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Abstract—In this paper, we present an efficient graph-based evo-
lutionary optimization technique called evolutionary graph gener-
ation (EGG) and the proposed approach is applied to the design
of combinational and sequential arithmetic circuits based on par-
allel counter-tree architecture. The fundamental idea of EGG is
to employ general circuit graphs as individuals and manipulate
the circuit graphs directly using new evolutionary graph opera-
tions without encoding the graphs into other indirect representa-
tions, such as bit strings used in genetic algorithm (GA) proposed
by Holland and trees used in genetic programming (GP) proposed
by Koza et al. In this paper, the EGG system is applied to the de-
sign of constant-coefficient multipliers and the design of bit-serial
data-parallel adders. The results demonstrate the potential capa-
bility of EGG to solve the practical design problems for arithmetic
circuits with limited knowledge of computer arithmetic algorithms.
For example, in the design of fast constant-coefficient multipliers
consisting of shifters and parallel counters, the results obtained
from the EGG are superior to or as good as the known conventional
designs using arithmetic algorithms. This means that the proposed
EGG system can help to simplify and speed up the process of de-
signing arithmetic circuits and can produce better solutions to the
given problem.

Index Terms—Arithmetic circuits, canonic signed-digit (CSD)
representation, digital signal processing (DSP), electronic design
automation (EDA), evolutionary computation, evolutionary graph
generation (EGG), multipliers.

I. INTRODUCTION

DESIGNING electronic circuits is generally a complicated
and time-consuming task requiring knowledge of large

collections of domain-specific rules. Most electronic systems of
any complexity were traditionally created by a designer who had
been trained in a particular way to understand the operations of
individual electronic components and who could, therefore, use
these components to construct larger systems. Clearly, the de-
signers will also work through a number of iterations of testing
and debugging the circuits before completing the design. How-
ever, the final product will only be as good as the designer’s
own knowledge and experience allow. In order to simplify and
speed up the design process, evolutionary computation methods
have been studied and successfully applied to complex design
optimization problem. Recent researches [1]–[7] have begun to
show that it is possible to design electronic circuits using evolu-
tionary optimization techniques. The reference [1], for example,
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presented a genetic algorithm (GA) that is capable of evolving
100% functional arithmetic circuits. This new field of research
has come to be known asevolvable hardware[2]–[4]. Its promi-
nent advantage is the fact that the evolutionary design will in-
evitably allow the automatic exploration of a much richer set
of possibilities in the design space that are beyond the scope of
conventional methods.

Currently, arithmetic circuits are becoming more important
in today’s computing and digital signal processing (DSP) sys-
tems. State-of-the-art logic synthesis tools provide only limited
capability to create the structural details of arithmetic circuits.
Likewise, recent high-level synthesis techniques tend to employ
module libraries containing basic arithmetic functional units,
which are usually designed in advance as essential resources. In
order to address this problem and develop a method for synthe-
sizing arithmetic circuits automatically with limited knowledge
of computer arithmetic algorithms, we propose a new approach,
called evolutionary graph generation (EGG), to automatically
designing circuit (see [8]–[11] for earlier discussions on this
topic). The novel idea of EGG is to consider general circuit
graphs as individuals and manipulate the circuit graphs directly
using new evolutionary graph operations without encoding them
into other indirect representations, such as bit strings used in
GA proposed by Holland and trees used in genetic program-
ming (GP) presented by Kozaet al. [5], [6], [12]. This makes it
possible to efficiently generate the desired arithmetic structure.

The main contributions of this paper are:

1) graph-based chromosome representation1 that is capable
of handling the structures of complex arithmetic circuits;

2) a symbolic verification technique for checking the func-
tionality and performance of arithmetic circuits quickly
by solving a set of mathematical equations, especially,
the methodology for evaluating the fitness of fast con-
stant-coefficient combinational multipliers and multiple-
operand bit-serial adders;

3) efficient generation-dependent dynamic mechanism of
adjusting operator probabilities (the crossover rate and
the mutation rate);

4) comparisons of the solution quality of the EGG system in
the design of fast constant-coefficient multipliers with the
known conventional designs using canonic signed-digit
(CSD) number representation.

1We propose a new graph-based individual representation, called circuit
graph, for handling the circuit structures. As for related references, such as [5],
[13], we can find some proposals of graph-based evolutionary algorithms in
other application domains.

1089–778X/02$17.00 © 2002 IEEE
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II. GENETIC REPRESENTATION

How to encode a potential solution of the problem into a suit-
able chromosome is a key issue for evolutionary computation.
Currently, there are numerous approaches used as the chromo-
some representation of hardware structures [1]–[7]. In [1], for
example, an approach to the evolutionary design of arithmetic
circuits is described. The reported design method, however, is
based on direct evolution with gate-level primitive components
such as logic gates and flip-flops. It seems to be quite diffi-
cult for us to apply this method to solve the practical design
problems of arithmetic circuits due to its limited capability of
modeling arithmetic algorithms. Furthermore, choosing an ap-
propriate representation of candidate solution to the problem at
hand is the foundation for applying evolutionary computation
to solve real-world problems, which conditions all the subse-
quent steps of evolutionary computation. GP uses trees to repre-
sent individuals. Trees may be viewed as graphs without cycles.
This is particularly useful for representing computer programs.
Al Globus et al.in [13] proposed genetic graphs to map stan-
dard GA techniques to molecular design and use cyclic graphs
to represent molecules. Circuit design is another field for which
genetic graphs should, in principle, be well suited, but the cur-
rent experimental results show that genetic graphs can evolve
only very simple digital logic circuits consisting of logic gates.

In practice, we use a kind of special circuit graphs to rep-
resent circuit structure. A circuit graph is defined by

, where is the set of nodes and is
the set of directed edges. There are two kinds of different nodes:
functional nodes and input–output nodes (I/O). Each node has
its own name, the function type and I/O terminals. We assume
that each directed edge must connect one output terminal (of a
node) and one input terminal (of another node) and each ter-
minal can have one edge connection at most. A circuit graph is
said to becorrect if all the terminals have an edge connection.
In order to reduce the search space, the EGG system only gen-
erates the correct circuit graphs.

We have implemented a special EGG system, called Arith-
metic-EGG, for arithmetic circuits synthesis, which employs
a higher level of abstraction for arithmetic algorithms. The
Arithmetic-EGG interprets a circuit graph as a data-flow graph
representing an arithmetic computation process based on a
specific number representation system. A directed edge in
the data-flow graph represents the dependence of operands.
Two attributes are simultaneously assigned to each edge:
1) the type of number system for operand encoding and 2)
the activated operand digits. We suppose the use of a po-
sitional number system for operand representation, which
is identified by the triplet , where is the digit
set, is the sign vector,and

is the absolute weight vector,
respectively. A node in arithmetic-EGG’s data-flow graph
represents a specific arithmetic operation. Thus, the node itself
has no circuit details at first. It can be transformed into a set of
bit-level circuit elements only when the attributes of all input
operands are determined. Hence, the actual interpretation of a
node depends on the overall structure of the data-flow graph.

(a)

(b)

Fig. 1. 3-2 counter node. (a) Symbol. (b) Actual circuit interpretation of the
node in (a).

TABLE I
BIT OPERATIONS FOR THE3-2 COUNTER NODE

Fig. 1(a) shows an example of a 3-2 counter node, which
represents the 3-input 2-output carry-free addition of binary
numbers. Note that the symbol [MSD:LSD] represents the
range of active digits, where MSD is the most significant active
digit and LSD is the least significant active digit. Each node
has a rule for generating the corresponding bit-level circuit
interpretation. Table I shows the rule for the 3-2 counter node as
an example. Using this interpretation rule, the node of Fig. 1(a)
can be transformed into a set of circuit elements as illustrated in
Fig. 1(b). Fig. 2(a) gives an example of a data-flow graph. By
applying 4-bit unsigned binary data to the input node, the graph
is translated into the arithmetic circuit, which is illustrated in
Fig. 2(b).

III. M ETHODOLOGY FORFITNESSEVALUATION

Each circuit graph generated by the EGG is evaluated by a
combination of two different fitness functions:functionalityand
performance. The execution time of the EGG system is mainly
dominated by the process of evaluating the functionality and
performance of the evolved circuit graphs in each generation.
As the circuit structures are becoming increasingly complex, it

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 08,2010 at 01:33:30 EST from IEEE Xplore.  Restrictions apply. 



88 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 1, FEBRUARY 2002

(a)

(b)

Fig. 2. Circuit graph in the Arithmetic-EGG. (a) An example. (b) Actual circuit interpretation of the graph in (a).

TABLE II
FUNCTIONAL NODES

is not efficient to translate every circuit graph into Verilog hard-
ware description language (HDL) and then simulate it. Thus,
we propose a symbolic verification technique for checking the
functionality and performance of arithmetic circuits quickly by
solving a set of mathematical equations. The computation time
of this verification process is , where is the number of
nodes. Some experimental results described in our previously
published paper [9], have already demonstrated that this ap-
proach remarkably reduces the time cost of functional verifica-
tion and performance evaluation of the evolved circuits, rather
than transforming them into Verilog HDL codes.

It is also worth noting that the proposed EGG system can
be easily applied to different design specifications by slightly
changing the fitness functions. It is well known that there exist
some inherent differences in the design of combinational and

sequential arithmetic circuits and we need to set up different
fitness evaluation functions depending on target circuit specifi-
cations (combinational or sequential) accordingly. In this paper,
we choose the optimal design of fast constant-coefficient com-
binational multipliers and multioperand bit-serial adders as typ-
ical design problems to observe the feasibility and effectiveness
of arithmetic circuit design based on the proposed EGG.

A. Functional Measure

1) Functional Measure of Constant-Coefficient Combina-
tional Multipliers: Consider a constant-coefficient combina-
tional multiplier that is comprised of the primitive components,
depicted in Table II. Given a specific constant-coefficient
multiplier, the mathematical representation of its function can
be derived by performing symbolic model checking on the
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given structure. For example, the function of the data-flow
graph of Fig. 2 can be derived via solving the set of equations
as follows:

(1)

(2)

(3)

(4)

where is the input vector and is the output vector. Using
Gauss elimination, we can easily obtain the following:

(5)

We can further simplify the derived equation by considering the
specific I/O relationship of every counter node. For example, it is
easily proved that and and, hence, we have

(6)

As a result, the evolving circuit graph can be generally repre-
sented as , where is an integer constant and

is a nonlinear function of , which is represented by inter-
mediate variables. To evaluate the function of the desired multi-
plier, the estimated coefficient is compared with the target co-
efficient , where the term has some adverse effect on the
functionality measure. When , the circuit graph can
be regarded as an effective constant- coefficient multiplier.

We describe the functionality measurein detail as follows.
Let be the target coefficient and represented with the fol-
lowing form:

(7)

where denotes the length of the representation of the coef-
ficient and . As described above, the system
examines the functionality of a circuit graph by symbolic veri-
fication and obtains the estimated coefficient, which may be
written as

(8)

The similarity between and is evaluated by digit-coin-
cidences for all the digit positions of the given two strings. The
correlation of the two coefficient strings at the shift

amount is defined by

if

if

(9)

TABLE III
FUNCTIONAL NODES

where is defined as

.
(10)

In the above calculation, we assume the values of the unde-
fined digit positions to be zero for both coefficient strings.
Using this correlation function, the functionality measureis
defined as

(11)

where and in this experiment.
2) Functional Measure of Multioperand Bit-Serial

Adders: Consider a multioperand bit-serial adder con-
sisting of the primitive components described in Table III.
Fig. 3 is an example of a 2-input bit-serial arithmetic circuit.
We can describe the circuit structure as a set of simultaneous
equations as follows:

(12)

(13)

(14)

(15)

(16)

(17)

(18)

where the variables appeared in the above equations are in-
teger variables represented by the corresponding bit-serial sig-
nals shown in Fig. 3. Likewise, the I/O relationship of the circuit
can be derived via solving these equations. Using Gauss elimi-
nation, we have

(19)

As shown in this example, the function of an-input 1-output
bit-serial arithmetic circuit consisting of the nodes shown in
Table III can be generally represented as

(20)
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Fig. 3. Example of a 2-input bit-serial sequential arithmetic circuit.

where represent the bit-serial inputs, rep-
resents the bit-serial output, are the integer
coefficients, and is a nonlinear function of
input operands. The term consists of intermediate variables

that cannot be eliminated through Gauss
elimination.

We assume that the target function is given by

(21)

where are the nonnegative integer coef-
ficients. Note here that we must set the target coefficients as

when we synthesize an-operand
bit-serial adder. The functionality measureis calculated by
evaluating the similarity between the coefficients and the
target coefficients for . To do this, we first
expand the coefficients into binary strings as

(22)

(23)

The similarity of these coefficients is evaluated by computing
their correlation. The correlation of the two coeffi-
cient strings with the shift amountis defined by

if

if

(24)

where is defined by (10).
In the above calculation, we suppose the values of the unde-

fined digit positions to be zero for both coefficient strings. Using

this correlation function, the similarity between (22) and (23)
is defined as

(25)

where and in our experiments.
The term represents the adverse effect due to the shift
amount . Using the similarity, we define the functionality
measure as

(26)

where is the number of delay-free loops in the evolved circuit
and in our experiments.

B. Performance Measure

On the other hand, the performance measurefor combina-
tional multiplier and multiple-operand bit-serial adders are both
defined as

(27)

where the delay is the number of stages of the counters and
the area is the total number of intermodule interconnections
when translating a circuit graph into the actual bit-level circuit.
The delay time is measured by using a 2-inputXOR gate as
an element of the unit delay.

During the process of evolution, at first, each individual in
population is evolved toward obtaining 100% functionality.
Only after the individual has got the 100% functionality,
the performance evaluation of the individual begins to be
considered. Otherwise, the value of performance measure
is always set to zero. In our experiments, when the function
of an individual first reaches the desirable specification, the
fitness value will be set to 103. Hereafter, as long as the product

decreases, the fitness value of the individual will cor-
respondingly increase by degrees. Once the individual has got
100% functionality, the size of the product becomes the
most crucial factor that assesses the solution quality. The best
individual in population evolves toward better performance.
In terms of the performance measuredescribed by (27), the
smaller the product of the area and delay is, the better

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 08,2010 at 01:33:30 EST from IEEE Xplore.  Restrictions apply. 



CHEN et al.: GRAPH-BASED EVOLUTIONARY DESIGN OF ARITHMETIC CIRCUITS 91

(a)

(b)

Fig. 4. Examples of genetic operations. (a) Crossover operation. (b) Mutation
operation.

the performance of the individual is. We cannot guarantee that,
for each run, the evolutionary algorithm will definitely be suc-
cessful to find the ideal solution to the problem. If the best indi-
vidual in population does not obtain 100% functionality within
the gross number of generations, basically this experiment can
be thought of a failing trial. In this case, because the different
setting of the seed values can lead to generating the different
initial population, we can resume the trial to pursue better solu-
tions after reinitializing the population by means of the random
tuning of the seed values.

IV. GENETIC OPERATIONS

In the EGG, there are two genetic operations crossover and
mutation. Both operations transform the structure of a circuit
graph preserving its correctness property, that is, if the parents
are correct graphs, the transformed graphs also have correct
structures. Individuals are generated in the initial population as
follows. First, we select functional nodes randomly from the
table of primitive functional nodes, then count the number of
input terminals and the number of output terminals in all nodes
selected, next add specific functional nodes so as to balance the
number of input and output terminals, and finally connect the
terminals randomly to generate a correct circuit graph. Once the
initial population is generated, the subgraphs inside each indi-
vidual are also randomly generated. Each circuit graph can be
allowed to hold 100 subgraphs in our experiments. Generally,
the number of the subgraphs is enough for genetic operators to
perform genetic operations. When an individual is replicated,
the inherent subgraphs are also replicated.

Crossover is the main genetic operator. It recombines two
parent graphs into two new graphs. When a pair of parent graphs

and are selected from the population, the crossover op-
eration determines a pair of subgraphs and to be ex-
changed between the parent graphs and generates offspring by
replacing the subgraph of one parent with that of the other parent

as illustrated in Fig. 4(a). In this process, the system randomly
selects a subgraph from the mother circuit graph and selects a
compatible subgraph from the father circuit graph, where “com-
patible” means that the cut sets for these subgraphs contain the
same number of edges for both negative and positive directions.

Mutation operation, on the other hand, performs random
modifications on an individual. Our mutation operator works
briefly as follows: it selects a subgraph randomly and replaces
it with a randomly generated subgraph that is compatible with
the original subgraph. Fig. 4(b) illustrates an example of the
mutation operation.

In the following, we provide more details on these variation
operations. In the EGG, the data structure for each circuit graph
holds the data of a specific number of subgraphs (here it equals
100) randomly selected from the circuit graph. This subgraph
data includes the information of the cut set for every subgraph.
In the crossover operation, the system first selects a subgraph
randomly from the mother circuit graph and then selects a com-
patible subgraph from the father circuit graph by scanning fa-
ther’s cut set data. Because each circuit graph can be allowed to
hold 100 subgraphs, generally, it is unlikely that there will be no
appropriate subgraph from the father circuit graph. When there
are multiple choices of father’s subgraphs, the system takes a
random selection. In the case that there is no proper subgraph in
the father circuit graph, then we randomly reselect a subgraph
from the mother circuit graph and restart this operation. If a sub-
graph with the appropriate cut set does not appear in the mother,
indeed, this crossover operation can be regarded as a failure op-
eration. The mother needs to be reselected. In the mutation oper-
ation, on the other hand, the system selects a subgraph randomly
from a circuit graph and checks its cut set. Then, to satisfy the
cut set compatibility, a compatible subgraph is generated by set-
ting the number of nodes and their attributes at random.

Note that subgraphs to be selected for variation operations
are not necessarily connected subgraphs. The EGG system pre-
serves only correctness property during the process of evolu-
tion and allows disconnected/isolated subgraph structures. Even
loop structures2 are allowed in basic variation operations. When
isolated subgraphs and loops are not necessary, these structures
are eliminated at the evaluation stage in the EGG system flow,
which depends on applications in general. In other words, the
circuit graph with such subgraphs and loops generally has got a
lower fitness at the evaluation stage, so it has little chance to be
selected and included in the next generation population. Other
redundant structures are deleted through evolution process.

V. SELECTION MECHANISM

The selection mechanism has an important responsibility for
controlling the diversity of the population. It may maintain or
eliminate diversity, depending on its current selection pressure,
which represents the degree to which the selection mechanism

2During the evolution process, crossover operator will perhaps generate the
new loops in the subgraphis. In the case of the design of multipliers, after
crossover operation if there appears this case, the corresponding fitness value
of the graph will be evaluated and set to zero. The graph with so low fitness
will be extremely possible abandoned during the later evolution process. In the
case of the design of sequential circuit, this case can be allowed to happen.
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favors the better individuals. At one extreme, the search will
terminate prematurely, while at the other extreme, progress will
be slower than necessary. Typically, low selection pressure is
indicated at the start of evolutionary search in favor of a wide
exploration of the search space, while high selection pressure is
recommended at the end in order to exploit the most promising
regions in the search space. During the past few years, many se-
lection methods have been proposed, examined, and compared
[5], [14].

Like the other evolutionary algorithms, the EGG system em-
ploys two different selections for selecting parents and survivors
during the process of evolution. First, some of the individuals
are selected as parents by arank-based selection method,which
utilizes the indexes of individuals when ordered according to
fitness values to calculate the corresponding selection probabil-
ities. The assignment function is linear.

Second, in order to reconstruct the next new population after
performing genetic operations, some of individuals or offspring
are selected bymixed sampling selection. We know, from the
characteristic of our genetic operation, that a high-quality parent
does not necessarily produce a high-quality descendant, but we
still want to use an indeterminate reduction strategy that guar-
antees the diversity of individuals. In most cases, the number of
the offspring generated by genetic operations is not enough to
form the next-generation population. Hence, we randomly repli-
cate a number of individuals from the parent population to keep
the size of population unchanged. On the other hand, in order
to let the current fittest individual survive while it is superior
to other individuals at this moment, we had better provide a
privilege for it so that it must be added to the next generation
population. This is necessary since it is possible that the best
chromosome may disappear due to genetic operation. Another
advantage is that the fittest individual can be regarded as the
final solution found in the entire process of evolution when ter-
mination condition is satisfied. It is easy to see that this strategy
simultaneously contains both random and a little deterministic
features, and tries to reach the balance between exploiting what
already works best and exploring possibilities that might even-
tually evolve into something even better. However, it may have a
dangerous effect. The continuous presence of good individuals
will be likely to produce an early convergence toward such in-
dividuals. Fortunately, bigger size of population probably con-
tributes to the disappearance of this problem.

For better understanding the EGG, the detailed description of
algorithm is given as follows.

(Crossover rate: p , mutation rate: p , popula-

tion Size: N , generation: k.)

Begin

k  0;

Initialize population P (k);

Evaluate P (k);

While (termination condition is not satisfied) do

Generate offspring C (k) from P (k) by crossover

operation;

Evaluate C (k);

Fig. 5. Variational curves ofp andp .

Select (1�p )N individuals from P (k) randomly and

combine them with C (k) to produce the temporary

population Temp(k);

Generate offspring C (k) from Temp(k) by mutation

operation;

Evaluate C (k);

Select (1� p )N individuals from Temp(k) randomly

and combine them with C (k) to produce the next

generation population P (k + 1);

k  k + 1;

End

End

From above described algorithms, we can see the crossover
and mutation operations are performed separately. The new
population comes from the parents and offspring generated
by crossover and mutation operations. Thus, the probability

of random replication from parent is and
, respectively. Because operator probabilities

and (described in Section VI) both are dynamic, the
probability of random replication from parent population is
also dynamic.

VI. A D YNAMIC MECHANISM OFOPERATORPROBABILITIES

Finding optimal static parameters for a particular problem
for an evolutionary algorithm is a poorly structured ill-defined
complex problem. It can be quite difficult and the optimal
values may depend on many other factors (such as the applied
recombination operator, the selection mechanism, etc.). Some
researchers [15]–[18], however, generally think that the use
of static parameters itself can lead to inferior algorithm per-
formance. The straightforward way to treat this problem is by
using parameters that may change over time, i.e., by replacing
a parameter by a function , where is the generation
counter. Our solution is a new effective generation-dependent
dynamic mechanism of operator probabilities. The feasibility
and effectiveness of this model are demonstrated later by our
experiments.
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Fig. 6. Circuit graph generated by the arithmetic-EGG with the parameters of Table VI.

Fig. 7. Multiplier using Wallace-tree architecture consisting of the least number of stages of ordinary unsigned binary 3-2 counters.

Fig. 8. CSD multiplier using Wallace-tree architecture consisting of the least number of stages of SW 3-2 counters.

A. Model of Crossover Probability

The expression of crossover probabilityis expressed as

(28)

where
minimum of ;
maximum of ;
is the generation ( ,

is the maximum generation);
function of generation , which may be linear or
nonlinear.

For example

(linear)

or

(nonlinear)

From (28), we obtain

where the range of and is [0, 1] and .

B. Model of Mutation Probability

The expression of mutation probability is given as fol-
lows:

(29)

where
minimum of ;
maximum of ;
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generation;
function of generation, which may be linear or non-
linear as is .

We also assume

where . If , mutation probability
becomes a constant, namely

In (28) and (29), and are dependent on the actual
application. In our experiments, we use the functions

(30)

In general, at the beginning of evolution, we expect more
individuals to be recombined by crossover operator and fewer
individuals to be mutated. After the population has evolved a
number of generations, the children chromosomes produced
thereafter will possibly be very similar to each other and to
their parents, thereby rendering crossover operators largely
ineffective. To maintain the population diversity, we expect
to increase the number of individuals that are performed by
mutation operator and to decrease the number of individuals
that are performed by crossover operator. Fig. 5 illustrates
and . These formulas just give curves with roughly a desired
shape and any other similar formula (such as parabolas) would
be just as good. It is easy for us to draw such a conclusion from
Fig. 5 that slowly decreases from the maximum to the
minimum , where the speed of descent is considerably fast
at first, then gradually stabilize; on the other hand, slowly
increases from the minimum to the maximum , where
the speed of ascent is considerably fast at first, then gradually
stabilizes.

VII. EXPERIMENTAL RESULTS

A. Constant-Coefficient Multipliers

High-speed digital multipliers are ubiquitous fundamental
circuit components in DSP and most of the DSP compu-
tations involve the use of multiply-accumulate operations.
Multiplication, however, is inherently a slow operation as a
large number of partial products are added to produce the
product. Especially, in applications such as DSP, this delay
is unacceptable. Therefore, the design of high-performance
multipliers is imperative and becoming a major concerned issue
for modern circuit designers. The problem considered here is
to generate efficient structures of combinational multipliers
consisting of parallel counters. The target function is the
constant-coefficient multiplier given by , where is an
integer coefficient, is the integer input, and is the integer
output. In the conventional design of constant-coefficient
multipliers, one of the most important techniques is to encode
the target coefficient by the CSD number representation

Fig. 9. Actual multiplier structure corresponding to the graph in Fig. 6.

[19], where the CSD number representation is defined as a
specific binary signed-digit (SD) number representation that
contains the least number of nonzero digits. The CSD encoding
combined with the fast partial product accumulation technique
using parallel counter trees is widely used in practical DSP
applications, such as high-frequency finite-impulse response
filter architectures [20]–[22]. As for compact counter-tree
design for partial product accumulation, the authors’ group
has recently proposed the signed-weight (SW) arithmetic [23].
The use of SW arithmetic makes possible the construction of
compact counter trees without using irregular arithmetic opera-
tions, such as sign extension and twos complementation. This
property was confirmed in the design and fabrication of field-
programmable digital filter architecture [23]. As a result, the
combination of the CSD encoding technique with SW counter
trees seems to currently provide the best possible approach
to the practical hardware implementation of fast constant-
coefficient multipliers. In [1], the authors successfully evolved
2-bit multipliers and 3-bit multipliers, but they did not show
more complex multipliers. Thus, in order to evaluate the quality
of solution, we decided to compare the 16-bit multipliers
generated by the Arithmetic-EGG system with the multipliers
manually designed by employing the knowledge of the above
techniques (CSD plus SW).

Fig. 6 illustrates the solution generated by EGG employing
the functional nodes listed in Table II, where the target coef-
ficient is . Fig. 7 shows the multiplier using Wal-
lace-tree architecture consisting of the least number of stages
of ordinary unsigned binary 3-2 counters. Fig. 8, on the other
hand, illustrates the CSD multiplier using Wallace-tree archi-
tecture consisting the least number of stages of SW 3-2 coun-
ters. Compared with the designs illustrated in Figs. 7 and 8, the
solution obtained from the EGG employs an SW 3-2 counter
with 2-way output branches at the first stage and this hardware
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Fig. 10. Actual multiplier structure corresponding to the graph in Fig. 7.

Fig. 11. Actual multiplier structure corresponding to the graph in Fig. 8.

resource is shared by the successive stage. This feature signif-
icantly reduces the complexity of the corresponding bit-level
circuit configurations as shown in Figs. 9–11, respectively. Al-
though there is no systematic way of synthesizing such sophis-
ticated tree multipliers as shown in Fig. 6, the Arithmetic-EGG
can naturally find so good structures through evolution process.

This result adequately indicates that the Arithmetic-EGG can
generate the efficient multiplier structures whose performance
and complexity are comparable with those designed by experi-
enced designers.

In order to further demonstrate the capability of the EGG
system and the feasibility of proposed dynamic control scheme

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 08,2010 at 01:33:30 EST from IEEE Xplore.  Restrictions apply. 



96 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 1, FEBRUARY 2002

TABLE IV
COMPARISON OF THEBEST SOLUTIONS OBTAINED FROM THE ARITHMETIC-ECG SYSTEM WITH THE KNOWN CONVENTIONAL DESIGNS

TABLE V
MAIN CONTROL PARAMETER VALUES FOR THECASE 1

TABLE VI
MAIN CONTROL PARAMETER VALUES FOR THECASE 2

for operator probabilities, a group of experimental results with
different coefficients are listed in Table IV, where main control
parameters are described in Table V for Case 1 (with static oper-
ator probabilities) and Table VI for Case 2 (with dynamic con-
trol of operator probabilities), respectively. From Table IV, ac-
cording to (27), it is easy to observe that, in most cases, the final
solution quality and the rate of success obtained from the EGG
using the dynamic mechanism of operator probabilities (Case 2)
outperform those obtained from the EGG without using the dy-
namic mechanism (Case 1). This implies that the use of dynamic
parameters itself can lead to better algorithm performance. The
most important conclusion, however, is that the results obtained
from the EGG system are quantitatively superior to or as good
as the known conventional designs using arithmetic algorithms.
The runtime cost of the EGG system is considerably dependent
on the settings of control parameters, especially the population
size and the maximum number of generation. With the configu-

ration of Table VI and on a Pentium 700-MHz PC with memory
size of 1 GB, it took 40 000–50 000 (seconds), namely, about
12 or 13 hours, for the Arithmetic-EGG to reach the termina-
tion condition for each run.

B. Bit-Serial Data-Parallel Adders

The bit-serial data-parallel arithmetic circuits are frequently
used in the real-time DSP architectures. In order to demonstrate
the effectiveness of the Arithmetic-EGG in the design of se-
quential arithmetic circuits, we choose the synthesis of bit-serial
data-parallel adders with multiple operand inputs as an instance.
The target function considered here is the-operand bit-serial
adder given by the (21) with . In
this experiment, we assume main control parameters as the pop-
ulation size is 100, the maximum number of generation is 3000,
the maximum number of nodes is 30, the crossover rate is 0.7,
and the mutation rate is 0.1. Fig. 12 shows the best individuals
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 12. Best individuals obtained in the 3000th generation, where the number of operands are (a)n = 2, (b)n = 3, (c)n = 4, (d)n = 5, (e)n = 6, (f) n = 7,
and (g)n = 8.
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(h)

(i)

Fig. 12. (Continued.)Best individuals obtained in the 3000th generation, where the number of operands are (h)n = 9 and (i)n = 10.

obtained in five runs for the number of operands ranging from
two to ten.

For more detailed discussion, let us examine the evolution
process of an 8-operand bit-serial adder as an example. Given
the initial random population, the evolution is mainly driven
toward better functionality. Each individual shows a tendency
to keep a specific level of product corresponding
to the target function. The first individual achieving 100%
functionality appears in the 122nd generation. This individual
has the product of 290. In the 3000th generation,
we eventually yield the best adder configuration shown in
Fig. 12(g), where the product is reduced to 156. It can

be easily proved that this structure consists of the minimum
number of stages of adders. Thus, we have demonstrated the
capability of the EGG system to create the sequential arithmetic
circuits through EGG with limited knowledge of computer
arithmetic algorithms.

The proposed approach can be applied not only to the
synthesis of multioperand adders but also to various sequential
design specifications including multiply-adders by slightly
changing the fitness function. For example, if we use the target
function in (21) with the different parameters , ,

, , we can synthesize the multiply-adder given
by . Fig. 13 shows the best solution obtained in
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Fig. 13. Evolved multiply-addition structure under the target functionY = 3X + 5X .

the 3000th generation. Although further investigations will be
required, it is practically possible to construct the EGG-based
arithmetic synthesis system that can deal with general circuit
design problems.

VIII. C ONCLUSION

In this paper, we have proposed an efficient graph-based evo-
lutionary optimization technique called EGG and its applica-
tion to the design of combinational and sequential arithmetic
circuits. Novel chromosome representation and a functional ver-
ification technique based on symbolic model checking for arith-
metic circuits are presented in order to apply the EGG system to
the practical arithmetic design problems for constant-coefficient
multipliers and bit-serial data-parallel adders. In fact, the pro-
posed EGG method can easily be applied to the different arith-
metic circuit design specifications by changing fitness func-
tions. In addition, the effectiveness and feasibility of the gener-
ation-dependent dynamic control of operator probabilities have
also been shown by a set of experiments.

The experimental designs of constant-coefficient multipliers
and bit-serial data-parallel adders substantially demonstrate
the potential capability of the EGG system to solve practical
design problems of arithmetic circuits with limited knowledge
of computer arithmetic algorithms. In the sample design of
some constant-coefficient multipliers, by comparing some
results with the optimal CSD multipliers based on Wallace-tree
architecture consisting of SW counters, we found that the
Arithmetic-EGG consistently performed better than those
known conventional designs. This implies that the proposed
EGG can help to simplify and speed up the process of designing
arithmetic circuit and it is likely for us to obtain better solution
to the given problem.

Further investigations are now being conducted to apply
the proposed EGG technique to a wide variety of arithmetic
design problems including those using unconventional number
systems, such as redundant and high-radix number systems
[24]–[28] and to implement a distributed EGG system by using
message-passing interface techniques on the basis of PC cluster
technology for further improvements of the final solution
quality.
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