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Group Decision With Inconsistent Knowledge

Peijun Guo, Dao-Zhi Zeng, and Harunori Shishido

Abstract—n this paper, dual exponential possibility distri- This paper is organized as follows. In Section I, upper
butions, namely, upper and lower exponential possibility distri- and lower possibility distributions for representing human
butions, are identified from the given data to characterize a knowledge, initially proposed in [20], are redefined by the

decision-maker’s knowledge. A decision group’s knowledge can . . . R
be represented by a setgof such dual pgossi?)ility distribLgJ]tions. inconsistency index of these dual possibility distributions. Upper

The inherent diversity of knowledge among decision-makers is POssibility distributions can be regarded as optimistic viewpoints
characterized by a conflict index. A conflict resolution model is and lower distributions as pessimistic ones in the sense that
proposed based on the conflict index, which integrates multiple upper possibility distributions always give higher possibility
possibility distributions identified i.nFo a new one to represent grades than the lower ones. As a result, multiple experts’
compromised knowledge of a decision group. As an application, o ledge can be characterized by a set of dual exponential
a portfolio selection problem with multiple decision-makers is LD - L . )
considered. possibility distributions. In Section I, a conflictindex is defined

to measure the difference of each pair of possibility distributions.
Based on the defined conflict index, conflict situation in a
decision group is investigated so that stable subgroups, key
members, outliers, and a core of the decision group can be
I. INTRODUCTION found out. A conflict resolution model is proposed where the
possibility distributions are preprocessed so that possibility
g(_i)stributions with the higher conflict indices with the other

no doubt, one of the most typical attributes of human natu ossibility distributions are regarded as ouliers to be eliminated.

Conflict analysis and resolution play an important role in busi- new p_033|b|l|ty distribution can be obtained to represen.t
. o - more reliable knowledge. The researches on how to obtain
ness, economical, governmental, political and lawsuit disputes, "~ . . s : :
. . . Used information from multiple information sources, which are

labor-management negotiations, and military operations.

Generally speaking, the main research work in the filed 6qcon5|stent with each other in nature, such as multiple sensors

conflict resolution is based on game theory founded by von Ne"f;{-]d a multi-expert pool, have been done from the viewpoint of
mann and Morgenstern [23]. For example, Howard [13] begl formation fusion based on probability and possibility theories,

. : ively. Th ili ks, such as B k
the stability study of a state in metagames and hypergames. %pecnvey e probability networks, such as Bayes networks

) Markov networks, are well-known probability methods
research was further improved and extended to graph model§hy o mation fusion where information is presented as a

F?"ﬁg_et al. [5]. Moreo"ef’ many papers on arbitration and falf:onditional probability distribution and fusion procedure is
division have been published [1], [2], [18], [26]. based on Bayes formula [16]. The Dempster—Shafer theory of
The rough set-based method is a new one to analyze the stiyGgence (DS) is an important tool of information fusion to
ture of conflict [14], [15]. Three kinds of binary relations beyeq| with nonadditional probability phenomena where fusion
tween participants, called conflict, neutrality, and alliance, Afocedure is based on Dempster's rule of combination [17].
defined. Based on these relations, the participants in debate§{gois and Prade [3], [4] and Yager and Kelman proposed
divided into several coalitions and a strategy for conflict resoldy me information fusion models based on possibility theory
tion, called intimidation, is investigated. ~[24], [25]. The approaches related to information fusion for

Different from the above research, this paper consideggcision analysis have been researched by &, [6]-[11].
how to obtain more reasonable knowledge from conflictinghis paper proposes a new method for information integration
knowledge provided by multiple decision-makers. This kinfom the viewpoint of conflict analysis in its own right. In
of conflict originates from the inherent diversity of knowledge&section IV, as an application example, a portfolio selection
and cognition on some issue under debate among multigieyblem with a group of experts is considered. In Section V,
decision-makers in a decision group. The aim of this paperdsnumerical example is given to show the proposed method.
to investigate the structure of such a conflict and to resolve it fgnally, some concluding remarks are included.
obtain more reliable knowledge to be used for decision-making

[12]. Il. I DENTIFICATION OF DUAL POSSIBILITY DISTRIBUTIONS
FrRoM GIVEN DATA
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conflict is a situation in which two or more deci-
sion-makers are in dispute over some issue. Conflicts a
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relatively low possibilities. The area of a possibility distribution
can be regarded as a sort of measure of fuzziness. In a con
plex case, it is difficult to directly get a possibility distribution.
However, we can easily obtain possibility grades of discrete dat:
from some person reflecting his judgement. For example, in
portfolio selection problems, experts can choose some typica ‘—‘—()9,7[ (x1))
patterns from the past security data and give them associate
possibility grades to reflect their judgment on the situation of
stock markets in the future. The higher the possibility grades ol (xl,hl)
security data, the more similar to the future. Now let us considet
how to obtain the possibility distribution from the given data. (5, ()

A. The Concepts of Lower and Upper Possibility Distributions '

Suppose that a data sét, h;)|i = 1,...,m}is given. Here >
x; = [zi1,- .., 2] IS @ann-dimensional vector to characterize a X X
some specified event,; is an associated possibility grade given
by some person to reflect his judgement on what the possibiIﬁS@- 1. Concept; 91‘ Iow_er and_upper possibility distribupions. (The lower curve
grade of theith sample is for this event, and is the number :;st?r?bluci\i/:/)erz]r).posablllty distribution and the upper curve is the upper possibility
of samples. The data set;( ;) (: = 1,...,m) can be approx-
imated by a dual data sets;( h;;) and &;, hy;) ¢ = 1,...,m)
with the conditionh;; < h; < h,;. Assume that the valués;
andh,; are from a class of function§(x, ) with parameter
vectorf. LetG(x;, 6;) andG(x;, 6,,) correspond td,; andh,,;
(¢ = 1,...,m), respectively, and simply be denotedmaéx;)
andm,(x;). Given the data set(k;, h:)|i = 1,..., m}, the

It is known from Definition 1 that the smaller the parameter
K is, the closer td; the valuesr;(x;) andr,(x;) are from the
lower and upper directions, respectively.

Definition 2: Denote the optimal solutions af D,,, andD,
asa., D, , andD.,,, respectively, which minimize with con-

C o ; . straint (3). The following functions:
objective of estimation is to obtain two optimal parameter vec- 3) 9

tors6* andd; from the parameter space to approximatg f.;) T (x) =exp{—(x — a,)'D, ' (x — a,)} 5)
from the upper and lower directions according to some given Ty, (X) =exp{—(x — a,)'D; }(x — a,)} (6)
measure. Moreover, it is needed that the relatif{x, ;) <
G(x, 6%) holds for any arbitrary.-dimensional vectoxk.
Suppose that functiod(x, ) is an exponential function
exp{—(x — a)'D~!(x — a)}. Then the following formulas

are called the lower and upper exponential possibility distribu-
tions of the possibility vectoX, respectively. For simplicity,
afterwards we writer;(x) and 7, (x) instead ofr,, (x) and

hold: 7, (x), respectively, and denote the possibility vec¥omvith
exponential possibility distributiotkp{—(x—a)'D~!(x—a)}
m(x;) =exp{—(x; —a)'D; }(x; — a)} asX ~ (a,D).. The concept of the lower and upper possibility
i=1,...,m (1) distributions is illustrated in Fig. 1. It can be seen from Fig. 1

_ ty—1 that the given possibility degrees are completely included into
Tu(X;) —ﬁXP{—(Xz’ —a) Dy (xi —a)} the boundary of the lower and upper possibility distributions.

i=1...,m (2 The lower distribution can be regarded as a pessimistic view-
m(x;) <h; < m,(x;) andm(x) < m,(x) (3) point and the upper possibility distribution as an optimistic one
in the sense that the lower possibility distribution always gives
a smaller possibility grade than the upper one. The difference
between the dual possibility distributions reflects the inconsis-
%hcy of knowledge.

wherea = [a1,as, .. .,a,]" is a center vector, anB; andD,,
are positive definite matrices, denotedlds> 0 andD,, > 0,
respectively. It can be seen that in the above exponential fu
tions vectora and matriced, and D, are parameters to be
solved. Different parametexs, D, andD, lead to different g - dentification of Upper and Lower Possibility Distributions
valuesm;(x;) andm,(x;) which approximate the given possi-
bility degreeh; to the different extent.

Definition 1: The inconsistency index of the two approxima

A model to identify the lower and upper possibility distribu-
tions is built to minimize the inconsistency index as follows:

tions (1) and (2), denoted as is defined as follows: m m
@) @ & min (xi—a)tDl_l(x,,;—a)—Z(x,,;—a)tD,;l(xi—a)
(£ tumi) -mmexp) "7 =
N7y (X;) — 1\ &g
_ \i=t s.t.(x; — a)tDl_l(xi —a)>—Inh;,i=1,...,m
m (x; —a)' D (x; —a) < —Inh;, i=1,...,m
Du - Dl 20, Dl >0 (7)
(xi —a) where the objective function is from (4)x; — a)!D; ' (x; —
a) > —Inh; is from 7r1(xi) < h;, (Xi — a)thl(Xi — a) <
(x; — a) 4 - ln h; is from 7w, (x;) > h;, Dy, — Dy > 0is fromm(x) <
4 (%), andD; > 0 is due toD; being a positive definite matrix.
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It should be noted that the optimization problem (7) is equiVAs a result, the model (9) can be rewritten as the following LP
alent to the integrated model proposed in [20] in form. Howevegroblem:

they arise from very different considerations. The latter was an m m
integration of two optimization problems to obtain lower and min 7:Cz; — ZZfCuZi
upper possibility distributions simultaneously. The former is to C,C, — i1
seek an optimal center vectarand optimal positive definite st.z!Ciz; > —Inh;, i=1,....m
matricesD,, andD; to minimize inconsistency indexdefined 'Cog < —Inh i1
in formula (4). In the following, let us consider how to obtain Ziui = n. S A
center vecton and positive matrice®; andD,,. clj 2cCuj, J=1,...,m
It is straightforward that the lower and upper possibility dis- cuj 26, 7=1,...,n (15)

tributions should have the same center vectors. Otherwise, the h giti S S K h .
relation, (x) > m(x) cannot always hold. Because a vectof''€"€ the condition;; = c,; > & > 0 makes the matrix

x with the highest possibility grade should be closest to cenl@r‘ — D semri{posit_ive :jefilnit_e andfmatricﬁu a(rjwd]*), pr(])si-
vectora among allx; (i = 1,...,m), center vectoa can be Ve Denote the optimal solutions of (15) € andC;. Thus,

estimated as we have
D! =TC: 'T!

a = Xjx (8) —1
s =TC T (16)

where x;- denotes the vector whose grade #s. = o ) .
maxi_1 . m hx. The associated possibility grade of;- For simplicity, afterwards we writ®,, andD, instead ofD?,

is revised to be 1 because it becomes center vector. Taking 3 D - . o
transformationy = x — a, the problem (8) is changed into the Given a possibility vectoX ~ (a, D)., the possibility dis-

following one: tribution of a possibilistic variablé” with ¥ = r'X, denoted
m m aswp(y), is defined by the extension principle [22] as follows:
min Z ‘Dt '—Z ‘D-ly, ty—1
DuD, Yil i Yilu Vi m5(y) = . ‘max }exp{—(x —a)D7 (x—a)} a7)
’ =1 i=1 x|y=rtx
S-t-Ysz_1Yi >—Inhj,i=1,...,m wherer is ann-dimensional vector. Solving the optimization
yiDJly, < —Inh;,i=1,...,m problem (17), the possibility distribution @f can be obtained
D, —D; >0 s
D; >0. 9) 75(y) = exp{—(y — r'a)>(r'Dr)~1} (18)

Formula (9) is a nonlinear optimization problem due to the L i
last two constraints. To cope with this difficulty, we use principl«‘;’-"hererta |stthe center value andDr is the spread value of.
component analysis (PCA) to rotate the given data(;) to Yo~ (r'a,r'Dr), is called the one-dimensional (1-D) realiza-
obtain a positive definite matrix easily. Daga(i = 1,...,m) tonofX ~(a,D).. _
can be transformed by a linear transformation malfiwhose ~ 1h€orem 1:Assuming that the given datay;,hi,

columns are eigenvectors of matik = [o;;], whereo;; is * = L...,m, are gbtai”ed_ from an exponential possi-
defined as bility distribution (0, AY)., the inconsistency index of upper
m and lower possibilistic distributions is 0.
{ > (@i — ai)(xjk — aj)hk} Proof: The given datay;, h;, 7 = 1,...,m, are obtained
oij = k=1 - (10) from an exponential possibility distributiof®, AY). which
S he means that the following equations hold:
k=1 1
exp{-yiAY 'yi} =h;, i=1,... m. (19)

wherez;;, is theith element of thekith samplex;. Using T,

datay; is transformed inte; = T'y;. Then formulas (1) and  Let us consider the following optimization problem for
(2) can be rewritten as follows: finding out the upper possibility matriA, and the lower
m(z:) =exp{—z!T'D; ' Tz;}, i=1,....,m (11) possibility matrixA; from the above given data:

t t -1 . m m
w(zi) =exp{—z;T'D, " Tz;}, e=1,...,m. 12 .
Tu(2;) xp{ } 3 (12) min & :ZYZ;Al_ly'i _ nyAglyi
i=1

SinceT is obtained by PCAT'D;'T and T*D, ' T can be ALAy =
assumed to be diagonal matrices as follows: subjecttoy’Aly; > —Inh;, i=1,..., m
Cul 0 yfA,:ly1 S —hlhi7 1= 1/7’7’1, (20)
—1 .
C,=T'D,'T= . (13) The optimization problem (20) can be separated into the fol-
0 Cun lowing two optimization problems:
o ’ Ji(AL) i A
max u) = itdu i
C, =T'D;'T = ' . (14) A £ Vit Y
0 Cin sty!A lyi<—Inh;,i=1,...,m (21)
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and Proof: The problemmax, m; - 7; in Definition 3 leads to
the following optimization problem:
IIllIl Jo(Ay) nyA yi

(x —a))® n (x —a;)*

min f(z) = (26)
StylA > lnh ,i=1,...,m. (22) ® Ti Tj
Since any datg;, h;, i = 1, ..., m, is obtained from the expo- The optimal solution of (26) is
nential possibility distributiorf0, AY)., it should satisfy (19). (air; + ajri)
Therefore, AV is an admissible solution of (21) and (22). As- A T (27)

sume that there is another mat&x such as/;(A*) > J;(AV) (ri+ )
in (21). Then, for some, we have Substituting (27) into (24) leads to (25). O
P Lol It is seen from (25) that the closer the centers and the wider
ViAT yi >y AT yi=—lnh @3 the spreads of the two possibility distributions, the lower the
which shows thatA* is not admissible. Thug\V is the optimal conflict index. If they have the same centers, the conflict index
solution of (21). In the same way, we can prove that the optimalll be 0 because of the inclusion relation between them. Such a
solution of (22) is alsa\ Y . Therefore, bottA, andA; areAY  conclusion is very close to human intuition to reflect the conflict
so that the inconsistency index= 0. U situation of uncertainty knowledge.
This theorem means that inconsistency indegan reflect  Definition 4: Given two n-dimensional possibility vectors

how the given possibility grades can be approximated by thg ~ ~ (a;,D;). andX; ~ (a;, D;)., their conflict index, de-
two obtained exponential functions. The smaller the in€léx  noted ag—(X“ X ), is defined as follows:

the better the given possibility degrees are characterized by the

identified dual possibility distributions. 7(Xi, Xj) = max ()X, v}, X;) (28)
k%)
IIl. CONFLICT ANALYSIS AMONG MULTIPLE wherer;; is ann-dimensional vector. It is known from this defi-
DECISION-MAKERS nition that the conflict index of two high-dimensional possibility

vectors is defined by the maximum conflict index of their 1-D

The data set from decision-makers is denoted as realization, which can be regarded as the most pessimistic view-

{{(x1,h1), (x2,h3), -+, (Xms b)) point for measuring their inconsistency degree .
_____ (1, b)), (X2, b3,y (Xums BE))Y Theorem 3:Given two n-dimensional possibility vectors
' . X; ~ (a;,;D;). andX; ~ (a;,D;)., the conflict index
wherexy = [z1k, ..., znk]" IS the kth_sgmple,}bk, i =1, 7(X;,X,) is as follows:
.,s1k = 1,...,m, is any given possibility grade by thh
person (the superscript &) to reflect his judgement on what 7(Xi, Xj) = Anax(Q) (29)

the possibility grade of theth sample (the subscript 6f,) is for

some specified event, and is the number of samples. For ex- Where A (Q) is the maximum eigenvalue of the following

ample, ((x1, h1), (x2, h), .. ., (xm, h1,)) is used to represent MaX Q:

the judgment from expert 1. Usmg the above-mentioned identi- Q =(R )!(a; — a;)(a; —a;)'R " (30)

fication methods dual possibility distributions can be obtained D, + D, —=R'R 31)
) ] — -

to reflect the inherent diversity in human thoughtsgfersons.
The set formed by dual possibility distributions, denoted as Proof: Considering formula (18) and Theorem 2,
U = {{Xi ~ (ai,Dui)e; (ai, Dis)e)|i = 1,.... s}, iscalledan r(r};X;, r};X;) is obtained as
|nformat|on block where{X ~ (a;,Duyi)e, (a;, Dy;)e) is Ob-
. t(a N (a Ntp
tained from data seft(x:, b}), (X2, k3), . . ., (Xm, )} (et X rt X ) = ri;(a; —aj)(ai —a;)'ry; (32)
v ri;(Di +Dj)ri;

A. Conflict Index of Exponential Possibility Distributions )
- : - . so thatr(X;, X) is as follows:
Definition 3: Given two possibility variable&’; ~ (a;,7;)e

andX; ~ (aj,7;)e, the conflict index ofX; and X ;, denoted ri(a; —a;)(a; —a;)'ri;

7(X;,X;) = max (33)

as7(X;, X;), is defined as J T, v (D; + Dj)r;;
7(Xi, Xj) = —1In (mxax mi(w) - Wj(x)> . (24)  Using (30) and (31) and taking the transformatipn= Rr;;,
It can be understood the conflict index of the two exponentigl)B) Is transformed into
possibility variables is defined based on their possibility mea- z,ijzij
sure where product operator takes the place of min operator (X, Xj) = nax 2tz (34)
with considering exponential functions. The higher the possi- N
bility measure, the lower their conflict index. According to the well-known Rayleigh—Ritz theorem, the op-
Theorem 2: Given two possibility variablest; ~ (a;,7;). timal value of (34) is the maximum eigenvalue @Qf namely,
andX; ~ (aj,r;)., their conflictindexr(X;, X;) is as follows: Amax(Q)- O
( )2 Lemma 1: It holds that
@ — s
X, X;) =~ 25 _ R _
(& X;) (ri +7;) (25) (D;'+D3") ' =D4—D4(Ds+Dp)'D4s.  (35)
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Proof:

(D4+Dg)(Ds+Dp) 'Dy =Dy
©Ds(D4s+Dp)'Dy+Dp(D4y+Dp) Dy =D,y
(D4 +Dp) 'Ds+D5'Ds(D4+Dp)'Day
=D;'D,4
©I- (D4 +Dp) 'Dy+D5'Dy
—~D;'D4(Ds+Dp) 'Dy=1

&D'Dy— (D4 +D3p)"'Ds +D5'Dy
~D3'Ds(D4+Dp) "Dy =1

D' +D;)(Ds-Ds(D4+Dp)'D,y) =1 (36)

It means that

(D;'+D3) ' =D4-D4(D4s+Dp)'Ds  (37)
which proves this lemma. ]
Lemma 2: It holds that
(a=b)'(D;' +Dy')"(a-b) = ~(Daa+ Dpb)’
x(Da+Dp) '(Dsa+Dgb)+a'Dia+b'Dgb. (38)

Proof: Using Lemma 1, the following equalities hold:

(a=b) (D3 +Dg') *(a-b)
=(a—b)'(Ds—D4s(Ds+Dp) 'Dy)(a—Db)
=(a—b)'D4(a—b)—[Dsa+Dgb— (D4+Dg)bl

x (Da+Dp) '[Dsa+Dgb— (D4 + Dg)b]
=(a—b)'Ds(a—b)— (Dsa+Dgb)!(Dy+Dp) !

x (Dsa+ Dgb) +2bf(Dsa+ Dgb) — b’ (D4 +Dg)b
=— (Dsa+Dpb) (D4 +Dp) ' (Dsa+ Dgb)

+a'Dya—2b'Dya+ b'Db

+2b'D 4a+ 2b'Dpb — b'D 4b — b'Dpb
= — (Dia+Dgb)! (D4 +Dp) ' (Dia+ Dgb)

+ atDAa + thBb- (39)
It proves this lemma.
Lemma 3: It holds that
Amax(ce) = cle (40)

wherec is an arbitrary vector, andl,,,.(cct) is the maximum
eigenvalue otc!.
Proof: From the following relation:
(cch)e = c(c'e) = (cfe)e (41)
it can be seen that’c = >

the matrixcc’ and the corresponding eigenvectokisTaking
c = [e1,...,cy]t, it holds that

C% C1Co C1Cp,
+ C1C2 C% CoCp,
cc' = ) (42)
2
CpC1 CpC2 e Ch

9 .
i=1,.nCi Is one egienvalue of

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 6, NOVEMBER 2002

Using the corollary of Gersgorin (see the Appendix ), all eigen-
values ofcc! lie in the region

U Z€C¢|Z—03|Sm > lelleics]
i=1,..n =1, n,#i
= Y &y @
J=1,.n,j#i
which means that
Aec!) < c? (44)
7j=1,...,n

so thatc’c = > ._
O
Theorem 4: It holds that

T(X’ivxj) :)‘maX(Q)
=—(Dj"a; + Dj"a))"(D; " + D7)~
) (Di_la,i + Dj_laj) + aﬁDi_lai + aJt»Dj_laj.
(45)

. €5 is the maximum eigenvalue et'.

Proof: Letc = (R™!)(a; — a;) so thatQ = cc’. Using
Lemmas 1 and 2 leads to

Amax(Q) =c’c = (a; — aj)tR_l(R_l)t(ai —a;)
=(ai — a;)"(D; + D) *(ai - a;)
=— (D7 'a; + D} 'a;)'(D7 ' + D7)~
. (Di_lai + Dj_laj) + afDi_lai + aéD;laj.
(46)

It proves this theorem. O

If center vectors of two possibility distributions are the same,
thatis,a; = a;, the value of (32) will be always 0 for any vector
r;;. Inthis case, their conflictindex is 0. It should be noted that
in [22] the possibility measure of twa-dimensional possibility
variablesX; ~ (a;,D;). andX; ~ (a;,D;). is defined as
maxy m;(x) - mj(x). Defining¢(X;, X;) = — In(maxy 7;(x) -
m;(x)) as a new index for measuring the differencéXgfand
X, the following equation:
«(Xi,X;) = —(D; 'a; + Dy 'a;) (D] + D7)

-(D;lai + D;laj) + aﬁD;lai + a}D;laj

can also be obtained by directly solving optimization problem
maxy m;(x) - m;(x), which is the same as the result in Theorem
4. It means tha‘t(Xi, XJ) = T(I‘T;XL I‘:‘; XJ) = T(Xi, XJ) =
o(rj; Xy, v X;) wherer}; = argmax,,; 7(r}; X;, r};X;).

B. Conflict Resolution Model Based on Conflict Index

In information block U = {X; ~ {((ai,Dui)e,
(a;,Dp)e)li = 1,...,s}, we can calculate the conflict
indices of X; and X; based on the upper and lower pos-
sibility distributions, which are called the upper and lower
conflict indices ofX; andX; and denoted as"(X,,X;) and
(X;, X;), respectively. The conflict indices d@f based on
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upper and lower possibility distributions, denoted-#sandr!, tency degree oX; ~ ((a;, Du;)., (a;,Dy;).) in U,, denoted

respectively, are as follows: aslnc(X;), can be calculated as follows:
= max 7(X;,X;) @7) cXi)= > XL XH (X, X)), i=L, s
1,5 €{1,....8} F€{1,....p}si#]
™= max 71"(X;,X;). (48) (49)
65€{L, 8} According to values ofnc¢(X;), data set

Definition 5: Let §, andé; be the predetermined thresholdg ((x1, k1), (X2, h3), -, (Xm, hiy))
for 7 andr!, respectively. An information blodK is optimisti- ((x1, h?), (x2, hB) (Xm, h2,))}
. . . ) IR WA) 250109 )5 e ooy \BAmy Ty
cally stable ifand only if-* is not larger thai,,. An information
block U is pessimistically stable if and only i is not larger can be reordered as
thané,;. An information blockl is stable if and only if it is both 1 1 1"
optimistically and pessimistically stable. UG, hy), (2, bz ), (Koo i )

If an information block is unstable, it should be preprocessed SRRRK(CSE hlf:): (x2, hl2€ )y (X b))
to make itself stable. The basic idea for preprocessing is to delete s (1, BE ), (x2, B8 ), (X, BE)))

the outliers from the given information block. In other words, a v .
possibility distribution, which has the higher conflict index witt?© thathi (i = 1,...,m) corresponds to thé*th smallest
the others, can be regarded as an outlier to be deleted. Ine(X;). The decision-makers with the smalldst,() are re-

The following algorithm is used to obtain the stable blocRarded as the key members of this decision group. The compro-

from the given information block” with maximum cardinality, mised possibility grade of thith samplex; is as follows:

which is called as the efficient block &f, denoted ag/.. he = Z wk*hf*, i=1,....m (50)
k*=1,...,p
Step 1. Represent s upper and s lower where the WelghU < wg- < 1 is determined by ordered
conflict indices by two S X s matrices weighted aggregating (OWA) operators [25]. Using the identifi-
Q" = [q¢¥] and Q' = [(Ifj] where ¢ = 7(X;,X;) cgthn m_ethod introduced in Section Il, the new dual possibility
and (Ifj =X, X;) (i=1,...,85=1,...,5). dlstrl_butlons, denoted @& ~ ((a.,Dcy)e, (ac, Der)e), can be
Step 2. Transform elements % (ql;) into obtained fromx;, A7, i = 1,...,m.
0if ¢4 > 6u (g; > &) else into 1. Obtain
a binary matrix Q* so that Q* = [gijlexs = [V. PORTFOLIO SELECTION WITH A GROUP OFEXPERTS
[(JE} : qgj]' Portfolio selection problems based on possibility theory have
Step 3. Denote the index of the row of been studied in [10], [11], [20], and [21]. Different from prob-
Q" with the biggest number of the el- ability models, such as Markowitz’s model, by which optimal
ement 1 as . If the numbers of 1 in portfolios are selected based on the statistic characteristics of
the ¢*th row is larger than one, the ef- the past security data, possibility models select optimal ones
ficient block is obtained as the set based on the past security data plus experts’ judgment on those
Ue={X; ~(a;,Duj)e, (a;,Dij)lai-; = 1,7 = 1,...,s}.  data, where possibility grades are used to characterize deci-
Otherwise there is no efficient block, and sion-makers’ knowledge. Now let us consider portfolio selec-
the information block U is then called a tion problems with multiple experts. The data set is given as

conflict information block. ) . )
{<(X17 h1)7 (X27 h2)7 LN} (Xm7 h’m))

Sometimes more than one efficient blocks, for example, e (ks i), (%2, 43), - (s B )
r efficient blocks can be obtained, which are denoted agherex; = [v1y,...,2,.]" iS @ vector of returns ok secu-
Ue,...,U.., respectively. rities S; ( = 1,...,n) at thekth period,h}, is an associated

Definition 6: Supportingthat/., ..., U., arether different possibility grade given by th&h expert to reflect his judgment
efficient blocks obtained from a given information bld@kthe on the possibility degree that such returnswadecurities will
setU,=U,,NU,N---NU,, is called the core ot/. appear in the future, andis the number of experts. Using the

It is also clear that/ is a conflict information block if and method introduced in Sections Il and I1l, a compromised possi-
only if Vi,j € {1,...,s},i # j, iy > 6, 0r rﬁj > §,. Oth- Dbility distribution X ~ ((a;,D¢y)e, (a;, De).) is obtained to
erwise, there must be an efficient information blockUlfis a characterize integrated knowledge on stock market prediction
conflict information block, then any subset Gfis also a con- from multiple experts.

flict information block. The portfolio return can be written as
Now, let us consider how to obtain a compromised possibility P 51
distribution from the obtained efficient block. Without loss of =rx= Z 755 (51)

generality, suppose that there is only one efficient information
blockU. = {X; ~ ((a;, Dui)e, (a;,; Dii)e)|i = 1,...,p} ob-  wherer; denotes the proportion of the total investment funds
tained fromU wherep is the cardinality ofU,. The inconsis- devoted to security; andz; is its return.
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Because return vector is governed by the dual possibility From (59), we have
distributionX ~ ((a.,Dey)e, (ac, Der)e), using formula (18) . . fn 1 fem 1
the upper and lower possibility distributions of a possibility r'=05(Aa D™+ A21'D 7). (62)
portfolio returnZ, denoted as z, (z) andrz, (2), respectively, Supstituting (62) into (60) and (61) leads to the following

are obtained as follows: equations:
7z,(2) =exp{—(z — r'a.)}(r'D.,r) !} (52) ¢ =0.5(\a'D~la + \,1'D " 1a) (63)
77,(2) =exp{—(z — r'a.)*(r'Dr) "'} (53) 1 =0.5(\a!D71 + \,1'D11). (64)

t i t
whererta, is the qe_n_ter value.am:chur andr!Dr are the For simplicity, we let
spreads of a possibility portfolio retuth based on the compro-
mised upper and lower possibility distributions, respectively. a=0.5a'Dta, 3 =0.51'"D"!a
_The following two quadratic programming problems are v =0.51"D™ 1. (65)
given to obtain optimal portfolios, which minimize the spreads
of possibility portfolio returns because the spreads of possibilitiyshould be noted that, 3, andy are constant values. Thus,

portfolio returns are regarded as the measure of risk: (63) and (64) can be rewritten as
min r'D.,r a1 + e =c (66)
S.trtac — BA1 + X2 =1. (67)
- L Assuming that = ay — 32 is not zero, we can solve (66) and
;T’L =120 (54) (67) to obtain\; and )\, as follows:
lein I'tDclr )\1 — (Cry B /B) (68)
e
S.t.rtac =c _
. 2y =P (69)
Z’I”i :1, T Z 0 (55) ¢
i=1 Substituting (68) and (69) into (62) leads to

wherec is the expected center value of a possibility portfolio re- . 05(cy—pPa'D™'  0.5(a—¢f)1'D!
rt = + .

turn which should comply with the constraimiin;—; __, a; < . p (70)
¢ < max;=1,.na; t0 guarantee the existence of solutions iEi’hus
(54) and (55). BecausB., andD,,; are positive definite ma- !
trices, (54) and (55) are convex programming problems. = (22 \p-ta_ 0.50 D-'1) ¢
Consider the following optimization problem where short e e
sale is allowed for investment: N <0,5a> D1 (0,5ﬁ) Dla)
min r'Dr € €
r =bc+d (72)
s.tt.rla =c
zn: (56) where
r; =1 56
¢ 0.5 0.543
i=1 b= (ﬂ) D la— <i> D1 (72)
whereD is eitherD., or D.;. The optimal solutiom* can be Oer 0 f 3
obtained by minimizing the following Lagrangian function: d= ( ")O‘) DI — <i> D la. (73)
e e

L(r, A1, X) =r'Dr 4+ A\j(c — 1t Ao(1 —r'1 57 :
(1, A1, A2) = 1D+ A e —ria) + 4(1 = 1'1) - (57) Becausé andd are constant vectors, it follows from (71) that

wherel = [1,...,1]". L(r, A1, X2) is @ convex function be- the optimal solution* is a linear function of the given center
cause ofD > 0. The necessary and sufficient conditions for Considering that**Dr” is the smallest spread of the port-
optimality of (57) are folio return denoted ag, we have
‘Z_L 0 p =r*'Dr* = (b'c + d")D(bc + d)
5L =c?b'Db + 2¢cb'Dd + d'Dd. (74)
—— =0
01 Sinceb!Db, btDd, andd!Dd are constants denoted@asts,
oL 0 (58) andt, respectively, (74) can be simply written as follows:
O
: . . =tic? +tac+t 75
which can be explicitly written as p=he thetis (75)
9Dr — Aa — Al =0 (59) whlch means that the spreadis a quadratic function of the
. given center.
c—ra=0 (60) Theorem 5: The spread of the possibility portfolio return
1 —r'1 =0. (61) based on the compromised lower possibility distribution is not

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 10,2010 at 01:56:41 EST from IEEE Xplore. Restrictions apply.



GUO et al. GROUP DECISION WITH INCONSISTENT KNOWLEDGE 677

TABLE |
SECURITY DATA WITH EXPERTS JUDGMENTS

Years | Expert 1| Expert 2| Expert 3| Expert 4| Expert 5| Sec.1 Sec.2 | Sec.3 | Sec4
1977(1) | 0.881 | 0.805 | 0.192 | 0.192 | 021 | -0.305 | -0.173 | -0.318 | -0.477
1978(2) | 0279 | 0273 | 0.901 | 0.621 0.69 | 0.513 | 0.098 | 0.285 | 0.714
1979(3) 052 | 0602 | 054 | 0.685 | 0.672 | 0.055 0.2 -0.047 | 0.165
1980(4) | 0.623 | 0.671 | 0.517 | 0.542 | 0.557 | -0.126 | 0.03 | 0.104 | -0.043
1981(5) | 0.811 | 0.877 | 0312 | 0.298 | 0277 | -0.28 | -0.183 | -0.171 | -0.277
1982(6) | 0.522 | 0.565 | 0.623 0.58 | 0.536 | -0.003 | 0.067 | -0.039 | 0.476
1983(7) | 0.377 | 0431 | 0.676 | 0918 | 0.782 | 0.428 03 0.149 | 0.225
1984(8) 046 | 0452 | 0.698 | 0.717 | 0.726 | 0.192 | 0.103 0.26 0.29
1985(9) | 0.348 | 0374 | 0.716 | 0.809 | 0.877 | 0446 | 0.216 | 0.419 | 0.216
1986(10) | 0.736 | 0.797 | 0.371 0.414 0.41 -0.088 | -0.046 | -0.078 | -0.272
1987(11) | 0.598 0.667 | 0.556 | 0.622 | 0.575 | -0.127 | -0.071 | 0.169 | 0.144
1988(12) | 0.588 | 0.673 | 054 | 0.628 | 0.582 | -0.015 | 0.056 | -0.035 | 0.107
1989(13) | 0.475 | 0.484 | 0.709 | 0.753 | 0.696 | 0.305 | 0.038 | 0.133 | 0.321
1990(14) | 0.415 0.434 | 0.535 0.468 0.615 | -0.096 | 0.089 | 0.732 | 0.305
1991(15) | 0.561 | 0.582 | 0.581 | 0.649 | 0.639 | 0.016 | 0.09 | 0.021 | 0.195
1992(16) | 0.443 | 0.503 | 0.669 | 0.681 | 0.671 | 0.128 | 0.083 | 0.131 0.39
1993(17) | 0.611 0.689 | 0.482 | 0.582 0.522 -0.01 0.035 0.006 | -0.072
1994(18) | 0.222 | 0.223 | 0.661 0.405 0.546 | 0.154 | 0.176 | 0.908 0.715

larger than the one based on the compromised upper possibility TABLE I
distribution. CONFLICT INDEX MATRIX Q™
Proof: Denote the optimal solutions obtained from (54)
. . x1 x2 x3 x4 x5
and (55) as}, andr;j, respectively, with the same center value. - 1 0.007 0.687 0.49 0574
According to the feature of the upper and lower possibility dis-  ~5T 0007 1 0.608 0429 0.506
tributions, i.e.D., — D, > 0, the following inequality holds: 310687 0.608 1 0.128 0.155
. . x4 | 049 0.429 0.128 1 0.063
r, Deury, > 17, Dary,. (76) x5| 0574 | 0506 | 0.155 | 0.063 1

Because is the optimal solution of (55), we have
grades represent a kind of potential of some happening, which is

rcher > r;“tDClr}*. (77) problem-specific. Table | lists returns of four securities (sec.1,
sec.2, sec.3 and sec.4) from 1977 to 1994 and the associated
As a result possibility grades given by five experts. The procedure for ob-
taining possibility distributions from the above given data was
rztDcurZ > r}"tDclr}“ (78) asfollows. Firstly, obtain the centarof possibility distribution
for each expert by (8). Then obtain the transformation matrix
which proves the theorem. O Tby(10)andz; = x; —a (: = 1,...,18). After that, solve
The nondominated solutions with different centers of a possie LP problem (15) and obtain distribution matrid@s and
bility portfolio in (54) and (55) can form two efficient frontiers. D; by (16). For example, the dual possibility distributions from
the experts 1, denoted & ~ ((a1, Du1)e, (a1, Di1)e), were

V. NUMERICAL EXAMPLE obtained as follows:
In order to show t_he abovg-pr_opo_sed approaches, a r_wumerica;i1 =[~0.305, —0.173, —0.318, —0.477]!

example for portfolio selection is given where four typical se- - 391.045 105.691 —444.331  93.502 1
curities were considered. Their returns from 1977 t0 1994 were 105.691 35305 —146.258  30.933
collected as references to predict their returns in the nextyedPu1 = | /1 aa1 46958 618334 —198.763
Five experts were invited to give their judgment on how similar 93.502 30933 —198.763  98.420
the economic situation in the_z next yegr_would be to that in each - 390616 105.648  —444.659  93.464 1
sample year. For example, in the opinion of expert 1, the eco- 105.648 34876 —146.402  30.880
nomic situation in the next year would have high similarity to D;; = _444'1 659 —14.6 102 618 (')23 —12.8 961
that in 1977 so that he gave the possibility grade, for example, 93 4.64 30 8.80 —12é 961 27 6.70

0.881 to 1977. Because the stock market is a sort of mirror to
reflect the current economics situation, it was reasonable to preAfter obtaining all upper and lower possibility distributions
dict that the returns of these four securities would reappeardffive experts, the conflict indices were calculated by (45). The
the next year with possibility grade 0.881. Different from probebtained conflict index matrices based on upper and lower pos-
ability reflecting the frequency of some happening, possibilitsibility distributions are listed in Tables Il and Ill, respectively.
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TABLE 11l
CONFLICT INDEX MATRIX Q! 23.4%
x1 x2 x3 x4 x5
x1 1 0.083 1.335 0.941 0.959
x2 0.083 1 1.05 0.681 0.713
x3 1.335 1.05 1 0.385 0.302
x4 | 0941 | 0.681 | 0385 1 0.129 ‘5‘9%
x5 0.959 0.713 0.302 0.129 1 ’
TABLE IV 2
BINARY MATRIX Q* 42.3%
x1 x2 x3 x4 x5 Portfolio based on compromised upper distribution

x1 1 1 0 0 0 (@)

x2 1 1 0 0 0 4

x3 0 0 1 1 1 35.6%

x4 0 0 1 1 1

x5 0 0 1 1 1

—o—1II lower
—u—T upper
0 ! L 1
025 03 0.35 04
center Portfolio based on compromised lower distribution

(b)

distributions It-)fg. 3. Portfolios based on compromised (a) upper and (b) lower possibility
' distributions withc = 0.3.

Fig. 2. Portfolio frontiers based on compromise upper and lower possibili

The binary matrixQ* is given in Table IV withé,, = 0.2 and _ o _ _
& = 0.4. From Table 1V, it is known that the efficient block is ~ Using models (54) and (55), the possibility portfolio frontiers
based on the compromised upper and lower possibility distribu-

Ue ={X3 ~ ((a3; Dus)e, (a3, Di3)e), X4 ~ tions are shown in Fig. 2. It should be noted that the portfolios
((a4,Dya)e, (a4, D14)e), X5 ~ in the upper and lower frontiers with the same center were dif-
(a5, Dus)e, (a5, Dys)e) ). ferent with each other. For example, the portfolios with 0.3

are shown in Fig. 3.
The inconsistency degredac(X3), Inc(Xy), and Inc(Xs5)
were obtained a$uc(X3) = 0.97, Inc(X4) = 0.705, and
Inc(X5) = 0.649. BecauseX; had the smallest inconsistency ) o .
degree in the efficient blockX; was the key member for N this paper, the dual possibility distributions for approxi-
conflict resolution. The weight coefficients &f, 1, andp; Mating the given possibility grades are identified by minimizing
(k = 1,...,18) were set as 1/6, 1/3, and 1/2, respectivel{l1® inconsistency index of two possibility distributions. The
Using the weighted possibility grades, the compromised posdPPer possibility distribution reflects an optimistic viewpoint
bility distribution X ~ ((ac, Dey)e, (ac, Der)e) were obtained and the lower possibility distribution reflects a pessimistic one.

VI. CONCLUSION

as follows. Different from other methods on conflict analysis, this paper
focuses on analyzing the conflict situation in a decision group.

a. =[0.446,0.216,0.419, 0.216]" The conflict among decision-makers arises from the inherent
r0.988 0.275 0.001  0.129 diversity of knowledge and cognition on some issue under

D. — 0.275 0.277 0.075  0.020 debate. A set of dual possibility distributions is used to charac-
7 10.001 0.075 1.134 —0.070 terize multisource knowledge from multiple decision-makers.

L0.129 0.020 —0.070 0.918 A conflict index between two possibility distributions is

r0.710 0.197 —0.042 0.355 defined to reflect their difference degree. Based on the conflict

0.197 0.168 0.061 0.095 index, conflict situation of knowledge can be investigated and a

Do = —0.042 0.061 0.993 —0.2561|" conflict resolution model is proposed to obtain a compromised
L 0.355 0.095 —0.256 0.369 possibility distribution, which represents a more reliable

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 10,2010 at 01:56:41 EST from IEEE Xplore. Restrictions apply.



GUO et al. GROUP DECISION WITH INCONSISTENT KNOWLEDGE 679
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with multiple experts is considered. Because the compromiseg_ bility distributions,”Eur. J. Oper. Resvol. 114, pp. 115-126, 1999,

[21] H.Tanaka, P. Guo, and |. B. Turksen, “Portfolio selection based on fuzzy

p(?SSIblllty dIStrIbL.Jtlon has h|gher Cred'b'“ty than a S.'n.gle one, probabilities and possibility distributionsfuzzy Sets Systol. 111, pp.
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made. [22] H. Tanaka and H. Ishibuchi, “Evidence theory of exponential possibility

distributions,”Int. J. Approx. Reasonvol. 8, pp. 123-140, 1993.
[23] J. Von Neumann and O. Morgensteifiiheory of Games and Economic
APPENDIX Behavior Princeton, NJ: Princeton Univ. Press, 1944.
[24] R.R. Yager and A. Kelman, “Fusion of fuzzy information with consid-

Theorem (Gersgorin).Let A = [aij] e C™*" all the eigen- erations for compatibility, partial aggregation, and reinforcement,”
value of A are located in the union of thediscs J. Approx. Reasonvol. 15, pp. 93-122, 1996.

[25] R. R. R. Yager, “On ordered weighted averaging aggregation operators
in multi-criteria decision making [EEE Trans. Syst., Man, Cyberrol.
18, pp. 183-190, Jan./Feb. 1988.
U z€C |z —aiy| < Z lai;| ¢ - [26] D. Z. Zeng, S. Nakamura, and T. Ibaraki, “Double-offer arbitration,”
Math. Social Scj.vol. 31, pp. 147-170, 1996.

=1,...,n J=1,..m, 570

Corollary: Let A = [a;;] € C™*™ and letpy, pa, ..., p, be
positive real numbers. Then all the eigenvaluesidfe in the
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