, by Lemma 3.1(c), every no-bend drawing
of G′ is either I-shaped or L-shaped. Therefore, we have bend(G) ≥ 1; if G had a
no-bend drawing D, then D|G′ would be I- or L-shaped, and hence D would have one
or more bends on the edge in G′′, a contradiction. Thus the constructed drawings DI,
DL, and DU having exactly one bend are optimal.

Case 2: n(G′), n(G′′) ≥ 3.
Since G is not a diamond graph, either G′ or G′′ is not a diamond graph. One may

assume without loss of generality that G′ is not a diamond graph. Then 4 ≤ n(G′) <
n(G), and hence by the inductive hypothesis, G′ has an optimal U-shaped drawing
D′

U. On the other hand, G′′ has an optimal I-shaped drawing D′′
I ; if G′′ is a diamond

graph, then by Lemma 3.1(a), G′′ has an optimal (no-bend) I-shaped drawing D′′
I ;

otherwise, by the inductive hypothesis, G′′ has an optimal I-shaped drawing D′′
I . From

the U-shaped drawing D′
U and the I-shaped drawing D′′

I , one can easily construct I-,
L-, and U-shaped drawings DI, DL, and DU of G without introducing any new bends,
as illustrated in Figure 3.4(e). Since DI has no bend on the legs, by (2.1) and (2.2)
we have

bend(DI) = bend(D′
U) + bend(D′′

I ).

Since D′
U and D′′

I are optimal drawings of G′ and G′′, respectively,

bend(D′
U) = bend(G′)
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Fig. 3.5. A graph attaining the bound in Lemma 3.2(c).

and

bend(D′′
I ) = bend(G′′).

Let D∗ be an arbitrary optimal drawing of G, then clearly

bend(G′) ≤ bend(D∗|G′),

bend(G′′) ≤ bend(D∗|G′′),

and

bend(D∗|G′) + bend(D∗|G′′) ≤ bend(D∗) = bend(G).

From these six equations we have bend(DI) ≤ bend(G), and hence DI is an optimal
drawing of G. Similarly, DL and DU are optimal drawings of G. Thus (a) holds true.

(b) We now prove (b). One can construct the (regular labeling of) drawings DI,
DL, and DU above from the (regular labeling of) drawings of G′ and G′′ simply by
deciding the labels of the terminals and leg-vertices in G; this can be done in constant
time. Thus (b) holds true for G.

(c) We finally prove (c). If a new bend is produced in a construction of G,
as illustrated in Figures 3.3 and 3.4, then the construction is one in Figure 3.4(d),
n(G) ≥ 5, and bend(G) = bend(G′)+1 = 1 ≤ (n(G)−2)/3. In any other construction,
no new bend is produced. Noting this fact, one can inductively prove that n(G) ≤
(n(G) − 2)/3.

We denote by Kn a complete graph of n(≥ 1) vertices. Let G be a 2-legged series-
parallel graph obtained from copies of K2 and K3 by connecting them alternately in
series, as illustrated in Figure 3.5. Then bend(G) = (n(G)− 2)/3. Thus the bound in
Lemma 3.2(c) is best possible.

The proof of Lemma 3.2 immediately yields a linear algorithm NonDiamond(G,
DI, DL, DU), which recursively finds three optimal I-, L-, and U-shaped drawings DI,
DL, and DU of a given 2-legged series-parallel graph G unless G is a diamond graph.
By algorithms Diamond and NonDiamond, one can find an optimal drawing of a
2-legged series-parallel graph G. Note that NonDiamond may call Diamond.

For a series-parallel graph G with d(s), d(t) ≤ 2, one can easily find an optimal
outer drawing D of G, as follows. Add to G a dummy edge s′s for a new vertex s′ if
d(s) = 2, and add to G a dummy edge tt′ for a new vertex t′ if d(t) = 2. Then the
resulting graph G′ is a 2-legged series-parallel graph, and Δ(G′) ≤ 3. Find an optimal
drawing D′ of G′ by Diamond or NonDiamond and delete the dummy edges from
D′. Then the resulting drawing D of G is clearly optimal and outer.

3.2. Biconnected series-parallel graphs. A biconnected series-parallel gra-
ph G can be defined (without specifying terminals) as a biconnected graph which has
no K4 as a minor. For every edge uv in G, G is a series-parallel graph with terminals
u and v.

A cycle C of four vertices in a graph G is called a diamond if two nonconsecutive
vertices of C have degree two in G and the other two vertices of C have degree three
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v

u

v

w

u

(a) (b) (c)

C

Fig. 3.6. Substructures contained in a biconnected series-parallel graph of Δ ≤ 3.

v

G   v   uw

C

G/C

u w

G   uv(a) (c)(b)

Fig. 3.7. Smaller graphs G′.

and are not adjacent in G, as illustrated in Figure 3.6(a). We denote by G/C the
graph obtained from G by contracting C to a new single vertex vC , as illustrated in
Figure 3.7(a). (Note that GC = G/C is series-parallel if G is series-parallel. One can
observe that, from every diamond graph, one can obtain a graph in Figure 2.5(a) by
repeatedly contracting a diamond.)

Noting that every biconnected series-parallel graph G has a vertex of degree two,
one can easily observe that the following Lemma 3.3 holds. (Lemma 3.3 is also an
immediate conquence of Lemma 2.1 in [10] on a general series-parallel graph.)

Lemma 3.3. Every biconnected series-parallel graph G of Δ ≤ 3 has, as a sub-
graph, one of the following three substructures (a)–(c) illustrated in Figure 3.6:

(a) a diamond C;
(b) two adjacent vertices u and v such that d(u) = d(v) = 2; and
(c) a complete graph K3 of three vertices u, v, and w such that d(v) = 2.
Our idea is to reduce the optimal drawing problem for a biconnected series-parallel

graph G to that for a smaller graph G′ illustrated in Figure 3.7, as in the following
Lemmas 3.4 and 3.5.

Lemma 3.4. If a biconnected series-parallel graph G, with n(G) ≥ 6 has a dia-
mond C, then bend(G) = bend(G′) for G′ = G/C.

Proof. Assume that a biconnected series-parallel graph G has a diamond C and
that s′ and t′ are the two vertices of C having degree three in G, as illustrated in
Figure 3.8(a). Let G′ = G/C be the graph obtained from G by contracting C to
a new single vertex vC , as illustrated in Figure 3.8(b). Since n(G) ≥ 6 and G is
biconnected, the neighbor of s′ outside C is different from that of t′. Therefore,
G′ is a biconnected series-parallel (simple) graph. Let D

′∗ be an optimal drawing
of G′, then bend(D

′∗) = bend(G′). (See Figure 3.8(e).) Replace the vertex vC in
D

′∗ with a rectangular drawing of C, and let D be the resulting drawing of G, as
illustrated in Figure 3.8(d). We claim that D is an optimal drawing of G, and hence
bend(G) = bend(G′).
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D(e)        or(d)       and 

(a)

(f) (g)

(c)(b)     =

(h)** *

Fig. 3.8. Illustration for the proof of Lemma 3.4.

The (regular labeling of) drawing D is constructed from the (regular labeling of)
optimal drawing D

′∗ of G′ without introducing any new bend, and hence we have
bend(D) = bend(D

′∗) = bend(G′). Let D∗ be an arbitrary optimal drawing of G,
then bend(D∗) = bend(G). If

(3.1) bend(G′) ≤ bend(D∗),

then bend(D) = bend(G′) ≤ bend(D∗) = bend(G), and hence D is an optimal drawing
of G. It thus suffices to verify (3.1). There are the following two cases to consider.

Case 1: bend(D∗|C) = 0.
In this case, D∗|C is a rectangle, as illustrated in Figure 3.8(d). Contracting C

in D∗ to a single vertex vC and appropriately deciding the two labels of vC , one can
obtain (a regular labeling of) a drawing D′ of G′ = G/C from D∗ without introducing
any new bend, as illustrated in Figure 3.8(e). We thus have bend(G′) ≤ bend(D′) =
bend(D∗).

Case 2: bend(D∗|C) ≥ 1.
In this case, D∗|C is a rectilinear polygon having five or more (geometric) vertices

including at least one bend. Delete from G the two vertices of C having degree
two, and let G′′ be the resulting graph, as illustrated in Figure 3.8(c). Since G is
biconnected, G′′ is a 2-legged series-parallel graph with terminals s′ and t′. (Note
that every biconnected series-parallel graph is a series-parallel graph having the ends
of an arbitrary edge as terminals, and that a graph obtained from a series-parallel
graph by contracting an edge is series-parallel.) Since G′′ is the complement of C in
G, by (2.2) we have

(3.2) bend(D∗|G′′) + bend(D∗|C) = bend(D∗).

There are the following two subcases to consider.
Case 2.1: G′′ is not a diamond graph.
Since n(G) ≥ 6, n(G′′) = n(G) − 2 ≥ 4. Since G′′ is not a diamond graph,

by Lemma 3.2(a), G′′ has an optimal U-shaped drawing D
′′∗, as illustrated in Fig-

ure 3.8(f). D
′′∗ can be modified to a drawing D′ of G′ by identifying s′ with t′ as

a single vertex vC and introducing a new bend, as illustrated in Figure 3.8(e), and
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G

G

(b)(a)

Fig. 3.9. An optimal drawing D∗ of G such that D∗|G′′ is I-shaped in (a) or L-shaped in (b).

hence by (3.2),

bend(G′) ≤ bend(D′)

= bend(D
′′∗) + 1

= bend(G′′) + 1

≤ bend(D∗|G′′) + bend(D∗|C)

= bend(D∗).

Case 2.2: G′′ is a diamond graph.
Since bend(D∗|C) ≥ 1, by (2.1) we have bend(D∗) ≥ bend(D∗|C) ≥ 1. We now

claim that

bend(D∗) ≥ 2.(3.3)

Suppose for a contradiction that bend(D∗) = 1. Since bend(D∗|C) ≥ 1, by (3.2) we
have bend(D∗|C) = 1 and bend(D∗|G′′) = 0, and hence D∗|G′′ is a no-bend drawing
of G′′. Then by Lemma 3.1(c), D∗|G′′ is either I-shaped or L-shaped, as illustrated
in Figures 3.9(a) and (b), respectively. In either case, the drawing of C needs two or
more bends in D∗, that is, bend(D∗|C) ≥ 2, as illustrated in Figure 3.9, where C is
drawn by thick lines. This is contrary to bend(D∗|C) = 1.

Since G′′ is a diamond graph, by Lemma 3.1(a) G′′ has a no-bend L-shaped
drawing D′′, as illustrated in Figure 3.8(h). The drawing D′′ can be modified to a
drawing D′ of G′ = G/C by identifying the two vertices s′ and t′ as a single vertex
vC and introducing two new bends, as illustrated in Figure 3.8(g), and hence we have

bend(G′) ≤ bend(D′) = bend(D′′) + 2 = 2.(3.4)

By (3.3) and (3.4) we have bend(G′) ≤ 2 ≤ bend(D∗).
Lemma 3.5. Assume that a biconnected series-parallel graph G, with n(G) ≥ 6

has no diamond. If G has a substructure of type (b) in Figure 3.6(b), then bend(G) =
bend(G′) for G′ = G− uv. If G has a substructure of type (c) in Figure 3.6(c), then
bend(G) = bend(G′) + 1 for G′ = G− v − uw. (See Figures 3.7(b) and (c).)

Proof. Since G has no diamond, by Lemma 3.3, G has either a substructure (b)
or (c).

Suppose first that G has a substructure (b). Let G′ = G − uv, as illustrated in
Figure 3.7(b). Then G′ is a 2-legged series-parallel graph with terminals u and v.
Clearly n(G′) = n(G) ≥ 6. Since G has no diamond, the subgraph G′ of G has no
diamond. Therefore G′ is not a diamond graph, and hence by Lemma 3.2(a), G′ has
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u

v

w

UD

Fig. 3.10. Construction of D from D′
U .

an optimal U-shaped drawing D′
U. D′

U can be extended to a drawing D of G simply
by drawing uv as a straight line segment. Since bend(D) = bend(D′

U) = bend(G′) ≤
bend(G), D is an optimal drawing of G. Thus bend(G) = bend(D) = bend(G′).

Suppose next that G has a substructure (c). Let G′ = G−v−uw, as illustrated in
Figure 3.7(c). Then G′ is a 2-legged series-parallel graph with terminals u and w and
is not a diamond graph. Therefore, by Lemma 3.2(a), G′ has an optimal U-shaped
drawing D′

U. D′
U can be extended to a drawing D of G by drawing the complete

graph K3 of three vertices u, v, w as a rectangle with one bend, as illustrated in
Figure 3.10. Any orthogonal drawing of K3 needs a bend, and hence bend(D) =
bend(D′

U) + 1 = bend(G′) + 1 ≤ bend(G). Thus D is an optimal drawing of G, and
hence bend(G) = bend(G′) + 1.

From the proofs of Lemmas 3.4 and 3.5 we have the following algorithm Biconne-
cted(G, D) to find an optimal drawing D of a biconnected series-parallel graph G.

Biconnected(G, D);
begin

One may assume that n(G) ≥ 6 (otherwise, one can easily find an optimal
drawing D of G in linear time);
{By Lemma 3.3, G has one of the three substructures (a)–(c) in Figure 3.6.}
Case 1: G has a diamond C;

Let G′ = G/C; {G′ is a biconnected series-parallel graph.}
Biconnected(G′, D′);
Extend an optimal drawing D′ of G′ to an optimal drawing D of G simply
by replacing vC by a rectanglar drawing of C, as illustrated in
Figures 3.8(d) and (e); {cf. Lemma 3.4}

Case 2: G has no diamond but has a substructure (b);
Let G′ = G− uv;
{G′ is a 2-legged series-parallel graph with terminals u and v and is not
a diamond graph.}
Find an optimal U-shaped drawing D′

U of G′ by NonDiamond;
{cf. Lemma 3.2}

Extend D′
U to an optimal drawing D of G by drawing uv as a straight

line segment; {cf. Lemma 3.5}
Case 3: G has neither a diamond nor a substructure (b) but has a
substructure (c);

Let G′ = G− v − uw;
{G′ is a 2-legged series-parallel graph with terminals u and w and is not
a diamond graph.}
Find an optimal U-shaped drawing D′

U of G′ by NonDiamond;



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1584 XIAO ZHOU AND TAKAO NISHIZEKI

n(a)     = 4 (b)     = 5n

Fig. 3.11. Biconnected series-parallel graphs with n = 4 or n = 5.

Extend D′
U to an optimal drawing D of G by drawing K3 = uvw as a

rectangle with one bend, as illustrated in Figure 3.10; {cf. Lemma 3.5}
end.
All substructures (a)–(c) can be found total in time O(n) by a standard bookkeep-

ing method to maintain all degrees of vertices together with all paths of length two
with an intermediate vertex of degree two. One can thus observe that Biconnected
can be executed in linear time.

We thus have the following theorem.
Theorem 3.6. An optimal orthogonal drawing of a series-parallel biconnected

graph G of Δ ≤ 3 can be found in linear time.
It should be noted that the (orginal) terminals s and t of G are not always on the

outer face of a drawing D obtained by Biconnected, and hence D is not always an
outer drawing, as known from the example in Figure 2.3.

Di Battista, Liotta, and Vargiu gave an O(n3) algorithm for biconnected series-
parallel simple graphs using a min-cost flow technique and a data structure called
an SPQ∗R tree [4, 5]. Our linear algorithm is much simpler and faster than their
algorithm.

We have the following lemma on the minimum number of bends.
Lemma 3.7. If a series-parallel graph G is biconnected and Δ ≤ 3, then

(3.5) bend(G) ≤ �n(G)/3�.

Proof. We prove (3.5) by induction on n(G). Since G is biconnected, n(G) ≥ 3.
1◦. We first show that (3.5) holds if 3 ≤ n(G) ≤ 5. If n(G) = 3, then G = K3

and bend(G) = 1 = �n(G)/3�. If n(G) = 4 and bend(G) ≥ 1, then G = K4 − e in
Figure 3.11(a), and hence bend(G) = 2 ≤ �n(G)/3�, where K4−e is a graph obtained
from K4 by deleting an edge. If n(G) = 5 and bend(G) ≥ 1, then G is one of the two
graphs in Figure 3.11(b), and hence bend(G) ≤ 2 ≤ �n(G)/3�.

2◦. Assume that n(G) ≥ 6, and assume inductively that (3.5) holds for every
series-parallel biconnected graph of at most n(G) − 1 vertices.

3◦. We then show that (3.5) holds for G. There are the following three cases to
consider.

Case 1: G has a diamond C.
By Lemma 3.4 we have bend(G) = bend(G′) for G′ = G/C. Since n(G′) =

n(G) − 3 and G′ is a series-parallel biconnected graph, by the inductive hypothesis
we have bend(G′) ≤ �n(G′)/3�. We thus have bend(G) = bend(G′) < �n(G)/3�.

Case 2: G has no diamond but has a substructure (b) in Figure 3.6(b).
By Lemma 3.5 we have bend(G) = bend(G′) and n(G) = n(G′) for G′ = G −

uv. Since G′ is a 2-legged series-parallel graph and is not a diamond graph, by
Lemma 3.2(c) we have bend(G′) ≤ (n(G′)−2)/3. We thus have bend(G) = bend(G′) ≤
�n(G)/3�.
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Case 3: G has neither a diamond nor a substructure (b) but has a substructure
(c) in Figure 3.6(c).

By Lemma 3.5 we have bend(G) = bend(G′) + 1 and n(G) = n(G′) + 1 for
G′ = G − v − uw. Since G′ is a 2-legged series-parallel and is not a diamond graph,
by Lemma 3.2(c) we have bend(G′) ≤ (n(G′) − 2)/3. We thus have

bend(G) ≤ (n(G′) − 2)/3 + 1

= n(G)/3

≤ �n(G)/3�.

4. Optimal drawing of nonbiconnected series-parallel graph. It has been
left as open by Di Battista, Liotta, and Vargiu [4, 5] to obtain an algorithm for
nonbiconnected series-parallel graphs G. In section 4.1 we give a linear algorithm for
G, and in section 4.2 we give a best possible upper bound on bend(G).

4.1. Algorithm. By Lemma 3.1, Lemma 3.2, and Theorem 3.6, one may assume
that G is neither 2-legged nor biconnected. Therefore either d(s) ≥ 2 or d(t) ≥ 2, and
hence one may assume without loss of generality that d(s) ≥ 2.

We now claim that one may further assume that d(t) ≥ 2, and hence G consists
of biconnected components B1, B2, . . . , Bp, p ≥ 2, and p−1 copies of K2, alternately
connected in series, as illustrated in Figure 4.1(a), after replacing each induced path
contained in none of the biconnected components by a single edge. Suppose that
d(t) = 1, as illustrated in Figure 4.1(b). Then G′ = G − t is a series-parallel graph
with terminals s and tp, and takes the form in Figure 4.1(a). Since d(tp, G

′) =
d(tp, G) − 1 = 2, there is an angle of π or 3π/2 around vertex tp in any optimal
drawing D′ of G′. An optimal drawing D of G can be obtained from D′ simply by
inserting the edge tpt in the angle. One may thus assume that d(t) ≥ 2.

For a series-parallel graph G in Figure 4.1(a), each biconnected component Bi,
1 ≤ i ≤ p, is a series-parallel graph with terminals si and ti, where s1 = s and tp = t.
Clearly

p∑
i=1

bend(Bi) ≤ bend(G).(4.1)

However, (4.1) does not always hold with equality, as follows. Consider the series-
parallel graph G in Figure 4.2(a); G has two biconnected components B1 and B2, and
hence p = 2. B1 and B2 have no-bend (optimal) drawings D1 and D2, as illustrated
in Figures 4.2(b) and (c), respectively. Thus bend(B1) = bend(B2) = 0, and hence
bend(B1) + bend(B2) = 0. However, terminal t1 of B1 is not on the outer face of any
no-bend drawing of B1. Similarly, s2 is not on the outer face of any no-bend drawing
of B2. Therefore, one cannot connect t1 in D1 and s2 in D2 by an edge without
edge-crossing. Thus G does not have a no-bend drawing. On the other hand, B2

has a drawing Do
2 with one bend in which s2 is on the outer face, as illustrated in

Figure 4.2(d). Combining D1 and Do
2, one can construct a drawing D of G with one

bend, as illustrated in Figure 4.2(e). Thus bend(G) = 1, and hence

bend(B1) + bend(B2) < bend(G).

In section 4.3, we will prove

(4.2) bend(G) =

p∑
i=1

bend(Bi) or

p∑
i=1

bend(Bi) + 1.
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Fig. 4.1. Nonbiconnected series-parallel graphs.
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Fig. 4.2. Construction of an optimal drwing D of G for a case p = 2.

Delete from a series-parallel graph G in Figure 4.1(a) all vertices in B1 and Bp

except t1 and sp, and let Gint be the resulting series-parallel graph with terminals
t1 and sp, as illustrated in Figure 4.1(c). Then we claim that Gint has an optimal
I-shaped drawing. If p = 2, then Gint = K2, and hence Gint has an optimal (no-bend)
I-shaped drawing DintI. If p ≥ 3, then G is 2-legged, and hence by Lemmas 3.1 and
3.2, Gint has an optimal I-shaped drawing DintI, in which both terminals t1 and sp
are on the outer face.
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Fig. 4.3. Two alternative drawings Da and Db of G.
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Fig. 4.4. Three kinds of the outer angle of sp in Do
p.

As known from the example in Figure 4.2, we have the following lemma.
Lemma 4.1. Let G be a series-parallel graph taking the form in Figure 4.1(a).

Then an arbitrary drawing D of G has one of the following two alternatives forms:
(a) the terminal sp of Bp is on the outer face of the drawing Do

p = D|Bp of Bp

(see Figure 4.3(a), for example); and
(b) the terminal t1 of B1 is on the outer face of the drawing Do

1 = D|B1 of B1

(see Figure 4.3(b), for example).
In (a) above, the outer angle of sp, that is, the angle around sp in the outer face

of Do
p, must be either 3π/2 or π, as illustrated in Figures 4.4(a) and (b); if it were

π/2, as illustrated in Figure 4.4(c), then the edge tp−1sp could not be drawn in the
outer angle. Since d(t1, B1) = 2, one of the two angles of t1 in any drawing of B1 has
an angle of 3π/2 or π. Of course, in an arbitrary drawing D of G, both Gint and Bp

are drawn in the same face F1 of D1 = D|B1 having such an angle of t1, as illustrated
in Figure 4.3(a). Note that face F1 may be outer although it is drawn as an inner
face in Figure 4.3(a). Similarly, in (b) above, both Gint and B1 are drawn in the same
face Fp of Dp = D|Bp, as illustrated in Figure 4.3(b).

Let B be a biconnected series-parallel graph, and let v be a vertex of degree
two in B. A drawing D of B is (α, v)-outer if v is on the outer face of D and
the outer angle of v is α, where α = π/2, π, or 3π/2. An (α, v)-outer drawing D
is optimal if D has the minimum number of bends among all possible (α, v)-outer
drawings of B. The minimum number of bends is denoted by bend(B,α, v). Clearly
bend(B) ≤ bend(B,α, v). However, the equation does not always hold with equality.
For example, bend(B2) = 0 < 1 = bend(B2, 3π/2, s2) for B2 in Figure 4.2(a).
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Lemma 4.1 and the arguments above imply that we shall find optimal (α, t1)-outer
drawings of B1 and optimal (α, sp)-outer drawings of Bp for both α = 3π/2 or α = π.
However, it suffices to find them only for α = 3π/2, because bend(B1, 3π/2, t1) ≤
bend(B1, π, t1) and bend(Bp, 3π/2, sp) ≤ bend(Bp, π, sp) as known from the following,
Lemma 4.2(a), whose proof will be given in section 4.3.

Lemma 4.2. If a biconnected series-parallel graph B has a vertex v of degree two,
then

(a)

(4.3) bend(B, 3π/2, v) ≤ min{bend(B, π/2, v), bend(B, π, v)};

(b)

bend(B, 3π/2, v) = bend(B) or bend(B) + 1;

and
(c) an optimal (3π/2, v)-outer drawing of B can be found in linear time.
The proof of Lemma 4.2 yields a linear algorithm OuterDrawing(B, v,D) to

find an optimal (3π/2, v)-outer drawing of B. Thus one can easily observe that the
following algorithm NonBiconnected(G,D) finds an optimal drawing of G.

NonBiconnected(G, D);
begin

Find an optimal drawing D1 of B1 and an optimal drawing Dp of Bp

by Biconnected;
Find an optimal (3π/2, t1)-outer drawing Do

1 of B1 and an optimal (3π/2, sp)-
outer drawing Do

p of Bp by OuterDrawing;
Find an optimal I-shaped drawing DintI of Gint; {cf. Lemmas 3.1 and 3.2}
Let F1 be a face of D1 such that the angle of t1 in F1 is π or 3π/2, insert
DintI and Do

p in F1, and let Da be the resulting drawing of G, as illustrated
in Figure 4.3(a);
Similarly construct a drawing Db of G, as illustrated in Figure 4.3(b);
if bend(Da) ≤ bend(Db), then return Da as D

else return Db as D;
end.
One can easily observe that NonBiconnected finds an optimal drawing of G in

linear time. We thus have the following theorem.
Theorem 4.3. An optimal orthogonal drawing of a series-parallel graph G of

Δ ≤ 3 can be found in linear time.

4.2. Upper bounds on bends. In this subsection we prove the following the-
orem.

Theorem 4.4. If G is a series-parallel graph of Δ ≤ 3, then bend(G) ≤ (n +
4)/3.

The bound in Theorem 4.4 is best possible, because bend(G) = (n + 4)/3 for a
series-parallel graph G consisting of two copies of K4−e and several copies of K2 and
K3 connected in series, as illustrated in Figure 4.5, where K4 − e is a graph obtained
from K4 by deleting an edge e.

We first have the following lemma.
Lemma 4.5. If a biconnected series-parallel graph B has a vertex v of degree two,

then

bend(B, 3π/2, v) ≤ (n(B) + 2)/3.
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s t

Fig. 4.5. A series-parallel graph G with (n + 4)/3 bends.

Proof. Since B is biconnected, we have n(B) ≥ 3. Split the vertex v into two ver-
tices s′ and t′, and let Bv be the resulting 2-legged series-parallel graph, as illustrated
in Figure 4.6.

Consider first the case where Bv is a diamond graph. Then clearly n(B) ≥ 6.
By Lemma 3.1(a), Bv has a no-bend L-shaped drawing DvL. From DvL, one can
construct a (3π/2, v)-outer drawing D3π/2 of B with two bends. (See Figures 3.8(g)
and (h).) Therefore bend(B, 3π/2, v) ≤ bend(D3π/2) = 2 ≤ (n(B) + 2)/3.

Consider next the case where Bv is not a diamond graph. By Lemma 3.2(a),
Bv has an optimal U-shaped drawing DvU, and bend(DvU) = bend(Bv). From DvU,
one can construct a (3π/2, v)-outer drawing D3π/2 of B with a new bend, and hence
bend(D3π/2) = bend(DvU) + 1. (See Figures 3.8(e) and (f).) By Lemma 3.2(c),
bend(Bv) ≤ (n(Bv) − 2)/3. Clearly n(B) = n(Bv) − 1. We thus have

bend(B, 3π/2, v) ≤ bend(D3π/2)

= bend(DvU) + 1

= bend(Bv) + 1

≤ (n(Bv) − 2)/3 + 1

= (n(B) + 2)/3.

We are now ready to present a proof of Theorem 4.4.
Proof of Theorem 4.4. By Lemma 3.7, bend(G) ≤ �n/3� < (n + 4)/3 for every

series-parallel biconnected graph G. We may thus assume that G is not biconnected.
Then one may assume that G consists of biconnected components B1, B2, . . . , Bp,
p ≥ 2, and several copies of K2, alternately connected in series, as illustrated in Fig-
ure 4.1(a). NonBiconnected finds an optimal drawing D of G such that bend(D) ≤
bend(Da) ≤ bend(B1) + bend(Gint) + bend(Bp, 3π/2, sp).

By Lemma 3.7 we have bend(B1) ≤ �n(B1)/3� ≤ (n(B1) + 2)/3. We have
bend(Gint) ≤ (n(Gint) − 2)/3; if n(Gint) = 2, then bend(Gint) = 0 = (n(Gint) − 2)/3;
if n(Gint) ≥ 3 and Gint is a diamond graph, then by Lemma 3.1(a) bend(Gint) = 0 <
(n(Gint)−2)/3; if n(Gint) ≥ 3 and Gint is not a diamond graph, then by Lemma 3.2(c)
bend(Gint) ≤ (n(Gint) − 2)/3. By Lemma 4.5 we have bend(Bp, 3π/2, sp) ≤ (n(Bp) +
2)/3. Clearly n(G) = n(B1) + n(Gint) + n(Bp) − 2. We thus have

bend(G) ≤ (n(B1) + 2)/3 + (n(Gint) − 2)/3 + (n(Bp) + 2)/3

≤ (n(G) + 4)/3.

One can easily observe that each edge has at most one bend in a drawing found
by our algorithm.

4.3. Proof of Lemma 4.2. In this subsection, we first give a proof of Lemma
4.2, then present algorithm OuterDrawing to find an optimal (3π/2, v)-outer draw-
ing, and finally prove (4.2).
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Bv

s t

B B v

v

(b) (c)(a)

Fig. 4.6. (a) Biconnected graph B, (b) 2-legged graph Bv, and (c) graph B − v.

Let B be a biconnected series-parallel graph with Δ(B) ≤ 3, and let v be a vertex
of degree two in B, as illustrated in Figure 4.6(a). Split the vertex v into two vertices
s′ and t′, and let Bv be the resulting 2-legged series-parallel graph with terminals s′

and t′, as illustrated in Figure 4.6(b).
Consider first the case where Bv is a diamond graph. Then we have the following

lemma.
Lemma 4.6. If Bv is a diamond graph, then bend(B, 3π/2, v) = bend(B) = 2.
Proof. Since Bv is a diamond graph, by Lemma 3.1 Bv has a no-bend L-shaped

drawing DL, from which one can construct a (3π/2, v)-outer drawing D3π/2 of B with
two bends (see Figures 3.8(g) and (h)), and hence

bend(B) ≤ bend(B, 3π/2, v) ≤ bend(D3π/2) = 2.

Thus it suffices to verify 2 ≤ bend(B).
Let D∗ be an arbitrary optimal drawing of B. Let Dv be a drawing of Bv

obtained from D∗ without introducing any new bend as follows: erase, from D∗,
point v together with very short segments of two edges incident to vertex v, and
regard the ends of the erased seqments other than v as vertices s′ and t′ of Bv. We
then have

(4.4) bend(Dv) = bend(D∗) = bend(B).

The construction of Dv implies that Dv has none of I-, L-, and U-shapes. We now
claim 2 ≤ bend(Dv); if bend(Dv) = 0, then by Lemma 3.1(c), Dv must be I-shaped
or L-shaped, a contradiction; if bend(Dv) = 1, then one can easily observe from the
example in Figure 2.6 that Dv is I-, L-, or U-shaped, a contradiction. Thus we have
2 ≤ bend(Dv) = bend(B).

The proof of Lemma 4.6 immediately yields the following linear algorithm
OuterDiamond(B, v, D) to find an optimal (3π/2, v)-outer drawing D of B, with
bend(D) = bend(B) = 2 if Bv is a diamond graph.

OuterDiamond(B, v, D);
begin

Find a no-bend L-shaped drawing DvL of Bv by Diamond;
Construct from DvL a (3π/2, v)-outer drawing D of B with two bends;

(See Figures 3.8(g) and (h).)
end.
Consider next the case where B − v is a series connection of subgraphs. We then

have the following lemma.
Lemma 4.7. If B−v is a series connection of subgraphs, then bend(B, 3π/2, v) =

bend(B).
Proof. Since Δ(B) ≤ 3 and B − v is a series connection of subgraphs, Bv has a

bridge e other than the two legs, as illustrated in Figure 4.7(a). Bv has two subgraphs
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Fig. 4.7. Illustration of the proof of Lemma 4.7.

B′ and B′′, each of which is a 2-legged series-parallel graph and has e as a leg, as
illustrated in Figure 4.7(b). Clearly n(B′), n(B′′) ≥ 3.

Consider first the case where both B′ and B′′ are diamond graphs. Then by
Lemma 3.1(a), B′ and B′′ have no-bend L-shaped drawings D′

L and D′′
L, respec-

tively. Merging D′
L and D′′

L, one can construct a (3π/2, v)-outer drawing D3π/2 of
B with one bend, as illustrated in Figure 4.7(c), and hence bend(B, 3π/2, v) ≤ 1.
By Lemma 3.1(c), any no-bend drawings of B′ and B′′ are not U-shaped but are
I-shaped or L-shaped. Therefore, B does not have a no-bend drawing. Thus D3π/2 is
an optimal drawing of B, and hence bend(B) = bend(B, 3π/2, v) = 1.

Consider next the case of either B′ or B′′ is not a diamond graph. Assume without
loss of generality that B′ is not a diamond graph. Then by Lemma 3.2(a), B′ has
an optimal U-shaped drawing D′

U. On the other hand, B′′ has an optimal L-shaped
drawing D′′

L; if B′′ is a diamond graph, then by Lemma 3.1(a), B′′ has an optimal (no-
bend) L-shaped drawing; otherwise, by Lemma 3.2(a), B′′ has an optimal L-shaped
drawing. Merging D′

U and D′′
L, one can construct an optimal (3π/2, v)-outer drawing

D3π/2 of B without introducing any new bend, as illustrated in Figure 4.7(d). Clearly
D3π/2 is an optimal drawing of B, and hence bend(B, 3π/2, v) = bend(B).

The proof of Lemma 4.7 immediately yields the following linear algorithm
OuterSeries(B, v, D) to find an optimal (3π/2, v)-outer drawing D of B, with
bend(D) = bend(B) if B − v is a series connection of subgraphs.

OuterSeries(B, v, D);
begin

Define B′ and B′′ as in Figures 4.7(a) and (b);
if both B′ and B′′ are diamond graphs,
then

Find no-bend L-shaped drawings D′
L of B′ and D′′

L of B′′ by Diamond;
Construct a drawing D with one bend from D′

L and D′′
L as in Figure 4.7(c);

else
Assume that B′ is not a diamond graph;
Find an optimal U-shaped drawing D′

U of B′ by NonDiamond;
Find an optimal L-shaped drawing D′′

L of B′′ by Diamond
or NonDiamond;
Construct D from D′

U and D′′
L as in Figure 4.7(d);

end.
We shall thus consider the remaining case where B− v is a parallel connection of

subgraph. Roughly speaking, for the case, we reduce the problem of finding an optimal
(3π/2, v)-outer drawing of B to those for smaller graphs B′

id and B′′
id illustrated in

Figure 4.8. The detail is given in the following proof of Lemma 4.2(a).
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Fig. 4.8. Illustration of the proof of Lemma 4.2.

Proof of Lemma 4.2(a). We prove (4.3) by induction on the number n(B) of
vertices of B. If n(B) = 3, that is, B = K3, then bend(B, 3π/2, v) = 1, bend(B, π, v) =
2, and bend(B, π/2, v) = 3, and hence (4.3) holds. One may thus assume that n(B) ≥
4, and inductively assume that (4.3) holds for every biconnected series-parallel graph
of at most n(B) − 1 vertices. We now prove (4.3) for B. By Lemmas 4.6 and 4.7,
one may assume that Bv is not a diamond graph and B − v is a parallel connection
of subgraphs. Then B − v is biconnected, and the two vertices v1 and v2 that are
adjacent to v in B have degree three in B, as illustrated in Figure 4.8(a). Splitting
vertices v1 and v2 of B− v, one can obtain two edge-disjoint series-parallel subgraphs
B′ and B′′ of B, as illustrated in Figure 4.8(c). Clearly n(B′), n(B′′) ≥ 2.

We prove only bend(B, 3π/2, v) ≤ bend(B, π, v), because one can similarly prove
bend(B, 3π/2, v) ≤ bend(B, π/2, v). Let D∗

π be an optimal (π, v)-outer drawing of B,
then bend(D∗

π) = bend(B, π, v). It suffices to prove that bend(B, 3π/2, v) ≤ bend(D∗
π).

There are the following three cases to consider.
Case 1: D∗

π has a bend on edge vv1 or vv2.
Erasing from D∗

π a line segment connecting v and a bend in the edge, one can
obtain a drawing Dv of Bv. Since a bend in D∗

π is regarded as a vertex in Dv, we
have bend(Bv) ≤ bend(Dv) = bend(D∗

π) − 1.
Since Bv is not a diamond graph, by Lemma 3.2(a) Bv has an optimal U-shape

drawing DvU. From DvU, one can construct a (3π/2, v)-outer drawing D3π/2 of B
with a new bend. (See Figures 3.8(e) and (f).) Thus we have

bend(B, 3π/2, v) ≤ bend(D3π/2)

= bend(DvU) + 1

= bend(Bv) + 1

≤ bend(D∗
π).

Case 2: D∗
π has no bend on edges vv1 and vv2, and either n(B′) = 2 or n(B′′) = 2.

One may assume without loss of generality that n(B′) = 2, and hence B′ consists
of a single edge v1v2. Since D∗

π has no bend on the edges v1v and vv2, they are drawn
on the same straight line segment in D∗

π. Therefore the edge v1v2 in B′ must have two
or more bends in D∗

π, and hence bend(D∗
π|B′) ≥ 2. Since B has no multiple edges,

n(B′′) ≥ 3 and B′′ is a 2-legged series-parallel graph.
If B′′ is a diamond graph, then bend(B′′) = 0 and B′′ has a U-shaped drawing

D′′
U with one bend as known from the example in Figure 2.6. If B′′ is not a diamond

graph, then by Lemma 3.2(a), B′′ has an optimal U-shaped drawing D′′
U. In either

case bend(D′′
U) ≤ bend(B′′)+1. One can easily extend D′′

U to a (3π/2, v)-outer drawing
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Fig. 4.9. (a)–(f) All of the possible (π, v)-outer drawings D∗
π, and (g), (h) constructions of D3π/2.

D3π/2 with a new bend. We thus have

bend(B, 3π/2, v) ≤ bend(D3π/2)

= 1 + bend(D′′
U)

≤ 1 + bend(B′′) + 1

≤ 2 + bend(D∗
π|B′′)

≤ bend(D∗
π|B′) + bend(D∗

π|B′′)

= bend(D∗
π).

Case 3: Otherwise.
In this case, n(B′), n(B′′) ≥ 3, and hence both B′ and B′′ are 2-legged series-

parallel graphs. Identify v1 with v2 as a new vertex v∗ in B′, and let B′
id be the

resulting graph, as illustrated in Figure 4.8(d). Similarly define B′′
id. Then both B′

id

and B′′
id are biconnected series-parallel graphs and have a vertex v∗ of degree two.

Since D∗
π has no bend on the two edges v1v and vv2, all of the possible (π, v)-outer

drawings of B are those illustrated in Figures 4.9(a)–(f) after interchanging the roles
of B′ and B′′ and the roles of v1 and v2, depending on the angles of v1 and v2 in D∗

π.
There are the following two subcases to consider.

Case 3.1: D∗
π is a drawing illustrated in Figure 4.9(a) or (b).

In this case, one can construct from D∗
π|B′ a (3π/2, v∗)-outer drawing of B′

id

with no new bends, and hence bend(B′
id, 3π/2, v

∗) ≤ bend(D∗
π|B′). Let D′

id3π/2 be

an optimal (3π/2, v∗)-outer drawing of B′
id. Since B′′ is 2-legged, B′′ has an optimal

L-shaped drawing D′′
L. Merging D′

id3π/2 and D′′
L, one can easily construct a (3π/2, v)-
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outer drawing D3π/2 of B, as illustrated in Figure 4.9(g). We thus have

bend(B, 3π/2, v) ≤ bend(D3π/2)

= bend(D′
id3π/2) + bend(D′′

L)

= bend(B′
id, 3π/2, v

∗) + bend(B′′)

≤ bend(D∗
π|B′) + bend(D∗

π|B′′)

= bend(D∗
π).

Case 3.2: D∗
π is a drawing illustrated in Figures 4.9(c)–(f).

We first prove that if D∗
π is a drawing in Figure 4.9(c) or (d), then

(4.5) bend(B′′
id, 3π/2, v

∗) ≤ bend(D∗
π|B′′).

One can construct from D∗
π|B′′ an (α, v∗)-outer drawing of B′′

id with no new bend,
where α = π for Figure 4.9(c) and α = π/2 for Figure 4.9(d). We thus have
bend(B′′

id, α, v
∗) ≤ bend(D∗

π|B′′). Since B′′
id is a biconnected series-parallel graph with

d(v∗, B′′
id) = 2 and n(B′′

id) < n(B), by the inductive hypothesis we have
bend(B′′

id, 3π/2, v
∗) ≤ bend(B′′

id, α, v
∗). Thus we have (4.5).

We also have the following fact, whose proof will be given in section 4.4.
Fact 1. If D∗

π is a drawing illustrated in Figures 4.9(e) and (f), then bend(B′′
id,

3π/2, v∗) ≤ bend(D∗
π|B′′).

Let D′′
id3π/2 be an optimal (3π/2, v∗)-outer drawing of B′′

id. Let D′
L be an optimal

L-shaped drawing of B′. Merging D′
L and D′′

id3π/2, one can easily construct a (3π/2, v)-

outer drawing D3π/2 of B, as illustrated in Figure 4.9(h). Thus, using (4.5) and Fact 1
we have

bend(B, 3π/2, v) ≤ bend(D3π/2)

= bend(D′
L) + bend(D′′

id3π/2)

= bend(B′) + bend(B′′
id, 3π/2, v

∗)

≤ bend(D∗
π|B′) + bend(D∗

π|B′′)

= bend(D∗
π).

We then have the following lemma.
Lemma 4.8. Suppose that Bv is not a diamond graph and that B− v is a parallel

connection of subgraphs. (See Figure 4.8.) Then the following (a) and (b) hold:
(a) if n(B′) = 2 or n(B′′) = 2, then bend(B, 3π/2, v) = bend(Bv) + 1; and
(b) if n(B′), n(B′′) ≥ 3, then

bend(B, 3π/2, v) = min{bend(Bv) + 1,

bend(B′
id, 3π/2, v

∗) + bend(B′′),

bend(B′) + bend(B′′
id, 3π/2, v

∗)}.(4.6)

Proof. We first prove

(4.7) bend(B, 3π/2, v) ≤ bend(Bv) + 1.

Since n(B) ≥ 3, n(Bv) ≥ 4. Since Bv is not a diamond graph, by Lemma 3.2(a),
Bv has an optimal U-shaped drawing DvU. From DvU, one can easily construct a
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(3π/2, v)-outer drawing D3π/2 of B with a new bend. (See Figures 3.8(e) and (f).)
Therefore,

bend(B, 3π/2, v) ≤ bend(D3π/2)

= bend(DvU) + 1

= bend(Bv) + 1.

(a) We then prove (a). By (4.7), it suffices to prove

(4.8) bend(B, 3π/2, v) ≥ bend(Bv) + 1.

Since B has no multiple edges and either n(B′) = 2 or n(B′′) = 2, one may assume
without loss of generality that n(B′) = 2, and hence n(B′′) ≥ 3. Let D∗

3π/2 be an

optimal (3π/2, v)-outer drawing of B, then bend(B, 3π/2, v) = bend(D∗
3π/2). If D∗

3π/2

has a bend on an edge incident to v, then bend(D∗
3π/2) − 1 ≥ bend(Bv), and hence

bend(B, 3π/2, v) = bend(D∗
3π/2) ≥ bend(Bv) + 1. One may thus assume that D∗

3π/2

has no bend on the two edges of B incident to v. Then D∗
3π/2 has one or more bends

on the edge in B′, and hence bend(D∗
3π/2) ≥ 1. Let B′′ be the complement of B′′ in

B. Then B′′ is K3 = v1vv2, and hence

(4.9) bend(B∗
3π/2|B′′) ≥ bend(B′′) ≥ 1.

By (2.2) we have

(4.10) bend(D∗
3π/2) = bend(D∗

3π/2|B′′) + bend(D∗
3π/2|B′′).

There are the following two cases to consider.
Case 1: B′′ is a diamond graph.
We first claim that bend(D∗

3π/2) ≥ 2. Suppose for a contradiction that bend(

D∗
3π/2) = 1. Then by (4.9) and (4.10) we have

bend(D∗
3π/2|B′′) = 1

and

bend(D∗
3π/2|B′′) = 0.

Therefore, by Lemma 3.1(c), the no-bend drawing D∗
3π/2|B′′ of B′′ must be I- or

L-shaped. Since D∗
3π/2 has no bend on edges vv1 and vv2, D∗

3π/2|B′′ must be L-

shaped. Then D∗
3π/2 must have three or more bends on the edge v1v2 in B′, and

hence bend(D∗
3π/2|B′′) ≥ 3, contrary to bend(D∗

3π/2|B′′) = 1.

Since B′′ is a diamond graph, by Lemma 3.1(a), B′′ has a no-bend L-shaped
drawing D′′

L. From D′′
L, one can easily construct a drawing Dv of Bv with one bend,

as illustrated in Figure 4.10(a), and hence bend(Bv) ≤ bend(Dv) = 1. Thus we have
bend(B, 3π/2, v) = bend(D∗

3π/2) ≥ 2 ≥ bend(Bv) + 1.

Case 2: B′′ is not a diamond graph.
Since bend(D∗

3π/2|B′′) ≥ bend(B′′), by (4.9) and (4.10) we have

(4.11) bend(D∗
3π/2) ≥ bend(B′′) + 1.
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Fig. 4.10. Illustration for the proof of Lemma 4.8(a).

Since B′′ is not a diamond graph, by Lemma 3.2(a), B′′ has an optimal U-shaped
drawing D′′

U. From D′′
U, one can easily construct a (3π/2, v)-outer drawing D3π/2 of

B with one new bend, as illustrated in Figure 4.10(b). We then have

bend(D3π/2) = bend(D′′
U) + 1

= bend(B′′) + 1.(4.12)

Erasing from D3π/2 the line segment connecting v and a bend, one can obtain a
drawing Dv of Bv, and hence

bend(Bv) ≤ bend(Dv)

= bend(D3π/2) − 1.(4.13)

By (4.11)–(4.13) we have

bend(B, 3π/2, v) = bend(D∗
3π/2)

≥ bend(B′′) + 1

= bend(D3π/2)

≥ bend(Bv) + 1.

(b) We then prove (b). We first prove that

bend(B, 3π/2, v) ≤ min{bend(Bv) + 1,

bend(B′
id, 3π/2, v

∗) + bend(B′′),

bend(B′) + bend(B′′
id, 3π/2, v

∗)}.(4.14)

Since (4.7) holds, it suffices to prove that

(4.15) bend(B, 3π/2, v) ≤ bend(B′
id, 3π/2, v

∗) + bend(B′′)

and

(4.16) bend(B, 3π/2, v) ≤ bend(B′) + bend(B′′
id, 3π/2, v

∗).

We verify only (4.15), because one can similarly verify (4.16).
Let D′

id3π/2 be an optimal (3π/2, v∗)-outer drawing of B′
id. Since n(B′′) ≥ 3,

there is an optimal L-shaped drawing D′′
L of B′′. Merging D′

id3π/2 and D′′
L, one can
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Fig. 4.11. All of the possible (3π/2, v)-outer drawings D∗
3π/2 of B.

easily construct a (3π/2, v)-outer drawing D3π/2 of B with no new bend, as illustrated
in Figure 4.9(g). We thus have

bend(B, 3π/2, v) ≤ bend(D3π/2)

= bend(D′
id3π/2) + bend(D′′

L)

= bend(B′
id, 3π/2, v

∗) + bend(B′′).

We next prove that

bend(B, 3π/2, v) ≥ min{bend(Bv) + 1,

bend(B′
id, 3π/2, v

∗) + bend(B′′),

bend(B′) + bend(B′′
id, 3π/2, v

∗)}.(4.17)

Let D∗
3π/2 be an optimal (3π/2, v)-outer drawing of B, then bend(B, 3π/2, v) =

bend(D∗
3π/2). If D∗

3π/2 has a bend on an edge incident to v, then bend(D∗
3π/2) − 1 ≥

bend(Bv), and hence bend(B, 3π/2, v) = bend(D∗
3π/2) ≥ bend(Bv) + 1 and (4.17)

holds. One may thus assume that D∗
3π/2 has no bend on the two edges of B incident

to v. Then all of the possible (3π/2, v)-outer drawings of B are those illustrated in
Figures 4.11(a)–(f) after interchanging the roles of B′ and B′′ and the roles of v1 and
v2.

We now claim

(4.18) bend(B′′
id, 3π/2, v

∗) ≤ bend(D∗
3π/2|B′′).

If D∗
3π/2 is a drawing illustrated in Figure 4.11(f), then from D∗

3π/2|B′′, one can easily

construct a (3π/2, v∗)-outer drawing of B′′
id with no new bend, and hence (4.18) holds.

One may thus assume that D∗
3π/2 is a drawing illustrated in Figures 4.11(a)–(e). Then

one can construct from D∗
3π/2|B′′ an (α, v∗)-outer drawing of B′′

id with no new bend,

where α = π/2 for Figures 4.11(a)–(c) and α = π for Figures 4.11(d) and (e). We thus
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have bend(B′′
id, α, v

∗) ≤ bend(D∗
3π/2|B′′). By Lemma 4.2(a), bend(B′′

id, 3π/2, v
∗) ≤

bend(B′′
id, α, v

∗). These two equations imply (4.18).
By (4.18) we have

bend(B, 3π/2, v) = bend(D∗
3π/2)

= bend(D∗
3π/2|B′) + bend(D∗

3π/2|B′′)

≥ bend(B′) + bend(B′′
id, 3π/2, v

∗),

and hence (4.17) holds true.
By Lemmas 4.6, 4.7, and 4.8 and the proofs of (4.7) and (4.14) we have the follow-

ing recursive algorithm OuterDrawing(B, v,D,DvI, DvL, DvU) to find an optimal
(3π/2, v)-outer drawing D of a biconnected series-parallel graph B with a vertex v of
degree two. It finds an optimal I-shaped drawing DvI, an optimal L-shaped drawing
DvL, and an optimal U-shaped drawing DvU of Bv, too.

OuterDrawing(B, v,D,DvI, DvL, DvU);
begin

Case 1: Bv is a diamond graph.
OuterDiamond(B, v,D); {cf. Lemma 4.6}
Find a no-bend I-shaped drawing DvI and a no-bend L-shaped drawing
DvL of Bv by Diamond;
Insert a dummy vertex of degree two in an edge of Bv, as illustrated
in Figure 2.6(e);
Obtain a U-shaped drawing DvU of Bv with one bend by regarding
the dummy vertex as a bend;

Case 2: Bv is not a diamond graph, and B − v is a series connection of
subgraphs.

OuterSeries(B, v,D); {cf. Lemma 4.7}
Find an optimal I-shaped drawing DvI, an optimal L-shaped drawing DvL,
and an optimal U-shaped drawing DvU of Bv by NonDiamond;

Case 3: Bv is not a diamond graph, and B − v is a parallel connection of
subgraphs.

{cf. the proofs of (4.7) and (4.14).}
Case 3.1: Either n(B′) = 2 or n(B′′) = 2.

Find an optimal I-shaped drawing DvI, an optimal L-shaped drawing
DvL, and an optimal U-shaped drawing DvU of Bv by NonDiamond;
Extend DvU to a (3π/2, v)-outer drawing D of B with a new bend;

{See Figures 3.8(e) and (f).}
Case 3.2: n(B′), n(B′′) ≥ 3.
{One may assume without loss of generality that B′ is not a diamond
graph.}

OuterDrawing(B′
id, v

∗, D′
id, D

′
v∗I, D

′
v∗L, D

′
v∗U);

OuterDrawing(B′′
id, v

∗, D′′
id, D

′′
v∗I, D

′′
v∗L, D

′′
v∗U);

Combine a U-shaped drawing D′
v∗U of B′(= B′

idv∗) and an I-shaped
drawing D′′

v∗I of B′′(= B′′
idv∗) to an optimal I-shaped drawing DvI,

an optimal L-shaped drawing DvL, and an optimal U-shaped drawing
DvU of Bv, as illustrated in Figure 3.4(e);

{cf. Lemma 3.2}
Let x = min{bend(DvU) + 1, bend(D′

id) + bend(D′′
L), bend(D′

L)+
bend(D′′

id)}, where D′
L = D′

v∗L and D′′
L = D′′

v∗L are optimal L-shaped
drawings of B′ = B′

idv∗ and B′′ = B′′
idv∗ , respectively;
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Case 3.2.1: x = bend(DvU) + 1.
Extend DvU to a (3π/2, v)-outer drawing D of B with a new
bend;

{See Figure 3.8(e).}
Case 3.2.2: x = bend(D′

id) + bend(D′′
L).

Construct a (3π/2, v)-outer drawing D of B by merging D′
id

and D′′
L, as illustrated in Figure 4.9(g);

Case 3.2.3: x = bend(D′
L) + bend(D′′

id).
Construct a (3π/2, v)-outer drawing D of B by merging D′

L

and D′′
id, as illustrated in Figure 4.9(h);

end.
Clearly OuterDrawing correctly finds an optimal (3π/2, v)-outer drawing D of

B. We now show that OuterDrawing runs in linear time. Let T (B) be the execution
time of OuterDrawing(B, v,D,DvI, DvL, DvU). Let T1(B) be the execution time of
OuterDrawing when Case 1 occurs, that is, Bv is a diamond graph. We similarly
define T2(B), T3.1(B), and T3.2(B) for Cases 2, 3.1, and 3.2, respectively. Then
clearly

T (B) = max{T1(B), T2(B), T3.1(B), T3.2(B)},

T1(B), T2(B), T3.1(B) = O(n(B)),

T3.2(B) = T (B′
id) + T (B′′

id) + O(1),

and

n(T (B′
id)) + n(T (B′′

id)) < n(B).

We hence have T (B) = O(n(B)). We have thus completed a proof of Lemma 4.2(c).
Since bend(Bv) ≤ bend(B), by Lemmas 4.6, 4.7, and 4.8, we immediately have

bend(B, 3π/2, v) ≤ bend(B) + 1, completing a proof of Lemma 4.2(b).
Let a series-parallel graph G take the form in Figure 4.1(a), and let Da be a

drawing of G, as illustrated in Figure 4.3(a). Then we have

bend(G) ≤ bend(Da)

= bend(B1) + bend(Gint) + bend(Bp, 3π/2, sp).

Clearly

bend(Gint) = bend(DintI)

=

p−1∑
i=2

bend(Bi)

and

bend(Bp, 3π/2, sp) ≤ bend(Bp) + 1.

We thus have

(4.19) bend(G) ≤
p∑

i=1

bend(Bi) + 1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1600 XIAO ZHOU AND TAKAO NISHIZEKI

Fig. 4.12. Biconnected graph H, 2-legged graph Hu, and C-shaped drawing Du.

Equations (4.1) and (4.19) immediately imply (4.2).
Omitting the operations in Cases 3.2.2 and 3.2.3 in OuterDrawing, one can

obtain a nonrescursive algorithm ApproOuterDrawing to find a (3π/2, v)-outer
drawing D of B such that D is not always an optimal (3π/2, v)-outer drawing, but
bend(D) ≤ bend(B) + 1. Replacing OuterDrawing in NonBiconnected by Ap-
proOuterDrawing and finding only the drawing Da in Figure 4.3, one can obtain a
simple linear algorithm to find a drawing D of G such that

bend(D) ≤
p∑

i=1

bend(Bi) + 1.

4.4. Proof of Fact 1. In this subsection we give a proof of Fact 1 in Case 3.2
of the proof of Lemma 4.2(a).

A 2-legged series-parallel graph B′′ and a biconnected series-parallel graph B′′
id

in Fact 1 are illustrated in Figures 4.8(c) and (d), respectively. B′′ can be obtained
from B′′

id by spiltting a vertex v∗ of degree two to two vertices v1 and v2. The drawing
D∗

π in Fact 1 is illustrated in Figure 4.9(e) or (f). We call a drawing of a 2-legged
series-parallel graph illustrated in Figure 4.12(c) a C-shaped drawing. Then D∗

π|B′′

in Figure 4.9(e) or (f) is a C-shaped drawing of B′′. Thus it suffices to prove the
following fact. (Regard B′′

id as H, B′′ as Hu, and v∗ as u.)
Fact 2. Let H be a biconnected series-parallel graph with a vertex u of degree

two, let Hu be a 2-legged series-parallel graph obtained from H by splitting u to two
vertices u1 and u2. If Du is a C-shaped drawing of Hu, then

bend(H, 3π/2, u) ≤ bend(Du).(4.20)

(See Figure 4.12.)
Proof. We prove (4.20) by induction on the number n(H) of vertices of H. If

n(H) = 3, that is, H = K3, then bend(H, 3π/2, v) = 1, bend(Du) ≥ 4, and hence
(4.20) holds true. One may thus assume that n(H) ≥ 4, and inductively assume that
(4.20) holds for every biconnected series-parallel graph of at most n(H) − 1 vertices.
We now prove that (4.20) holds for H. There are the following two cases to consider.

Case 1: H − u is a series connection of subgraphs.
In this case, Hu has a bridge e, and has two subgraphs H ′ and H ′′, each of which

is a 2-legged series-parallel graph and has e as a leg. (See Figures 4.7(a) and (b).)
Then we have the following two subcases to consider.
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Case 1.1: Both H ′ and H ′′ are diamond graphs.
In this case, H ′ and H ′′ have no-bend L-shaped drawings D′

L and D′′
L, respectively.

Merging D′
L and D′′

L, one can easily construct a (3π/2, u)-outer drawing D∗
3π/2 of H

with one bend, and hence bend(D∗
3π/2) = 1. (See Figure 4.7(c).) Since both H ′ and

H ′′ are diamond graphs, one can easily observe that D∗
3π/2 is an optimal (3π/2, u)-

outer drawing of H and that a C-shaped drawing Du of Hu needs one or more bends.
We thus have bend(Hu, 3π/2, u) = bend(D∗

3π/2) = 1 ≤ bend(Du).

Case 1.2: Either H ′ or H ′′ is not a diamond graph.
In this case, one may assume without loss of generality that H ′ is not a diamond

graph. Then H ′ has an optimal U-shaped drawing D′
U. H ′′ has an optimal L-shaped

drawing D′′
L. Merging D′

U and D′′
L, one can easily construct a (3π/2, u)-outer drawing

D3π/2 of H with no new bends. (See Figure 4.7(d).) Thus

bend(H, 3π/2, u) ≤ bend(D3π/2)

= bend(D′
U) + bend(D′′

L)

= bend(H ′) + bend(H ′′)

≤ bend(Du|H ′) + bend(Du|H ′′)

= bend(Du).

Case 2: H − u is a parallel connection of subgraphs.
Consider first the case where Hu is a diamond graph. By Lemma 4.6, bend(H,

3π/2, u) = bend(H). Since Hu has a U-shaped drawing with one bend, we have
bend(H) ≤ 2. Since Du is a C-shaped drawing of a diamond graph Hu, one can easily
observe that bend(Du) ≥ 2. We thus have

bend(H, 3π/2, u) = bend(H) ≤ 2 ≤ bend(Du).

Consider next the case where Hu is not a diamond graph. Regarding H as B in
Figure 4.8, we define H ′, H ′′, H ′

id, and H ′′
id, as illustrated in Figure 4.8. Then we

have the following three subcases.
Case 2.1: Du has a bend on a leg of Hu.
In this case, erasing a line segment connecting a terminal and a bend from Du, one

can obtain a drawing D̃u of Hu such that D̃u is not always C-shaped and bend(Hu) ≤
bend(D̃u) = bend(Du) − 1. Since Hu is not a diamond graph, Hu has an optimal U-
shape drawing DuU. From DuU, one can construct a (3π/2, u)-outer drawing D3π/2

of H with a new bend. (See Figures 3.8(e) and (f).) We thus have

bend(H, 3π/2, u) ≤ bend(D3π/2)

= bend(DuU) + 1

= bend(Hu) + 1

≤ bend(D̃u) + 1

= bend(Du).

Case 2.2: Du has no bend on the two legs of Hu, and either n(H ′) = 2 or
n(H ′′) = 2.

One may assume without loss of generality that n(H ′) = 2, and hence H ′ consists
of a single edge. Then H ′′ is a 2-legged series-parallel graph. Since the C-shaped
drawing Du has no bend on the two legs of Hu, we have bend(Du|H ′) ≥ 4.
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Fig. 4.13. (a)–(f) All of the possible C-shaped drawings Du of Hu, and (g) construction of a
(3π/2, u)-outer drawing D3π/2 of H.

Consider first the case where H ′′ is a diamond graph. Then Hu has a U-shaped
drawing DuU with one bend. From DuU, one can construct a (3π/2, u)-outer draw-
ing D3π/2 of H with two bends. Thus bend(H, 3π/2, u) ≤ bend(D3π/2) = 2 <
bend(Du|H ′) ≤ bend(Du).

Consider next the case where H ′′ is not a diamond graph. Then by Lemma 3.2(a),
H ′′ has an optimal U-shaped drawing D′′

U. From D′′
U, one can construct a (3π/2, u)-

outer drawing D3π/2 of H with a new bend. We thus have

bend(H, 3π/2, u) ≤ bend(D3π/2)

= 1 + bend(D′′
U)

= 1 + bend(H ′′)

< bend(Du|H ′) + bend(Du|H ′′)

= bend(Du).

Case 2.3: Du has no bend on the two legs of Hu, and n(H ′), n(H ′′) ≥ 3.
In this case H ′ and H ′′ are 2-legged series-parallel graphs. All of the possible

C-shaped drawings Du of Hu for this case are those illustrated in Figures 4.13(a)–(f).
Let D′

id3π/2 be an optimal (3π/2, u∗)-outer drawing of H ′
id. Let D′′

L be an opti-

mal L-shaped drawing of H ′′. Merging D′
id3π/2 and D′′

L, one can easily construct a

(3π/2, u)-outer drawing D3π/2 of H, as illustrated in Figure 4.13(g). We thus have

bend(H, 3π/2, u) ≤ bend(D3π/2)

= bend(D′
id3π/2) + bend(D′′

L)

= bend(H ′
id, 3π/2, u

∗) + bend(H ′′).(4.21)

We now claim

(4.22) bend(H ′
id, 3π/2, u

∗) ≤ bend(Du|H ′).

If Du is a drawing illustrated in Figure 4.13(f), then Du|H ′ is a C-shaped drawing
of H ′, and hence the inductive hypothesis of the proof of Fact 2 implies (4.22). One
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may thus assume that Du is a drawing illustrated in Figures 4.13(a)–(e). Then one
can construct from Du|H ′ an (α, u∗)-outer drawing with no new bend, where α = π
for Figures 4.13(a)–(c) and α = π/2 for Figures 4.13(d) and (e). Hence

bend(H ′
id, α, u

∗) ≤ bend(Du|H ′).(4.23)

Since n(H ′
id) < n(B) for the graph B in Fact 1, by the inductive hypothesis of the

proof of Lemma 4.2(a) we have

(4.24) bend(H ′
id, 3π/2, u

∗) ≤ bend(H ′
id, α, u

∗).

Equations (4.23) and (4.24) imply (4.22).
By (4.21) and (4.22) we have

bend(H, 3π/2, u) ≤ bend(Du|H ′) + bend(Du|H ′′)

= bend(Du).

5. Conclusions. In this paper, we gave a linear algorithm to find an optimal
orthogonal drawing of a series-parallel graph G of Δ ≤ 3 in the variable embeddings
setting. Our algorithm works well even if G has multiple edges or is not biconnected
and is simpler and faster than the previously known one for biconnected series-parallel
simple graphs [4, 5]. One can easily extend our algorithm so that it finds an optimal
orthogonal drawing of a partial 2-tree of Δ ≤ 3. Note that the so-called block-
cutvertex graph of a partial 2-tree is a tree although the block-cutvertex graph of a
series-parallel graph is a path. We gave a best possible bound on bend(G): bend(G) ≤
(n(G) + 4)/3.

In an orthogonal grid drawing, every vertex has an integer coordinate. The size
of an orthogonal grid drawing is the sum of the width and height of the minimum
axis-parallel rectangle enclosing the drawing. Using an argument which is similar to
that in sections 3 and 4 but is more lengthy, one can prove that every series-parallel
graph G of Δ ≤ 3 has an optimal orthogonal grid drawing of size ≤ 3N/4, and every
biconnected series-parallel graph G of Δ ≤ 3 has an optimal orthogonal grid drawing
of size ≤ 2N/3 + 1, where N = n(G) + bend(G). The proof is omitted in the paper.

It is left as a future work to obtain a linear algorithm for a larger class of planar
graphs.
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