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Graph-Based Evolutionary Design of Arithmetic
Circuits

Dingjun Chen, Takafumi AokiMember, IEEENaofumi HommaStudent Member, IEEHoshiki Terasaki, and
Tatsuo HiguchiFellow, IEEE

Abstract—in this paper, we present an efficient graph-based evo- presented a genetic algorithm (GA) that is capable of evolving
lutionary optimization technique called evolutionary graph gener- - 100% functional arithmetic circuits. This new field of research
ation (EGG) and the proposed approach is applied to the design ¢ come to be known asolvable hardwarg2]-[4]. Its promi-
of combinational and sequential arithmetic circuits based on par- ) - ) . -
allel counter-tree architecture. The fundamental idea of EGG is Nent advantage is the fact that the evolutionary design will in-
to employ general circuit graphs as individuals and manipulate evitably allow the automatic exploration of a much richer set
the circuit graphs directly using new evolutionary graph opera- of possibilities in the design space that are beyond the scope of
tions without encoding the graphs into other indirect representa- ~qnventional methods.

tions, such as bit strings used in genetic algorithm (GA) proposed C Hl ithmetic circuit b . . tant
by Holland and trees used in genetic programming (GP) proposed urrently, anthmetic Circuits are becoming more importan

by Koza et al. In this paper, the EGG system is applied to the de- in today’s computing and digital signal processing (DSP) sys-
sign of constant-coefficient multipliers and the design of bit-serial tems. State-of-the-art logic synthesis tools provide only limited
gﬁ{tta'pf‘lrzac';'g f\ddelrs. J]he resmtj_ltsliem_onstratbel the F]EOIG”FI'S' capa- capability to create the structural details of arithmetic circuits.
ility o 0 solve the practical design problems for arithmetic . _— : :
circuits with limited knowledge of computer arithmetic algorithms. leeW|se,_ recgnt high 'e_"?' synth93|s 'Fechnlques tend to emP'Oy
consisting of shifters and parallel counters, the results obtained which are usually designed in advance as essential resources. In
from the EGG are superior to or as good as the known conventional order to address this problem and develop a method for synthe-
designs using arithmetic algorithms. This means that the proposed g, arithmetic circuits automatically with limited knowledge
EGG system can help to simplify and speed up the process of de- . . .
signing arithmetic circuits and can produce better solutions to the Of Computer arithmetic algorithms, we propose a new approach,
given problem. called evolutionary graph generation (EGG), to automatically

Index Terms—Arithmetic circuits, canonic signed-digit (CSD) deglgnlng circuit (;ee [8]-{11] f‘?r earlier Q'SCUSS'OHS On, th|§
representation, digital signal processing (DSP), electronic design tOPIC). The novel idea of EGG is to consider general circuit
automation (EDA), evolutionary computation, evolutionary graph  graphs as individuals and manipulate the circuit graphs directly

generation (EGG), multipliers. using new evolutionary graph operations without encoding them
into other indirect representations, such as bit strings used in
I. INTRODUCTION GA proposed by Holland and trees used in genetic program-

ming (GP) presented by Koz al.[5], [6], [12]. This makes it

D ESIGNING electronic circuits is generally a complicated)sgipje to efficiently generate the desired arithmetic structure.
and time-consuming task requiring knowledge of large The main contributions of this paper are:
collections of domain-specific rules. Most electronic systems of

. " . 1) graph-based chromosome representatibat is capable
any complexity were traditionally created by a designer who had of handling the structures of complex arithmetic circuits:
been trained in a particular way to understand the operations of . I : : ’
S . 2) a symbolic verification technique for checking the func-
individual electronic components and who could, therefore, use tionality and performance of arithmetic circuits quickly
these components to construct larger systems. Clearly, the de- by solving a set of mathematical equations, especially
signers will also work through a number of iterations of testing the methodology for evaluating the fitness c’)f fast con-’
and debugging the circuits before completing the design. How- stant-coefficient combinational multipliers and multiple-
ever, the final product will only be as good as the designer’'s operand bit-serial adders:
own knowledge Qnd experience a"O.W' In order to simplify and ) efficient generation-depe’ndent dynamic mechanism of
speed up the design process, evolutionary computation methods adjusting operator probabilities (the crossover rate and
have been studied and successfully applied to complex design the mutation rate):
optimization problem. Recent researches [1]-[7] have begun to . ' . . .

. . . R ) 4) comparisons of the solution quality of the EGG system in
show that it is possible to design electronic circuits using evolu-

. S . the design of fast constant-coefficient multipliers with the
tionary optimization techniques. The reference [1], for example, : : . Lo o

known conventional designs using canonic signed-digit
(CSD) number representation.
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Il. GENETIC REPRESENTATION

How to encode a potential solution of the problem into a suit-
able chromosome is a key issue for evolutionary computation.
Currently, there are numerous approaches used as the chromo-
some representation of hardware structures [1]-[7]. In [1], for
example, an approach to the evolutionary design of arithmetic

circuits is described. The reported design method, however, is 6 1L - - ¢
based on direct evolution with gate-level primitive components
such as logic gates and flip-flops. It seems to be quite diffi- b1 (or G/o

cult for us to apply this method to solve the practical design
problems of arithmetic circuits due to its limited capability of
modeling arithmetic algorithms. Furthermore, choosing an ap-
propriate representation of candidate solution to the problem at
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hand is the foundation for applying evolutionary computation 2+ (000~ —0 4
to solve real-world problems, which conditions all the subse- —

, 1 Gor- A o
guent steps of evolutionary computation. GP uses trees to repre- 1 LOor -
sentindividuals. Trees may be viewed as graphs without cycles. 0 4 O N
This is particularly useful for representing computer programs. XY Z s C
Al Globus et alin [13] proposed genetic graphs to map stan- A vt Adcr . Full Adder

dard GA techniques to molecular design and use cyclic graphs
to represent molecules. Circuit design is another field for which (b)
genetic graphs should, in principle, be well suited, but the curio. 1_. 3-2 counter node. (a) Symbol. (b) Actual circuit interpretation of the
rent experimental results show that genetic graphs can evolgge in @
only very simple digital logic circuits consisting of logic gates.
In practice, we use a kind of special circuit graphs to rep- TABLE |
resent circuit structure. A circuit grapgfi is defined byG = BIT OPERATIONS FOR THES-2 COUNTER NODE

(N(@), D(@)), whereN(G) is the set of nodes anB(G) is

the set of directed edges. There are two kinds of different nodes: Number of inputs | Bit operation
functional nodes and input—output nodes (I/0). Each node has 0 gb

its own name, the function type and I/O terminals. We assume 1 Wire

that each directed edge must connect one output terminal (of a

node) and one input terminal (of another node) and each ter- 2 HA (Half Adder)
minal can have one edge connection at most. A circuit graph is 3 FA (Full Adder)

said to becorrectif all the terminals have an edge connection.

In order to reduce the search space, the EGG system only gen-. _
erates the correct circuit graphs. Fig. 1(a) shows an example of a 3-2 counter node, which

We have implemented a special EGG system, called AritfEPresents the 3-input 2-output carry-free addition of binary
metic-EGG, for arithmetic circuits synthesis, which employdumbers. Note that the symbol [MSD:LSD] represents the

a higher level of abstraction for arithmetic algorithms. ThEANG€ of active digits, where MSD is the most significant active

Arithmetic-EGG interprets a circuit graph as a data-flow gragfi9it @nd LSD is the least significant active digit. Each node
representing an arithmetic computation process based onds @ rule for generating the corresponding bit-level circuit
specific number representation system. A directed edge|merpretat|on.TabIeIshowsthe rule for the 3-2 counter node as
the data-flow graph represents the dependence of Operamgxample. Using this interpretation rule, the node of Fig. 1(a)
Two attributes are simultaneously assigned to each ed an be transformed into a set of circuit elements as illustrated in

1) the type of number system for operand encoding and 259- 1(b). Fig. 2(a) gives an example of a data-flow graph. By

the activated operand digits. We suppose the use of a I%)plying 4-bit unsigned binary data to the input node, the graph

sitional number system for operand representation Whi&translated into the arithmetic circuit, which is illustrated in

is identified by the triplet(D, A, ), where D is the digit '9- 2(0).
set, A = (Ak—1, ..., A, ..., Ag) is the sign vector,and
Q = (wk_1, ..., wi, ..., wo) is the absolute weight vector, Ill. M ETHODOLOGY FORFITNESS EVALUATION

respectively. A node in arithmetic-EGG'’s data-flow graph Each circuit graph generated by the EGG is evaluated by a
represents a specific arithmetic operation. Thus, the node itsglinbination of two different fitness functiorfsmctionalityand

has no circuit details at first. It can be transformed into a set pérformanceThe execution time of the EGG system is mainly
bit-level circuit elements only when the attributes of all inputiominated by the process of evaluating the functionality and
operands are determined. Hence, the actual interpretation gfeaformance of the evolved circuit graphs in each generation.
node depends on the overall structure of the data-flow graphAs the circuit structures are becoming increasingly complex, it
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Fig. 2. Circuit graph in the Arithmetic-EGG. (a) An example. (b) Actual circuit interpretation of the graph in (a).
TABLE I
FUNCTIONAL NODES
Name Symbol Function Output Sign
Description Description
3-input 2-output carry-free addition
Signed-Weight 3-2 3-input 2-output carry-free addition with 2-way branches Variable
3-2 counter 3-input 2-output carry-free addition with 3-way branches
Final stage adders FSA Carry-propagate addition with a bias canceling stages Invariable
1-bit shifter 1-S 1-bit arithmetic shift Invariable
2-bit shifter 2-S 2-bit arithmetic shift Invariable
4-bit shifter 4-S 4-bit arithmetic shift Invariable
Operand input IN Input signal Variable
Operand output OuT Qutput signal :

is not efficient to translate every circuit graph into Verilog hardsequential arithmetic circuits and we need to set up different
ware description language (HDL) and then simulate it. Thufithess evaluation functions depending on target circuit specifi-
we propose a symbolic verification technique for checking thmtions (combinational or sequential) accordingly. In this paper,
functionality and performance of arithmetic circuits quickly byve choose the optimal design of fast constant-coefficient com-
solving a set of mathematical equations. The computation tiragational multipliers and multioperand bit-serial adders as typ-
of this verification process i©(m?), wherem is the number of ical design problems to observe the feasibility and effectiveness
nodes. Some experimental results described in our previougfyarithmetic circuit design based on the proposed EGG.
published paper [9], have already demonstrated that this ap-
proach remarkably reduces the time cost of functional verificd: Functional Measure
tion and performance evaluation of the evolved circuits, ratherl) Functional Measure of Constant-Coefficient Combina-
than transforming them into Verilog HDL codes. tional Multipliers: Consider a constant-coefficient combina-
It is also worth noting that the proposed EGG system cadional multiplier that is comprised of the primitive components,
be easily applied to different design specifications by slightlyepicted in Table Il. Given a specific constant-coefficient
changing the fitness functions. It is well known that there existultiplier, the mathematical representation of its function can
some inherent differences in the design of combinational abd derived by performing symbolic model checking on the
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given structure. For example, the function of the data-flow TABLE Il
graph of Fig. 2 can be derived via solving the set of equations FUNCTIONAL NODES
as follows: Name Symbol Delay
Mathematical representation
Ci+ 5 =4X +2X+ X Q) .

C3+ 53 =C; + Cy + 25, 3) whadde *
Y =Cs3+ 53 (4)
where X is the input vector an®” is the output vector. Using Half adder (4

Gauss elimination, we can easily obtain the following:

Y =9X + 5. %)

1-bit register

We can further simplify the derived equation by considering the

specific /O relationship of every counter node. For example, itis

easily proved tha€>; = 2X andS; = S; and, hence, we have
whereé(z) is defined as

Y =9X +51. 6) e
5(x) _{1, 0

As aresult, the evolving circuit graph can be generally repre- 0, z#0.
senteda¥ = RX + f(X),whereRtis aninteger constantandin the above calculation, we assume the values of the unde-
f(X)isanonlinear function ok, which is represented by inter-fined digit positions to be zero for both coefficient strings.
mediate variables. To evaluate the function of the desired muliising this correlation function, the functionality measttés
plier, the estimated coefficiedit is compared with the target co-defined as
efficient R, where the ternf (X)) has some adverse effect on the

(10)

functionality measure. Whefi( X) = 0, the circuit graph can P = max |:100MR,R(8) - 018} (11)
be regarded as an effective constant- coefficient multiplier. . T
We describe the functionality measuren detail as follows. whered = | || R|| — || R|| | andCy = 2 in this experiment.
Let R be the target coefficient and represented with the fol- 2) Functional Measure of Multioperand Bit-Serial
lowing form: Adders: Consider a multioperand bit-serial adder con-
sisting of the primitive components described in Table Il
nheg-1r Fig. 3 is an example of a 2-input bit-serial arithmetic circuit.
R=17g20 +7r 2 4+ 722+ = Z ;2 (7)  We can describe the circuit structure as a set of simultaneous
J=0 equations as follows:
where||R|| denotes the length of the representation of the coef- W, =X, (12)
ficient R andr; € {—1, 0, 1}. As described above, the system W, = X, (13)
examines the functionality of a circuit graph by symbolic veri-
fication and obtains the estimated coefficiéhtwhich may be Ws =2W1 (14)
written as 2W5 + We =Wo + Wy + W, (15)
IRl-1 2W, + Wr =Xo + Wy (16)
R=#2 42" +#2° - = > #2. (8 Wo =2Ws 17)
7=0 2Y + Wg = W5 + W(; + W7 (18)

The similarity betweerR and R is evaluated by digit-coin- Where the variables appeared in the above equations are in-
cidences for all the digit positions of the given two strings. TH€Jer variables represented by the corresponding bit-serial sig-

correlationM;, (s) of the two coefficient strings at the shift nals shown in Fig. 3. Likewise, the I/O relationship of the circuit
amounts (0 < < | ||R|| _ ||R|||) is defined by can be derived via solving these equations. Using Gauss elimi-

nation, we have

1 I|R||—1 ) 2Y =3X; + Xo — Wy — W5 4+ Wy, (29)
T Fi— T i > . . . .
i Z_% 075 = 7js), f HRH = 1] As shown in this example, the function of arinput 1-output
= bit-serial arithmetic circuit consisting of the nodes shown in

MR, r(s) =
IR|I—1 Table Il can be generally represented as

ﬁ > 6 —ry), ff HRH < IR °
a (9) KoY = Z KX, + f(X1,..., X,) (20)
=1
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Fig. 3. Example of a 2-input bit-serial sequential arithmetic circuit.

whereX;(i = 1, ..., n) represent the bit-serial inpufs, rep- this correlation function, the similarits’ between (22) and (23)

resents the bit-serial outpuk; (i = 0, ..., n) are the integer is defined as

coefficients, andf(X;, ..., X,,) is a nonlinear function of

input operands. The terrfi consists of intermediate variables y 1

W,(j = 1,2, ...) that cannot be eliminated through Gauss % — 11 Z L%?gd{moMfmm(s) - Cls}} (25)

elimination. =0
We assume that the target function is given by

n

whered = |||K;|| — ||K;||| andC, = 10 in our experiments.
The termCis represents the adverse effect due to the shift

KoY = Z KX (21) amounts. Using the similarity, we define the functionality
— measurel” as
— Y _
where K;(i = 0, ..., n) are the nonnegative integer coef- F=F -0 (26)
ficients. Note here that we must set the target coefficients as . . -
. Whereg is the number of delay-free loops in the evolved circuit
Ko = K1 = --- = K, = 1 when we synthesize anoperand

. . . . . andC, = 5 in our experiments.
bit-serial adder. The functionality measuFeis calculated by 2= P

evaluating the similarity between the coefficierdts and the

target coefficients; for i = 0, 1, ..., n. To do this, we first B- Performance Measure
expand the coefficients into binary strings as On the other hand, the performance meagufer combina-
tional multiplier and multiple-operand bit-serial adders are both
K, 2151,020 + ,%i7121 + ,%i7222 defined as
ST S Il Al —1
+ + ki, || K ||—12 (22) P = i (27)
Ki =k; 02" 4+ ki 12" + k; 22 DA
o By a2 (23) where the delayD is the number of stages of the counters and

the areaA is the total number of intermodule interconnections
hen translating a circuit graph into the actual bit-level circuit.
he delay timeD is measured by using a 2-inpxitR gate as
an element of the unit delay.

During the process of evolution, at first, each individual in
population is evolved toward obtaining 100% functionality.
Mg, k.(s) Only after the individual has got the 100% functionality,

&il—1 the performance evaluation of the individual begins to be
AL Z S (ku _ ki,l—s) . if HK’ > ||K: || considered. Otherwise, the value of performance meaBure

K| =0 is always set to zero. In our experiments, when the function

of an individual first reaches the desirable specification, the

The similarity of these coefficients is evaluated by computin
their correlation. The correlatiohl ;. . (s) of the two coeffi-
cient strings with the shift amountis defined by

1 =t TS fitness value will be set to 103. Hereafter, as long as the product
1] > 8 (kz s — ki 1) , HKZ <IKill (4« D) decreases, the fitness value of the individual will cor-
=0 (24) respondingly increase by degrees. Once the individual has got

100% functionality, the size of the product « D) becomes the
most crucial factor that assesses the solution quality. The best
whereé(x) is defined by (10). individual in population evolves toward better performance.
In the above calculation, we suppose the values of the undieterms of the performance measufedescribed by (27), the
fined digit positions to be zero for both coefficient strings. Usingmaller the produdt4 « D) of the area and delay is, the better
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as illustrated in Fig. 4(a). In this process, the system randomly
selects a subgraph from the mother circuit graph and selects a
compatible subgraph from the father circuit graph, where “com-
patible” means that the cut sets for these subgraphs contain the
same number of edges for both negative and positive directions.

Mutation operation, on the other hand, performs random
modifications on an individual. Our mutation operator works
briefly as follows: it selects a subgraph randomly and replaces
it with a randomly generated subgraph that is compatible with
the original subgraph. Fig. 4(b) illustrates an example of the
mutation operation.

In the following, we provide more details on these variation
operations. In the EGG, the data structure for each circuit graph
holds the data of a specific number of subgraphs (here it equals
100) randomly selected from the circuit graph. This subgraph
data includes the information of the cut set for every subgraph.
In the crossover operation, the system first selects a subgraph

(b) randomly from the mother circuit graph and then selects a com-

Fig. 4. Examples of genetic operations. (a) Crossover operation. (b) Mutatig?m?le subgraph from the father CI_rCUI_t graph by scanning fa-
operation. ther’s cut set data. Because each circuit graph can be allowed to

hold 100 subgraphs, generally, it is unlikely that there will be no
the performance of the individual is. We cannot guarantee tthproprigte subgraph from th? father circuit graph. When there
are multiple choices of father’'s subgraphs, the system takes a

for each run, the evolutionary algorithm will definitely be suc-

cessful to find the ideal solution to the problem. If the best indﬁr@ndom selection. Inthe case that there is no proper subgraph in

vidual in population does not obtain 100% functionality withi he father circuit graph, then we randomly reselect a subgraph

the gross number of generations, basically this experiment the-mother circuit_graph and restart this operat.ion. Ifa sub-
be thought of a failing trial. In this case, because the diﬁereﬂfaph with the appropriate cut set does not appear in the mother,

setting of the seed values can lead to generating the differme_ed’ this crossover operation can be regarded as afgilure op-
initial population, we can resume the trial to pursue better solgration. The mother needs to be reselected. In the mutation oper-

tions after reinitializing the population by means of the randof#10", On the other hand, the system selects a subgraph randomly
tuning of the seed values. from a circuit graph and checks its cut set. Then, to satisfy the
cut set compatibility, a compatible subgraph is generated by set-
ting the number of nodes and their attributes at random.

Note that subgraphs to be selected for variation operations

In the EGG, there are two genetic operations crossover agg not necessarily connected subgraphs. The EGG system pre-
mutation. Both operations transform the structure of a circWkryes only correctness property during the process of evolu-
graph preserving its correctness property, that is, if the parefigh and allows disconnected/isolated subgraph structures. Even
are correct graphs, the transformed graphs also have coriggh structurezare allowed in basic variation operations. When
structures. Individuals are generated in the initial population gg)|ated subgraphs and loops are not necessary, these structures
follows. First, we select functional nodes randomly from thgye eliminated at the evaluation stage in the EGG system flow,
table of primitive functional nodes, then count the number @fhich depends on applications in general. In other words, the
input terminals and the number of output terminals in all node§cuit graph with such subgraphs and loops generally has got a
selected, next add specific functional nodes so as to balance|Hyger fitness at the evaluation stage, so it has little chance to be
number of input and output terminals, and finally connect thg|ected and included in the next generation population. Other

terminals randomly to generate a correct circuit graph. Once thgjundant structures are deleted through evolution process.
initial population is generated, the subgraphs inside each indi-

vidual are also randomly generated. Each circuit graph can be
allowed to hold 100 subgraphs in our experiments. Generally,
the number of the subgraphs is enough for genetic operators td he selection mechanism has an important responsibility for
perform genetic operations. When an individual is replicate@ontrolling the diversity of the population. It may maintain or
the inherent subgraphs are also replicated. eliminate diversity, depending on its current selection pressure,
Crossover is the main genetic operator. It recombines twich represents the degree to which the selection mechanism

parent graphs Into two new graphs. When_a pair of parent graphz%)uring the evolution process, crossover operator will perhaps generate the
Gp1 andG),» are selected from the population, the crossover ogew loops in the subgraphis. In the case of the design of multipliers, after

eration determines a pair of subgraghfs, and’, to be ex- crossover operation if there appears this case, the corresponding fitness value
P p2 ; : i
of the graph will be evaluated and set to zero. The graph with so low fitness

. of
changgd between the parent graphs a_nd generates OffSP””%FPMe extremely possible abandoned during the later evolution process. In the
replacing the subgraph of one parent with that of the other pareate of the design of sequential circuit, this case can be allowed to happen.

IV. GENETIC OPERATIONS

V. SELECTION MECHANISM
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favors the better individuals. At one extreme, the search wi  '0

terminate prematurely, while at the other extreme, progress w 1

be slower than necessary. Typically, low selection pressure ‘

- . . . 0.8 Pctk)
indicated at the start of evolutionary search in favor of a wid -

exploration of the search space, while high selection pressure

recommended at the end in order to exploit the most promisir £ 46

regions in the search space. During the past few years, many 2

lection methods have been proposed, examined, and compa &

[5], [14]. © 04
Like the other evolutionary algorithms, the EGG system err

ploys two different selections for selecting parents and survivo

A /™

0.2

during the process of evolution. First, some of the individual

are selected as parents bsaak-based selection methaghich /

utilizes the indexes of individuals when ordered according t 0.0 : : : :
fitness values to calculate the corresponding selection probak 0 50 100 150 200
ities. The assignment function is linear. k

Second, in order to reconstruct the next new population aft€f 5 variational curves g, andp,...
performing genetic operations, some of individuals or offspring
are selected bynixed sampling selectioWe know, from the

characteristic of our genetic operation, that a high-quality parent Si',em th(l_pc't)}j\’ '”g""suat's fror;‘ thP (f) randomly and
does not necessarily produce a high-quality descendant, but wcezmm;ieon emTW" o <(k) to produce the temporary
still want to use an indeterminate reduction strategy that guar®*" emp(k);

. . L Generate offsprin C..(k) from Temp(k) by mutation
antees the diversity of individuals. In most cases, the number of /"""~ pring () erp(k) by
the offspring generated by genetic operations is not enough to Evaluat‘e Con(h):
form the next-generation population. Hence, we randomly repli- B

. . Select (1 —p,,)N individuals from Temp(k) randomly

cate a number of individuals from the parent population to keep . .
he si f |ati h d. On th her hand. i d and combine them with C,.(k) to produce the next
the size of popu at_lon u_nc .a.nge . n.t e ot.er. gn , In Qr e{;eneration population Pl 4 1);
to let the current fittest individual survive while it is superior =, _ 1

to other individuals at this moment, we had better provide ag, 4

privilege for it so that it must be added to the next generatign, 4

population. This is necessary since it is possible that the best

chromosome may disappear due to genetic operation. Another

advantage is that the fittest individual can be regarded as thdrom above described algorithms, we can see the crossover
final solution found in the entire process of evolution when teRnd mutation operations are performed separately. The new
mination condition is satisfied. Itis easy to see that this strateg§Pulation comes from the parents and offspring generated
simultaneously contains both random and a little deterministy crossover and mutation operations. Thus, the probability
features, and tries to reach the balance between exploiting what®f random replication from parent js. = 1 — p. and
already works best and exploring possibilities that might evefiz = 1 — Pm. réspectively. Because operator probabilities
tually evolve into something even better. However, it may have’a and p,,, (described in Section VI) both are dynamic, the

dangerous effect. The continuous presence of good individug[gbab”itypr of random replication from parent population is

will be likely to produce an early convergence toward such iSO dynamic.
dividuals. Fortunately, bigger size of population probably con-
tributes to the disappearance of this problem. VI. A DYNAMIC MECHANISM OF OPERATORPROBABILITIES
For better understanding the EGG, the detailed description ofFinding optimal static parameters for a particular problem
algorithm is given as follows. for an evolutionary algorithm is a poorly structured ill-defined
complex problem. It can be quite difficult and the optimal

values may depend on many other factors (such as the applied

(Crossover rate: p., Mutation rate: P, popula- recombination operator, the selection mechanism, etc.). Some
tion Size: N, generation: k) researchers [15]-[18], however, generally think that the use
Begin of static parameters itself can lead to inferior algorithm per-
E— 0; formance. The straightforward way to treat this problem is by
Initialize population P(k); using parameters that may change over time, i.e., by replacing
Evaluate  P(k); a parametep by a functionp(k), wherek is the generation
While (termination condition is not satisfied) do counter. Our solution is a new effective generation-dependent
Generate offspring C.(k) from P(k) by crossover dynamic mechanism of operator probabilities. The feasibility
operation; and effectiveness of this model are demonstrated later by our
Evaluate C.(k); experiments.
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Fig. 6. Circuit graph generated by the arithmetic-EGG with the parameters of Table VI.

@F (Dol
@ (DT pe()n
D O,

Fig. 8. CSD multiplier using Wallace-tree architecture consisting of the least number of stages of SW 3-2 counters.

A. Model of Crossover Probability, or

The expression of crossover probabilityis expressed as u(k) = sin km (nonlinear)
2 MaxGen

pe(k) = (a1 + (1= B))*® —(1-pB1)  (28) From (28), we obtain
p:(0) = B1, p.(MaxGen) = o

where .
a minimum of p.. where the range af; andj; is [0, 1] anda; < ;.
p maximum ofp; B. Model of Mutation Probability,,
k is the generationi{ = 0,1, 2, ..., MaxGen,

MaxGen is the maximum generation): The expression of mutation probabilipy,, is given as fol-

¢1(k)  function of generatiork, which may be linear or 'OWS:
nonlinear. Prl(k) = (14 a2) = (14 az) = f2)”™)  (29)
For example
where
az  minimum ofp,,;
g1(k) = k/MaxGen (linear) B2 maximum ofp,,;
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In general, at the beginning of evolution, we expect mol 4 Bias Canceling Stage

individuals to be recombined by crossover operator and fewer
individuals to be mgtated. Aﬁer_ the population has eVOIVedP@g. 9. Actual multiplier structure corresponding to the graph in Fig. 6.
number of generations, the children chromosomes produced

thereafter will possibly be very similar to each other and to o )
their parents, thereby rendering crossover operators largBty]l: where the CSD number representation is defined as a

ineffective. To maintain the population diversity, we expediPecific binary signed-digit (SD) number representation that
to increase the number of individuals that are performed K@Ntains the least number of nonzero digits. The CSD encoding
mutation operator and to decrease the number of individu§RmPined with the fast partial product accumulation technique
that are performed by crossover operator. Fig. 5 illustrates USing parallel counter trees is widely used in practical DSP

andp,,,. These formulas just give curves with roughly a desiregPPlications, such as high-frequency finite-impulse response
shape and any other similar formula (such as parabolas) wolllggr architectures [20]-[22]. As for compact counter-tree

be just as good. It is easy for us to draw such a conclusion frétfSign for partial product accumulation, the authors’ group

Fig. 5 thatp, slowly decreases from the maximufh to the Nas recently propqsed the S|gned-we|ght (SW) arlthmeth [23].
minimum a;, where the speed of descent is considerably fakp€ use of SW arithmetic makes possible the construction of
at first, then gradually stabilize; on the other hapgl, slowly compact counter trees without using irregular arithmetic opera-
increases from the minimum, to the maximumg3,, where tions, such as sign extension and twos complementation. This

the speed of ascent is considerably fast at first, then gradudlfpPerty was confirmed in the design and fabrication of field-
stabilizes. programmable digital filter architecture [23]. As a result, the

combination of the CSD encoding technique with SW counter
trees seems to currently provide the best possible approach
to the practical hardware implementation of fast constant-
A. Constant-Coefficient Multipliers coefficient multipliers. In [1], the authors successfully evolved

High-speed digital multipliers are ubiquitous fundamenta-bit multipliers and 3-bit multipliers, but they did not show
circuit components in DSP and most of the DSP comptiore complex multipliers. Thus, in order to evaluate the quality
tations involve the use of multiply-accumulate operation§f solution, we decided to compare the 16-bit multipliers
Multiplication, however, is inherently a slow operation as generated by the Arithmetic-EGG system with the multipliers
large number of partial products are added to produce tRwnually designed by employing the knowledge of the above
product. Especially, in applications such as DSP, this delt§chniques (CSD plus SW).
is unacceptable. Therefore, the design of high-performanceig. 6 illustrates the solution generated by EGG employing
multipliers is imperative and becoming a major concerned issthee functional nodes listed in Table I, where the target coef-
for modern circuit designers. The problem considered herefigient R is 10075,4. Fig. 7 shows the multiplier using Wal-
to generate efficient structures of combinational multipliedgice-tree architecture consisting of the least number of stages
consisting of parallel counters. The target function is thef ordinary unsigned binary 3-2 counters. Fig. 8, on the other
constant-coefficient multiplier given by = Rz, whereR is an hand, illustrates the CSD multiplier using Wallace-tree archi-
integer coefficientz is the integer input, ang is the integer tecture consisting the least number of stages of SW 3-2 coun-
output. In the conventional design of constant-coefficietérs. Compared with the designs illustrated in Figs. 7 and 8, the
multipliers, one of the most important techniques is to encodelution obtained from the EGG employs an SW 3-2 counter
the target coefficientk by the CSD number representatiorwith 2-way output branches at the first stage and this hardware

VII. EXPERIMENTAL RESULTS
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Fig. 11. Actual multiplier structure corresponding to the graph in Fig. 8.

resource is shared by the successive stage. This feature sigtifis result adequately indicates that the Arithmetic-EGG can
icantly reduces the complexity of the corresponding bit-levgenerate the efficient multiplier structures whose performance
circuit configurations as shown in Figs. 9-11, respectively. Aknd complexity are comparable with those designed by experi-
though there is no systematic way of synthesizing such sophésiced designers.

ticated tree multipliers as shown in Fig. 6, the Arithmetic-EGG In order to further demonstrate the capability of the EGG
can naturally find so good structures through evolution procesgstem and the feasibility of proposed dynamic control scheme
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TABLE IV
COMPARISON OF THEBEST SOLUTIONS OBTAINED FROM THE ARITHMETIC-ECG SYSTEM WITH THE KNOWN CONVENTIONAL DESIGNS

Known conventional
Size of Arithmetic-EGG system designs
Multiplier Case 1 Case 2 Case 3 Case 4
Cocfficient | Fitness | Product | Rateof | Fitness | Product | Rateof | Product | Product
Value (AxD) Success Value (Ax D) Success (A« D) (AxD)
971 105 3154 100% 106 31344 100% 43345 317x4
8967 104 3364 100% 105 33644 100% 39444 338x4
12345 104 34844 100% 104 34244 100% 4114 34744
19444 104 33744 50% 103 335%4 60% 55045 33744
23719 103 5267 10% 105 46845 30% 56445 4695
27937 105 39845 20% 106 39844 10% 45645 40444
32168 107 33144 100% 106 32644 100% 54745 33044
33591 106 40414 50% 106 39644 60% 50245 404+4
41123 103 42744 60% 105 41044 100% 42744 42544
45995 105 51245 20% 106 51845 30% 65346 5275
57091 105 3594 90% 106 3594 100% 5885 3614
59077 106 518x6 20% 107 4775 30% 58045 4695
61073 . 104 40544 40% 104 415x4 50% 57245 4134
TABLE V
MAIN CONTROL PARAMETER VALUES FOR THECASE 1
Population size 1000 Crossover rate 0.85
Gross number of generations 1000 Mutation rate 0.4
Maximum number of nodes 50
TABLE VI
MAIN CONTROL PARAMETER VALUES FOR THECASE 2
Population size 1000 Gross number of generations 1000
Maximum crossover rate ﬂl 0.95 Minimum crossover rate &; 0.75
Maximum mutation rate ﬂz 0.6 Minimum mutation rate (&, 0.02
Functions of generation &, &, Expression (30) Maximum number of nodes 50

for operator probabilities, a group of experimental results wittation of Table VI and on a Pentium 700-MHz PC with memory
different coefficients are listed in Table IV, where main contrdize of 1 GB, it took 40 000-50 000 (seconds), namely, about
parameters are described in Table V for Case 1 (with static op&2- or 13 hours, for the Arithmetic-EGG to reach the termina-
ator probabilities) and Table VI for Case 2 (with dynamic cortion condition for each run.

trol of operator probabilities), respectively. From Table 1V, ac-

cording to (27), it is easy to observe that, in most cases, the fifal Bit-Serial Data-Parallel Adders

solution quality and the rate of success obtained from the EGGThe bit-serial data-parallel arithmetic circuits are frequently
using the dynamic mechanism of operator probabilities (Casei®ed in the real-time DSP architectures. In order to demonstrate
outperform those obtained from the EGG without using the dihe effectiveness of the Arithmetic-EGG in the design of se-
namic mechanism (Case 1). This implies that the use of dynamjigential arithmetic circuits, we choose the synthesis of bit-serial
parameters itself can lead to better algorithm performance. Tdeta-parallel adders with multiple operand inputs as an instance.
most important conclusion, however, is that the results obtain€hle target function considered here is theperand bit-serial
from the EGG system are quantitatively superior to or as goadder given by the (21) witlkky, = K1 = --- = K,, = 1. In

as the known conventional designs using arithmetic algorithnkis experiment, we assume main control parameters as the pop-
The runtime cost of the EGG system is considerably dependetdtion size is 100, the maximum number of generation is 3000,
on the settings of control parameters, especially the populatifve maximum number of nodes is 30, the crossover rate is 0.7,
size and the maximum number of generation. With the configand the mutation rate is 0.1. Fig. 12 shows the best individuals
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()

Fig. 12. Bestindividuals obtained in the 3000th generation, where the number of operandsiatedajb)n = 3,(c)n =4, (d)n =5,(€)n =6, n =7,
and (g)n = 8.
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@

Fig. 12. (Continued.Best individuals obtained in the 3000th generation, where the number of operandsrare hand (i) = 10.

obtained in five runs for the number of operands ranging frolre easily proved that this structure consists of the minimum
two to ten. number of stages of adders. Thus, we have demonstrated the
For more detailed discussion, let us examine the evoluticapability of the EGG system to create the sequential arithmetic
process of an 8-operand bit-serial adder as an example. Giegouits through EGG with limited knowledge of computer
the initial random population, the evolution is mainly driverarithmetic algorithms.
toward better functionality. Each individual shows a tendency The proposed approach can be applied not only to the
to keep a specific level of produgtd = D) corresponding synthesis of multioperand adders but also to various sequential
to the target function. The first individual achieving 100%esign specifications including multiply-adders by slightly
functionality appears in the 122nd generation. This individuahanging the fitness function. For example, if we use the target
has the producfA + D) of 290. In the 3000th generation,function in (21) with the different parametess= 2, Ky = 1,
we eventually yield the best adder configuration shown iA; = 3, K> = 5, we can synthesize the multiply-adder given
Fig. 12(g), where the produ¢td « D) is reduced to 156. It can by Y = 3X + 5Y. Fig. 13 shows the best solution obtained in
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Branch

Branch

Fig. 13. Evolved multiply-addition structure under the target functioe= 3.X; + 5X5.

the 3000th generation. Although further investigations will be
required, it is practically possible to construct the EGG-based
arithmetic synthesis system that can deal with general circm
design problems.

VIIl. CONCLUSION

In this paper, we have proposed an efficient graph-based evop)
lutionary optimization technique called EGG and its applica-
tion to the design of combinational and sequential arithmetic
circuits. Novel chromosome representation and a functional ver{2]
ification technique based on symbolic model checking for arith-
metic circuits are presented in order to apply the EGG system to
the practical arithmetic design problems for constant-coefficient(3l
multipliers and bit-serial data-parallel adders. In fact, the pro-
posed EGG method can easily be applied to the different arith{4]
metic circuit design specifications by changing fithess func-
tions. In addition, the effectiveness and feasibility of the gener-
ation-dependent dynamic control of operator probabilities havel®]
also been shown by a set of experiments. [6]

The experimental designs of constant-coefficient multipliers
and bit-serial data-parallel adders substantially demonstrate
the potential capability of the EGG system to solve practical [7]
design problems of arithmetic circuits with limited knowledge
of computer arithmetic algorithms. In the sample design of (8]
some constant-coefficient multipliers, by comparing some
results with the optimal CSD multipliers based on Wallace-tree
architecture consisting of SW counters, we found that the
Arithmetic-EGG consistently performed better than those
known conventional designs. This implies that the propose
EGG can help to simplify and speed up the process of designingi]
arithmetic circuit and it is likely for us to obtain better solution
to the given problem. [12]

Further investigations are now being conducted to appl
the proposed EGG technique to a wide variety of arithmetii
design problems including those using unconventional number
systems, such as redundant and high-radix number systeri#4!
[24]-[28] and to implement a distributed EGG system by usings;
message-passing interface techniques on the basis of PC cluster
technology for further improvements of the final solution [1e]
quality.
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