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In a thermodynamic model, Diósi et al. �Int. J. Quantum Inf. 4, 99–104 �2006��
arrived at a conjecture stating that certain differences of von Neumann entropies
converge to relative entropy as system size goes to infinity. The conjecture is
proven in this paper for density matrices. The analytic proof uses the quantum law
of large numbers and the inequality between the Belavkin-Staszewski and Umegaki
relative entropies. Moreover, the concept of channel capacity per unit cost is intro-
duced for classical-quantum channels. For channels with binary input alphabet, this
capacity is shown to equal the relative entropy. The result provides a second proof
of the conjecture and a new interpretation. Both approaches lead to generalizations
of the conjecture. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2779138�

I. INTRODUCTION

It was conjectured by Diósi et al.4 that the von Neumann entropy of a quantum state equal to
a mixture,

Rn ª
1

n
�� � ���n−1� + � � � � ���n−2� + ¯ + ���n−1�

� �� ,

exceeds the entropy of a component asymptotically by the Umegaki relative entropy S�� ���, that
is,

S�Rn� − �n − 1�S��� − S��� → S����� , �1�

as n→�. Here � and � are density matrices acting on a finite dimensional Hilbert space. Recall
that S���=−Tr � log � and

S����� = �Tr ��log � − log �� if supp � � supp �

+ � otherwise.
�

Concerning the background of quantum entropy quantities, we refer to Refs. 12 and 14. The set of
bounded linear operators on a Hilbert space H is denoted by B�H�. When H is d dimensional, d
finite, B�H� is identified as usual with the set Md�C� of d�d matrices with complex entries.
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In Ref. 4, a composite system consisting of n molecules has been considered, originally each
in a quantum state �, and interaction with environment changed the state of one molecule to �.
Irreversibility has been introduced via a completely positive map M acting as

M�� � ���n−1�� =
1

n
�� � ���n−1� + � � � � ���n−2� + ¯ + ���n−1�

� �� , �2�

interpreted as total randomization over the n subsystems �molecules�. A thermodynamical argu-
ment showed that the thermodynamical entropy of the system increased by S�� ���. This moti-
vated the conjecture that the increase of the “informatic entropy,” given by the left-hand side of
Eq. �1�, also equals S�� ���, at least in the limit n→�.

The quantum formulation includes the case where both � and � are diagonal matrices. This
will be referred to as the classical case. If � and � commute, then in an appropriate basis both of
them will be diagonal. Apparently, no exact proof of Eq. �1� has been published even for the
classical case, although for that case a heuristic proof was offered in Ref. 4.

In this paper, first an analytic proof of Eq. �1� is given, see Theorem 1, using an inequality
between the Umegaki and the Belavkin-Staszewski relative entropies and the law of large numbers
in the quantum case. The idea is based on the identity

Rn = ��1/2��n�1

n
�X � I��n−1� + I � X � I��n−2� + ¯ + I��n−1�

� X�	��1/2��n,

where X=�−1/2��−1/2. The limit of the term in the middle can be computed by the �quantum� law
of large numbers. For readers not familiar with the required tools, the arguments are simplified to
the classical case, where the ordinary law of large numbers is used, see Theorem 2.

In the second part of this paper, we recognize that S�Rn�− �n−1�S���−S��� is a particular
Holevo quantity or a classical-quantum mutual information. The Holevo capacity of classical-
quantum channels is well understood.5,8,10 Channel capacity per unit cost has been studied in
classical information theory, see primarily Ref. 15, but not in quantum information theory. An
indirect approach to capacity per unit cost is possible via the concept of capacity with constrained
inputs, which is available for classical-quantum channels.7 We take a direct approach which—as in
the classical case15—appears preferable.

We will consider �memoryless� classical-quantum channels with binary input alphabet X
= 
0,1� which assigns to �classical� input sequences �x1 ,x2 , . . . ,xn��Xn output quantum states
�x1

� �x2
� ¯ � �xn

, where �0=� and �1=�, assuming that the cost of an input sequence is the
number of characters 0 in it. Considerations similar to Ref. 15 simultaneously provide a proof of
Eq. �1�, and the result that the capacity per unit cost of the above channel equals S�� ���, see
Theorems 3 and 4.

We note that our analytic proof of Eq. �1� requires the assumption that supp ��supp �, while
the proof given in Sec. III does not �neither does the simplified version of the analytic proof to the
classical case�. It is remarkable that the two proofs lead to different generalizations of Eq. �1�. The
second proof is based on a purely information theoretic interpretation, nevertheless, the result of
Theorem 3 admits also a thermodynamical interpretation as in Ref. 4, see the discussion after the
proof of Theorem 3.

II. AN ANALYTIC PROOF OF THE CONJECTURE

Assuming that supp ��supp � for the support projections of � and �, one can simply com-
pute

S�Rn���n� = Tr�Rn log Rn − Rn log ��n� = − S�Rn� − �n − 1�Tr � log � − Tr � log � .

Hence, the identity,
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S�Rn���n� = − S�Rn� + �n − 1�S��� + S����� + S��� ,

holds. It follows that conjecture �1� is equivalent to the statement

S�Rn���n� → 0 as n → � ,

when supp ��supp �.
Recall the Belavkin-Staszewski relative entropy

SBS����� = Tr�� log��1/2�−1�1/2�� = − Tr�����−1/2��−1/2�� ,

if supp ��supp �, where ��t�ª−t log t, see Refs. 1 and 12. �The equality of the above two
expressions is easily seen from the fact that Xf�X*X�= f�XX*�X for a matrix X and for a polynomial
f .� It was proved by Hiai and Petz that

S����� � SBS����� , �3�

see Ref. 6 or Proposition 7.11 in Ref. 12.
Theorem 1: If supp ��supp �, then S�Rn�− �n−1�S���−S���→S�� ��� as n→�.
Proof: We want to use the quantum law of large numbers, see Proposition 1.17 in Ref. 12.

Assume that � and � are d�d density matrices and we may suppose that � is invertible. Due to
the GNS construction with respect to the limit �� of the product states �n on the n-fold tensor
product Md�C��n, n�N, defined by �n�A�=Tr ��nA, all finite tensor products Md�C��n are em-
bedded into a von Neumann algebra M acting on a Hilbert space H. If 	 denotes the right shift
and Xª�−1/2��−1/2, then Rn is written as

Rn = ��1/2��n�1

n
�
i=0

n−1

	i�X�	��1/2��n.

By inequality �3�, we get

0 � S�Rn���n� � SBS�Rn���n� = − Tr���n����−1/2��nRn��−1/2��n�� =
,��1

n
�
i=0

n−1

	i�X�	
� ,

�4�

where 
 is the cyclic vector in the GNS construction.
The law of large numbers, see Proposition 1.17 in Eq. �12�, gives

1

n
�
i=0

n−1

	i�X� → I ,

in the strong operator topology in B�H�, since ��X�=Tr ��−1/2��−1/2=1.
Since the continuous functional calculus preserves the strong convergence �simply due to the

approximation by polynomials on a compact set�, we obtain

��1

n
�
i=0

n−1

	i�X�	 → ��I� = 0 strongly.

This shows that upper bound �4� converges to 0 and the proof is complete. �

By the same proof, one can obtain that for

R�,n ª
1

n − � + 1
����

� ���n−�� + � � ���
� ���n−�−1� + ¯ + ���n−��

� ���� ,

the limit relation
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S�R�,n� − �n − ��S��� − �S��� → �S����� �5�

holds as n→� when � is fixed.
In the next theorem, we treat the classical case in a matrix language.The proof includes the

case where supp ��supp � is not true. Those readers who are not familiar with the tools used in
the proof of the previous theorem are suggested to follow the arguments below.

Theorem 2: Assume that � and � are commuting density matrices. Then

S�Rn� − �n − 1�S��� − S��� → S�����

as n→�.
Proof: We may assume that �=Diag��1 , . . . ,�� ,0 , . . . ,0� and �=Diag��1 , . . . ,�d� are d�d

diagonal matrices, �1 , . . . ,��0 and ��d. �We may consider � ,� in a matrix algebra of bigger
size if � is invertible.� If supp ��supp �, then ��+1= ¯ =�d=0; this will be called the regular
case. When supp ��supp � is not true, we may assume that �d0 and we refer to the singular
case.

The eigenvalues of Rn correspond to elements �i1 , . . . , in� of 
1, . . . ,d�n,

1

n
��i1

�i2
¯ �in

+ �i1
�i2

�i3
¯ �in

+ ¯ + �i1
¯ �in−1

�in
� . �6�

We divide the eigenvalues in three different groups as follows:

�a� A corresponds to �i1 , . . . , in�� 
1, . . . ,d�n with 1� i1 , . . . , in��;
�b� B corresponds to �i1 , . . . , in�� 
1, . . . ,d�n which contains exactly one d;
�c� C is the rest of the eigenvalues.

If eigenvalue �6� is in group A, then it is

��i1
/�i1

� + ¯ + ��in
/�in

�

n
�i1

�i2
¯ �in

.

First, we compute

�
��A

���� = �
i1,. . .,in

�� ��i1
/�i1

� + ¯ + ��in
/�in

�

n
�i1

¯ �in
	 .

Below, the summations are over 1� i1 , . . . , in��,

�
i1,. . .,in

�� ��i1
/�i1

� + ¯ + ��in
/�in

�

n
�i1

¯ �in
	

= − �
i1,. . .,in

� ��i1
/�i1

� + ¯ + ��in
/�in

�

n
�i1

¯ �in
	log��i1

¯ �in
� + Qn

= −
1

n
�
k=1

n

� �
i1,. . .,in

�i1
�i2

¯ �in
log �ik

+ �
i1,. . .,in

�i2
�i1

¯ �in
log �ik

+ ¯ + �
i1,. . .,in

�in
�i1

¯ �in−1
log �ik	 + Qn

= −
1

n
�
k=1

n

��n − 1��
ik

�ik
log �ik

+ �
ik

�ik
log �ik	 + Qn = �n − 1�S��� − �

i=1

�

�i log �i + Qn,

where
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Qn ª �
i1,. . .,in

��i1
¯ �in

��� ��i1
/�i1

� + ¯ + ��in
/�in

�

n
	 .

Note that Qn is equal to the expected value of

��X1 + ¯ + Xn

n
	

for independent and identically distributed random variables X1 ,X2 , . . . defined on the product
probability space �
1,2 , . . . ,�� , ��1 ,�2 , . . . ,����N, where Xn takes the value �i /�i on a sequence in

1,2 , . . . ,��N whose nth component is equal to i.

By the strong law of large numbers,

X1 + ¯ + Xn

n
→ E�X1� = �

i=1

� � �i

�i
	�i = �

i=1

�

�i almost surely.

Since ���X1+ ¯ +Xn� /n� is uniformly bounded, the Lebesgue bounded convergence theorem
implies that

Qn → ���
i=1

�

�i	 ,

as n→�.
In the regular case, all nonzero eigenvalues are in group A; hence,

S�Rn� − �n − 1�S��� − S��� = − �
i=1

�

�i log �i + �
i=1

�

�i log �i + Qn = S����� + Qn.

As �i=1
� �i=1 implies Qn→0, the statement follows.

Next, we consider the singular case, when the contributions of the eigenvalues in A is

�
��A

���� = �n − 1�S��� + O�1� ,

and we turn to eigenvalues in B. If an eigenvalue corresponding to �i1 , . . . , in�� 
1, . . . ,d�n is in
group B and i1=d, then the eigenvalue is

1

n
�d�i2

¯ �in
.

Summation of such eigenvalues gives

− �
i2,. . .,in

��d�i2
¯ �in

n
	log��d�i2

¯ �in

n
	 = −

�d

n
�

i2,. . .,in

��i2
¯ �in

�log��i2
¯ �in

� −
�d

n
log

�d

n

=
�d

n
�n − 1�S��� −

�d

n
log

�d

n
.

When ij =d for some 2� j�n, we get the same quantity, so this should be multiplied with n,

�
��B

���� = �d�n − 1�S��� − �d log
�d

n
.

It follows that
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S�Rn� − �n − 1�S��� − S��� � �
��A

���� + �
��B

���� − �n − 1�S��� − S��� � �d�n − 1�S��� + �d log n

+ O�1� → + � ,

as n→�. �

III. CHANNEL CAPACITY PER UNIT COST

A classical-quantum channel with classical input alphabet X transfers the input x�X into the
output W�x���x which is a density matrix acting on a Hilbert space K. We restrict ourselves to the
case when X is finite and K is finite dimensional.

If a classical random variable X is chosen to be the input, with probability distribution P
= 
p�x� :x�X�, then the corresponding output is the quantum state �Xª�x�Xp�x��x. When a
measurement is performed on the output quantum system, it gives rise to an output random
variable Y which is jointly distributed with the input X. If a partition of unity 
Fy :y�Y� in B�K�
describes the measurement, then

Prob�Y = y�X = x� = Tr �x Fy �x � X,y � Y� . �7�

The Holevo bound says that the classical mutual information

I�X ∧ Y� ª H�Y� − H�Y�X� = H�X� − H�X�Y�

�expressed by the classical Shannon entropy H� satisfies9,10

I�X ∧ Y� � I�X,W� ª S��X� − �
x�X

p�x�S��x� . �8�

This bound is a simple consequence of the monotonicity of relative entropy under state
transformation12,13 but has been proved earlier than monotonicity. Here I�X ,W� is called a Holevo
quantity or a classical-quantum mutual information, and it satisfies the identity

�
x�X

p�x�S��x��� = I�X,W� + S��X��� , �9�

where � is an arbitrary density matrix.
When the channel W :X→B�K� is used to transfer sequences x= �x1 ,x2 , . . . ,xn��Xn in a

memoryless manner, a sequence x= �x1 ,x2 , . . . ,xn��Xn is transferred into the quantum state

W�n�x� = �x ª �x1
� �x2

� ¯ � �xn
. �10�

Formally, this defines a new channel W�n :Xn→B�Kn� called the nth extension of W.
A code of block length n is defined by a subset An�Xn called the code word set and by a

measurement 
Fy :y�Bn� called the decoder. For technical convenience, the set Bn of possible
decoding results may be different from An, and only An�Bn is required. The probability of error
is Prob�X�Y�, where the input random variable X is uniformly distributed on An and the output
random variable Y is as in Eq. �7� with x and y replaced by x and y.

The essential observation is that S�Rn�− �n−1�S���−S��� in the conjecture equals the Holevo
quantity I�X ,W�n� for the nth extension of the channel W with input alphabet X= 
0,1�, �0=�,
�1=� and with X uniformly distributed on those length-n binary sequences that contain exactly
one 0. More generally, we shall consider Holevo quantities

I�A,�0,�1� ª S� 1

�A� �x�A

�x	 −
1

�A� �x�A

S��x� , �11�

defined for any set A� 
0,1�n of binary sequences of length n.
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The concept related to the conjecture we study is the channel capacity per unit cost which is
defined next for simplicity only in the case where X= 
0,1�, the cost of a character 0�X is 1,
while the cost of 1�X is 0. Given such channel and �0, a number R0 is called an
�-achievable rate per unit cost if for every �0 and for any sufficiently large T there exists a code
of block length nT with at least eT�R−�� code words such that each of the code words contains at
most T 0’s and the error probability is at most �. The largest R which is an �-achievable rate per
unit cost for every �0 is the channel capacity per unit cost.

The next theorem is our main result of this section.
Theorem 3: Let the classical-quantum channel W :X= 
0,1�→B�K� be defined by W�0�

=�0�� and W�1�=�1��. Let An� 
0,1�n, n=1,2 , . . ., be sets such that for some natural number
� and for some real number c0,

(a) each element x= �x1 ,x2 , . . . ,xn��An contains at most � copies of 0;
(b) log�An� / log n→c as n→�;
(c)

c�An� ª
1

�An� �
x�An

�
i:xi = 0�� → c as n → � .

Then

lim
n→�

I�An,�,�� = cS����� .

The proof of the theorem is divided into lemmas.
Lemma 1: For an arbitrary A� 
0,1�n,

I�A,�0,�1� � c�A�S��0��1�

holds.
Proof: Let c�x�ª �
i :xi=0�� for x�A. Since I�A ,�0 ,�1�= I�X ,W�n�, we can use identity �9� to

get an upper bound

1

�A� �x�A

S��x��1
�n� =

1

�A� �x�A

c�x�S��0��1� = c�A�S��0��1�

for I�A ,�0 ,�1�. �

Lemma 2: If A� 
0,1�n is a code word set of a code whose probability of error does not
exceed a given 0���1, then

�1 − ��log�A� − log 2 � I�A,�0,�1� .

Proof: For the input and output random variables corresponding to the given code, the clas-
sical mutual information I�X∧Y� is bounded above by I�X ,W�n�= I�A ,�0 ,�1�, see Eq. �8�. Since
the error probability Prob�X�Y� does not exceed �, the Fano inequality �see, e.g., Ref. 3� gives

H�X�Y� � � log�A� + log 2.

Therefore,

I�X ∧ Y� = H�X� − H�X�Y� � �1 − ��log�A� − log 2,

and the proof is complete. �

We need the direct part of the so-called quantum Stein lemma obtained in Ref. 6, see also
Refs. 2, 5, 11, and 14.

Lemma 3: Given arbitrary density matrices � and � in B�K�, �0, and 0�R�S�� ���, if N
sufficiently large, there is a projection E�B�K�N� such that
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��E� ª Tr ��N�I − E� � �

and

��E� ª Tr ��NE � e−NR.

Here E �or the measurement �E , I−E�� is interpreted as a test of the null hypothesis that the
state is ��N, against the alternative hypothesis that it is ��N. This test incorrectly accepts the null
hypothesis �error of the first kind� with probability ��E�, and incorrectly rejects it �error of the
second kind� with probability ��E�.

Lemma 4: Assume that �0, 0�R�S��0 ��1�, and � is a positive integer. If n is large
enough, then for any set An of sequences x� 
0,1�n that contain at most � copies of 0, there exists
a code with error probability smaller than � whose code words are the N-fold repetitions xN

= �x ,x , . . . ,x� of the sequences x�An, where N is the smallest integer satisfying

N �
1

R
log

2n

�
.

Proof: We follow the probabilistic construction in Ref. 15. The output states corresponding to
input sequences of length nN are density matrices acting on the Hilbert space K�Nn��K�n��N. We
decompose this Hilbert space into an N-fold tensor product in a different way. For each 1� i
�n, let Ki be the tensor product of the factors i , i+n , i+2n , . . . , i+ �N−1�n. So K�Nn is identified
with K1 � K2 � ¯ � Kn.

We construct a decoder to the code word set in the lemma as follows. For each 1� i�n, we
test the null hypothesis that the ith component of the actually chosen x�An is 0, against the
alternative that it is 1, based on the channel outputs at time instances i , i+n , . . . , i+ �N−1�n. More
exactly, let the projection Ei�B�Ki� be a test of the null hypothesis ��n against the alternative
��n. According to the quantum Stein lemma �Lemma 3�, applied with �=� /2� and the given 0
�R�S�� ���, for N sufficiently large, there exists a test Ei such that the probability of error of the
first kind is smaller than �, while the probability of error of the second kind is smaller than
e−NR�� /2n. The projections Ei and I−Ei form a partition of unity in the Hilbert space Ki, and the
n-fold tensor product of these commuting projections will give a partition of unity in K�Nn. For
y� 
0,1�n, set Fyª� i=1

n Fyi
, where Fyi

=Ei if yi=0 and Fyi
= I−Ei if yi=1, and let the decoder be

the measurement 
Fy :y� 
0,1�n�. Thus, the result of the decoding will be an arbitrary 0–1 se-
quence in 
0,1�n.

The error probability should be estimated,

Prob�Y � X�X = x� = �
y:y�x

Tr �x
�NFy = �

y:y�x
�
i=1

n

Tr �xi

�NFyi
� �

i=1

n

�
y:yi�xi

�
j=1

n

Tr �xj

�NFyj

� �
i=1

n

Tr �xi

�N�I − Fxi
� .

If xi=0, then

Tr �xi

�N�I − Fxi
� = Tr �0

�N�I − Ei� = ��Ei� �
�

2�
,

and if xi=1,

Tr �xi

�N�I − Fxi
� = Tr�1

�NEi = ��Ei� � e−RN �
�

2n
.

As xi=0 holds for at most � indices, it follows that the probability of error of this code is
Prob�X�Y���. �
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Proof of Theorem 3: Since Lemma 1 gives the upper bound,

lim sup
n→�

I�An,�0,�1� � cS����� ,

it remains to prove that

lim inf
n→�

I�An,�0,�1� � cS����� .

By Lemma 4, the set 
xN :x�An� with N given there is the code word set of a code with error
probability smaller than �. According to Lemma 2 and Eq. �11�, this implies

�1 − ��log�An� − log 2 � S��XN� −
1

�An� �
x�An

S��xN� ,

where X is uniformly distributed on An and XN denotes its N-fold repetition.
From the subadditivity of the von Neumann entropy, we have

S��XN� � NS��X�

and

S��xN� = NS��x�

holds due to the additivity for product. It follows that

�1 − ��
log�An

N
−

1

N
� S��X� −

1

�An� �
x�An

S��x� = I�An,�0,�1� .

From the choice of N in Lemma 4, we have

R
log�An

log n

log n

log n + log 2 − log �
�

log�An

N
,

and the lower bound is arbitrarily close to cR. Since R�S��0 ��1� was arbitrary, the proof is
complete. �

Assume that An is the set of all x� 
0,1�n containing exactly � 0’s for a fixed natural number
�. Then c�An�=� and from the Stirling formula, one can easily check log �An � / log n→�. Conse-
quently, Theorem 3 proves that

S�Rn���� − �n − ��S��� − �S��� → �S����� �12�

holds as n→� when � is fixed and

Rn��� ª �n

�
	−1

�
x�An

�x1
� �x2

� ¯ � �xn
��0 = �,�1 = �� .

In particular, when �=1, conjecture �1� is proven in full generality. We have two generalizations
�Eqs. �5� and �12�� of Eq. �1�, which are similar but different.

We note that Eq. �12� admits a thermodynamical interpretation, analogous of that of Eq. �1� in
Ref. 4, sketched in the Introduction. Indeed, suppose that interaction with the environment
changes the state not of 1 but � molecules to � and irreversibility is introduced again by total
randomization. The new state of the system will be Rn��� above and Eq. �12� says that “informatic
entropy” increases by � times the relative entropy �in the limit as system size goes to infinity�.

Theorem 4: The capacity per unit cost of the channel with a binary input alphabet and
W�0�=�0, W�1�=�1 is equal to the relative entropy S��0 ��1�.
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Proof: Assume that R0 is an �-achievable rate per unit cost. For every �0 and T0, there
is a code A� 
0,1�n for which we get by Lemmas 1 and 2,

TS��0��1� � c�A�S��0��1� � I�A,�0,�1� � �1 − ��log�A�− log 2 � �1 − ��T�R − �� − log 2.

Since T is arbitrarily large and � ,� are arbitrarily small, R�S��0 ��1� follows.
Let An be the set of x� 
0,1�n containing exactly one 0, and consider the N-times repeated

code words given in Lemma 4. Then each of the n code words contains exactly N 0’s. For every
R�S��0 ��1� and � ,�0, if N is chosen as in Lemma 4, we have

n �
�

2
eNR =

�eN�

2
eN�R−��  eN�R−��

as long as n is so large that N satisfies �eN� /21. This implies that R is an �-achievable rate per
unit cost for every �0. Hence, the result follows. �
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