
Highly Parallel Collision Detection Processor
for Intelligent Robots

著者 亀山 充隆
journal or
publication title

IEEE Journal of Solid-State Circuits

volume 27
number 4
page range 500-506
year 1992
URL http://hdl.handle.net/10097/46836

doi: 10.1109/4.126537

500 IEEE JOURNAL OF SOLID-STATE CIRCUITS. VOL. 27. NO. 4. APRIL 1992

Highly Parallel Collision Detection Processor for
Intelligent Robots

Michitaka Kameyama, Senior Member, IEEE, Tadao Amada, and Tatsuo Higuchi, Fellow, IEEE

Abstract-In intelligent robots capable of autonomous work,
the development of a high-performance special-purpose VLSI
processor for collison detection will become very important for
automatic motion planning. Conventionally, this kind of pro-
cessing is performed by general-purpose processors. In this pa-
per, a first collision detection VLSI processor is proposed to
achieve ultrahigh-performance processing with an ideal paral-
lel processing scheme. A large number of coordinate transfor-
mations and memory accesses to the obstacle memory are fully
utilized in the processing algorithm, so that direct collision de-
tection can be executed with a VLSI-oriented regular data flow.
The structure of each processing element (PE) is very simple
because a PE mainly consists of a Coordinate Rotation
DIgital Computer (CORDIC) arithmetic unit for the coordinate
transformation and memories for the storage of manipulator
and obstacle information. When 100 PE’s are used to make
parallel processing, the performance is about 10 000 times
faster than that of conventional approaches using a single gen-
eral-purpose microprocessor.

I. INTRODUCTION
OTION planning involves finding a path from an M initial robot configuration to a given final configu-

ration that avoids collisions with obstacles in the work-
space. The task is essential for intelligent robots to move
autonomously in the free workspace. The most funda-
mental problem in motion planning is collision detection
between a robot manipulator and obstacles. There are
many kinds of algorithms for solving collision detection
problem [11-[3]. Usually a manipulator and obstacles are
modeled by polyhedra, cylinders, or spheres and collision
is detected by examining the contact between those
models. The use of these representations makes the mem-
ory capacity smaller than the complete representation,
however, it does not approximate the complex shapes of
a manipulator and obstacles well, and there is much of the
collision free space that is occupied by parts of cylinders
and spheres. In addition, many of the advanced algo-
rithms in these fields require up to a few seconds of com-
putational time even if a high-performance workstation is
used.

From this point of view, the implementation of a col-
lision detection processor using VLSI technology can meet
the computational speed requirement. Therefore, the de-

Manuscript received August 28, 1991; revised December 16, 1991.
M. Kameyama is with the Department of Information Engineering, To-

hoku University, Aoba, Aramaki, Aoba-ku, Sendai 980, Japan.
T. Amada and T. Higuchi are with the Department of Elcctronic Engi-

neering, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980, Japan.
IEEE Log Number 9106387.

velopment of a high-performance special-purpose VLSI
processor for collision detection is a very important sub-
ject.

In this paper, we describe a newly developed collision
detection VLSI processor using an ideal parallel process-
ing scheme. If we use many obstacle memories which are
distributed in all processing elements (PE’s), the com-
munication-free architecture can be constructed. Namely,
the proposed processor is completely free from commu-
nication between PE’s, because all the information on ob-
stacles is obtained from a single PE itself and the com-
putation can be localized. This ideal parallel processing
architecture reduces the computational time of the colli-
sion detection linearly as the number of PE’s increases.

A PE performs the computation of a large number of
coordinate transformations and memory access control for
collision detection. The coordinate transformation be-
tween the joint space and the Cartesian space of the robot
is very important since robots are controlled in the joint
space, whereas obstacles are located in the Cartesian
space. However, several kinds of elementary operations
are required for the coordinate transformation, which is
very time consuming. For the solution, the Coordinate
Rotation DIgital Computer (CORDIC) algorithms [5] -
[101 are efficiently employed for the coordinate transfor-
mation, because the elementary operations can be ef i -
ciently computed using two-dimensional (2-D) vector ro-
tations [4].

A PE is designed using a VLSI CAD system and the
performance of the VLSI processor is evaluated. The PE
contains 320K transistors, and the chip size becomes 13.5
mm X 15.7 mm in 2-pm CMOS design rule. When 100
PE’s are used to make parallel processing, the typical col-
lision detection time becomes about 450.5 ps. This per-
formance is estimated to be 10 000 times faster than con-
ventional approaches using general-purpose micro-
processors.

11. ALGORITHM
A . Collision Detection

To perform exact collision detection, the representation
of a manipulator and obstacles located in workspace is
important. The most direct way to represent a manipulator
is discrete representation of its surface, as shown in Fig.
1. A manipulator is represented by a set of discrete points
covering the surface. Let the vector Q , (= (x~,, y l , , z ,)) be

0018-9200/92$03.00 0 1992 IEEE

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 01,2010 at 21:57:52 EST from IEEE Xplore. Restrictions apply.

K A M E Y A M A cf U / . : COLLISION DETECTION PROCESSOR FOR INTELLIGEh IT ROBOTS 501

Fig. 1 . Manipulator representation.

Fig. 2. Obstacle representation

coordinates of the discrete points on the it link surface,
where i = 1, 2, 3, . , l , j = 1 , 2 , 3 , , m , , t h e
value 1 is the most distal link, and m, is the number of
discrete points on the ith link surface.

Similarly, obstacles are represented by a three-dimen-
sional (3-D) image composed of cubic discrete pixels as
shown in Fig. 2. Let P(x,, y e , z ,) be one of these pixels
in the coordinate system defined in the workspace.

When the joint angles are specified, the following al-
gorithm gives the result of collision detection:

begin i = 1 ; j = 1; Flag = 0;
while (i I I) do
begin

while (j I m,) do
begin

a) For Q,, perform the coordinate transformation
using the given joint angles. Let the result thus
obtained be Qh.

b) Check conflict between the obstacle pixels and
the discrete point on the manipulator surface
Qh by means of memory access.
If Qh conflicts with an obstacle pixel then
Flag= 1 and goto result.

increment j
end;

increment i
end;

result:
If Flag= 1 then collision is detected;
else (Ffag=O) collision free;
end

In the execution of the above algorithm, a large number
of coordinate transformations and memory access control
are involved in the while loop. However, steps a) and b)
can be executed in parallel for every Q,. The proposed
collision detection processor utilizes the nature of this
parallelism.

B. Coordinate Transformation
The coordinate transformation requires the computa-

tion of several elementary operations: multiplications, ad-
ditions, divisions, and computation of trigonometric func-
tions. However, these elementary operations are
efficiently computed by the use of 2-D vector rotations
[4]. For an example, let us consider the computation of

x' = (x cos a - z sin a) cos p - y sin P. (1)

(I) :

-+ li(zocoszo - yosznzo)
--+ K(5osinzo + yocoszo)

20 i i 0
ROTATION

n

Fig. 3 . CORDIC functions

Equation (1) can be computed by the following succes-

Step 1 : If the coordinate (x, z) is rotated by a , we can
sive steps.

obtain (x cos a - z sin a) as follows:

1. cos a -sin a] [;I = [x cos a - z sin a
x sin a + z cos a

Step 2: Then, let us consider the rotation of (x cos a
- z sin a , y) by 0. As a result, we can obtain x' according
to the following equation:

[sin a cos a

[;;; - s i n ~] [x c o s a - z s i n a

cos P Y 1
(x cos a - z sin a) sin + y cos 1 ' (x cos a - z sin CY) cos /3 - y sin = [

To compute (l) , four multiplication, two subtraction, and
four trigonometric functions are required. Using 2-D vec-
tor rotations, only two 2-D vector rotations are sufficient.
From this point of view, the coordinate transformation is
performed by using only 2-D vector rotations which can
be efficiently computed using the CORDIC algorithms.

Fig. 3 summarizes the basic functions in the CORDIC
algorithms. The coordinate transformation for a manipu-
lator with three degrees of freedom can be described as

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 01,2010 at 21:57:52 EST from IEEE Xplore. Restrictions apply.

502 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 27 . NO. d. APRIL 1942

Y e 0 Y t

81 .7 I / K 1 i K
R O T . M U L . M U L .

Fig. 4. Computational flow diagram for the coordinate transformation.

follows:

cos O3 -sin O3 1 [11
= [sin O3 cos 83

I I = I I I I
LZI Lsin O 2 cos 8,l L z z J

COS 8, -sin 0 , 1 [;] [:I = [sin 8, cos 8,

It can be efficiently computed using only nine functions
as shown in Fig. 4. The 2-D vector rotations can be ap-
plied to any other solution for the coordinate transfor-
mations.

111. ARCHITECTURE
A. Highly Parallel Architecture

As indicated in the preceding section, the algorithm
consists of the coordinate transformations of Q,,'s and the
memory access control. These two kinds of operations are
repeated for all Q,'s, so that they are an iterative process
which can be executed in parallel. The tremendous com-
putational power for the collision detection can be pro-
vided by the ideal parallel architecture.

In conventional general-purpose processors, it takes a
few seconds to perform collision detection. However, a
special parallel architecture enables us to perform colli-
sion detection at high speed. The use of many memories
instead of a shared memory is rather important, because
recent advances in VLSI technology make it possible to
include a large capacity of memory into a single chip and
the communication between PE's is unnecessary. The
parallelism exhibits the potential for the attainment of
massively parallel processing.

The parallel feature of the collision detection algorithm
makes it possible to construct a parallel structure as shown
in Fig. 5. The collision detection processor consists of y1
identical PE's which perform collision detection in par-
allel without any communication between PE's. At the
beginning of collision detection, joint angles are broad-
casted to each PE. Then, each PE performs the coordinate

Joint
angles [

Fig. 5 . Block diagram of the collision detection processor

Control unit
ecoder
etc

Program I D
memory

Manipulator
memory

I Obstacle
memory

Result of
collision
detection -

Joint angles

Fig. 6 . Block diagram of PE.

I d drf c\

0
1
2
3

L

Fig 7 Manipulator memory organization

transformations for the assigned QV's at the given joint
angles, and these data are used as the conflict check in the
obstacle memory. The final result of collision detection is
transmitted through the OR gate.

B. Structure of PE
A block diagram of the PE structure is shown in Fig.

6. A PE mainly consists of an obstacle memory, a manip-
ulator memory, an execution unit (EU), and a control unit.
Each of these major functional blocks is discussed below
in detail.

I) Manipulator Memory: A 1-kb SRAM is provided
for the storage of the manipulator discrete point coordi-
nates. This capacity enables about 50 discrete points on
the surface to be stored in a serial manner. Thus, Q, (=
(x,,, y,,, z ,)) is stored in the memory as shown in Fig. 7.
At the beginning of collision detection for each discrete
point, the data of its coordinates (x,,, yr,, z u) are transmit-
ted to the EU from the manipulator memory.

2) Obstacle Memory: The obstacle pixels are repre-
sented by 1 or 0, where 1 and 0 designate obstacle occu-
pying and free space, respectively. The 3-D coordinates
of the obstacle pixels are linearly mapped into the ad-
dresses as shown in Fig. 8. The address of P(x,, !(,, :()

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 01,2010 at 21:57:52 EST from IEEE Xplore. Restrictions apply.

KAMFYAMA [’I /I/ COLLISION DETECTION PROCESSOR FOR INTELLIGENT ROBOTS 503

Fig. 8. Obstacle memory organization

corresponds to t n l , ~ ~ , + my, + z , , where the workspace is
divided into klm pixels. A large-capacity DRAM is essen-
tial to represent the obstacle information precisely. The
256-kb DRAM is provided to store the 64 x 64 x 64
pixels of the 3-D obstacle image. If more precise repre-
sentation is required, a DRAM with a larger capacity is
replaced. Collision between the manipulator and obsta-
cles is easily determined by reading the obstacle memory
with the address being the result of the coordinate trans-
formation.

3) Execution Unit: The execution unit (EU) performs
the coordinate transformation very fast. The CORDIC al-
gorithms are very suitable for computing the 2-D vector
rotations. Using the CORDIC algorithms, the 2-D vector
rotation is computed with iterative procedures involving
only shift-and-add operations at each step. The EU based
on the CORDIC algorithms becomes very simple and
compact. In the CORDIC algorithms, 16-b fixed-point
arithmetic operations are selected from the error analysis
using simulation. The EU contains barrel shifters, adders,
multiplexers (MUX’s), input and output registers, accu-
mulators, and a constant generator which generates arc-
tangent radix constants as shown in Fig. 9. Input and out-
put registers introduce pipelining into the data flow.

4) Control Unit: The control unit consists of three ma-
jor blocks as shown in Fig. 10: a 4-b program counter, a
decoder, and a program memory. Since all functions per-
formed in the EU are executed in 16 clock cycles without
conditional branching, the 4-b counter is sufficient to
specify the program sequence. The 8-b program memory
address counter (PAC) keeps track of the current program
memory address.

The general instruction encoding format is shown in
Fig. 1 1 . All the instructions are 8 x 5-b words in length.
Each function of Fig. 3 can be described using one in-
struction. The OP field of the instruction specifies the
function to be executed in the EU. The FML field speci-
fies whether the instruction is the first, a middle, or the
last one of the function in the coordinate transformation.
The X S , YS, and ZS fields specify whether the input data
are in the data memory or in the accumulators. These data
are stored in the op-code register I (OPCRI) and the
op-code register I1 (OPCR II), and the outputs of these
registers are used as the control signal in the instruction
cycle. The other fields specify the address of the data

M a n i p u l a t o r
m e m o r y

Fig. 9. Block diagram of EU

Start signal

Program

OPCRI OPCRll IW

O b s t a c l e
memory -

Control signal Data m$ory address

Fig. 10. Block diagram of the control unit.

Fig. 1 1. Instruction format

Data transfer from
the manipulator a i + l t h ,
memory

Coordinate 1~1 th I th , i + l t h
transformatlon

Access of ~

the obstacle
memory

i+l t h

Fig. 12. Pipeline processing in collision detection

memory when the memory is specified by the X S , YS, and
ZS fields.

Fig. 12 shows a timing diagram of PE operation. To
enhance the computational speed, the control signals al-
low the coordinate transformation and the memory access
to be overlapped using pipelining. Since the propagation
delay time of the decoder influences the clock period, the
decoder is designed using hardwired circuitry.

IV. EVALUATION OF THE VLSI PROCESSOR
A . Chip Layout

Fig. 13 shows some basic CMOS circuits using in the
proposed VLSI processor. Based on these circuits, each

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 01,2010 at 21:57:52 EST from IEEE Xplore. Restrictions apply.

504 IEEE JOURNAL OF SOLID-STATE CIRCUITS. VOL 27 . NO 4. APRIL I Y Y ?

S L

I O U T

B I T

I T

-
S L , S L , ,

. . .
0

. . .
0

. . .
0

. . .
0

. .
: o :

: o : : o : : o : : o :
. OUT,

V D D
P

B I T B I T I
L I I

(4 (e)
Fig. 13. Basic CMOS circuits for the layout: (a) 3-to-I M U X , (b) register cell, (c) DRAM cell. (d) barrel shifter. and (e) SRAM

cell.

PE is designed as shown in Fig. 14, where DM, MM,
PM, CU, OM, and EU are data memory, manipulator
memory, program memory, control unit, obstacle mem-
ory, and execution unit, respectively. The features of the
designed chip are summarized in Table I. The chip di-
mensions are 13.5 mm x 15.7 mm with 2-pm CMOS
design rule with a double-layer metal. The number of
transistors is about 320K. In the following sections, the
performance is discussed in detail.

B. Speed Evaluation
Fig. 15 summarizes the execution timing. Let T,, be the

time for the coordinate transformation and t,, be the mem-
ory access time. Since the three manipulator data x,,, y,,
and z , are transmitted to the EU at the beginning of the
operation for each manipulator discrete point, the time for
data transfer from manipulator memory becomes 3t,,. Let
M be the number of the manipulator points assigned to
each PE. Then, the time T for the collision detection be-
comes

(2) T = MT,, + 4t,.

The coordinate transformation time T,, is

Dlzl Data memory
hlhl Manipulator memory
Pbl Program memory-
CU , Control unit
EL : Execution unit
OM : Obstacle memory

Fig. 14. Layout of PE

tion, N is the number of instructions required for the co-
ordinate transformation, and t, is the clock period deter-
mined by a delay for the critical path in the EU as shown

T,, = 16Nt, (3)

where 16 is the number of clock cycles for one instruc-

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 01,2010 at 21:57:52 EST from IEEE Xplore. Restrictions apply.

K A M E Y A M A c/ (11 : COLLISION DETECTION PROCESSOR FOR INTELLlGENT ROBOTS 505

TABLE I

(?-pm CMOS design rule)
FE.4TIJKF.S OF PE

0bat;iclc memory 256-kb DRAM
I'U 16-b fixed-point arithmetic
Chip S I L C

N u mlic I- n 1. trail\ istors
Pcrlorn1ance 9.5 ps/manipulator point

13.5 x 15.7 nim'
320 000

m e m o r y

Coord ina te
l rans format ion

Access o f
t h e obstacle
m e m o r y

Fig. 15. Execution timing

4
!

M U X 1 -

B a r r e l s h i f t e r

M U X E q u i i a I e n I c r i t i c a l p a t h

A c c u m u l a t o r S h i f t e r

(b)

Fig. 16. Critical path in EU. (a) Block diagram. (b) Cascade chain of
CMOS circuit in the critical path.

in Fig. 16(a). The delay time t, for the critical path cor-
responds to the sum of the add time, the shift operation
time, the multiplexer propagation time, and the accumu-
lator setup time. Fig. 16(b) shows the cascade chain of
the CMOS circuits in the critical path. Fig. 17 shows
SPICE2 analysis of the delay times. The propagation de-
lay times of input to the shifter, the adder, the multi-
plexer, and the accumulator are shown in Fig. 17(a), (b),
(c), and (d), respectively. The propagation delay time for
the critical path is about 62.0 ns from Fig. 17(d). There-
fore, the chip can operate at the frequency of 16 MHz.

Consider an example of the case where nine CORDIC
functions are required for the coordinate transformation
as shown in Fig. 4. Let the number of manipulator points
required be 5000. Also, assume that the manipulator co-
ordinates are shared with 100 PE's. Then, each PE must
perform 50 coordinate transformations. Since the clock
period t , in the EU is 62.5 ns and memory access time is

0 100 200
Time(nsec)

(a)

0 100 200
T i m e (nsec.)

(b)

0 100 200
Time(nsec.)

(C)

I I

t-
55 Onsec
t-

55 Onsec

0 100 200
Time(nsec.)

(d)
Fig. 17. Propagation delay times in EU: (a) delay time of the shifter, (b)
delay time of the adder, (c) delay time of the multiplexer, and (d) delay
time of the accumulator.

125.0 ns, the time for the collision detection becomes
450.5 ps from (2) and (3) . Conventionally, it takes a few
seconds using a general-purpose microprocessor. This
performance is about 10 000 times faster than that of con-
ventional approaches using a single microprocessor. If the
collision detection is executed 1000 times in the search

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 01,2010 at 21:57:52 EST from IEEE Xplore. Restrictions apply.

506 IEEE JOURNAL OF SOLID-STATE CIRCUITS. VOL 27. NO. 1. APRIL 1YY2

for a collision-free path, the total time will be 450.5 ms.
This performance is enough for intelligent behavior of ro-
bots.

V. CONCLUSION
A high-speed collision detection processor has been

presented. To perform collision detection at high speed,
a parallel architecture is considered. The parallelism does
not require any communication between PE’s. Moreover,
the 2-D vector rotations are utilized for the coordinate
transformation, which is the key processing in the colli-
sion detection algorithm. Each PE is designed using 2-pm
CMOS design rule with a double-layer metal. On the ba-
sis of these two concepts, the performance is 10 000 times
faster than that of the conventional approaches using a
single microprocessor. It is expected that the collision de-
tection processor will be applied to practical robot motion
planning.

REFERENCES

[I] E. G. Gilbert and S. M . Hong, “A new algorithm for detecting the
collision of moving objects,” in Proc. 1989 fEEE I n / . Conf: Robotics
Automat., May 1989, pp. 8-14.

[2] S. Bonner and R. B. Kelley, “A novel representation for planning
3-D collisin-free paths,” IEEE Trans. Syst., Man, Cyhern., vol. 20.
no. 6 , pp. 1337-1351, Nov./Dec. 1990.

[3] T. Lozano-PCrez, “A simple motion-planning algorithm for general
robot manipulators,” IEEE J . Roboticx Automat., vol. RA-3. no. 3,
pp. 224-238, June 1987.

141 M . Kameyama, T . Matsumoto, H . Egami, and T. Higuchi, ”lmple-
mentation of a high performance LSI for inverse kinematics compu-
tation,” in Proc. 1989 IEEE 1nr. Conf Rohoricc Automat.. May 1989,

[5] J . E. Volder, “The CORDIC trigonometric computing technique.“
IRE Trans. Electron. Coniput., vol. EC-8, pp. 330-334, Sept. 1959.

[6] J. S. Walther, “A unified algorithm for elementary functions.” in
Proc. 1971 AFIPS Spring Joint Comput. Conf:, pp. 379-385.

[7] G. L. Haviland and A . A . Tuszynski, “A CORDIC arithmetic pro-
cessor chip,” IEEE Trans. Comput., vol. C-29. pp. 68-79. Feb.
1980.

[8] T. W. Curtis, P. Allison, and J . A . Howard, “A CORDIC processor
for laser trimming,” fEEE Micro, vol. 6, pp. 61-71, June 1986.

[9] C. S. G. Lee and P. R. Chang, “A maximum pipelined CORDIC
architecture for inverse kinematic position computation,” fEEE J .
Robotics Automat., vol. RA-3, no. 5 , pp. 445-458. Oct. 1987.

[I O] M . D. Ercegovac and T. Lang, “Redundant and on-line CORDIC:
Application to matrix triangularization and SVD,” fEEE Truux. C o n -
put., vol. 39, no. 6, pp. 725-740, June 1990.

pp. 751-762.

Michitaka Kameyama (M’79-SM‘92j recei\ed
the B E . M E , and D E degrees in electronic
engineering from Tohohu University. Sendai. JJ-
pan. in 1973, 1975. and 1978. respectively

He is currently a Profesyor in the Depirtnient
of Information Engineering. Tohohu Uni\er\ity
His general reyearch interests include robot elec-
tronics. VLSI syutems. highly reliable digitd $1 \-

tems, and multiple-valued logic uy\tems
Dr Kameyama received the Outstanding Paper

Awards at the 1984, 1985. 1987. and 1989 iEEE
International Symposiums on Multiple-valued Logic (with T Higuchi ct
n / j , the Technically Excellent Award from the Society of Instrument and
Control Engineers of Japan in 1986 (with T Higuchi et a/). the Out\tmd-
ing Transactions Paper Award from the Institute of Electronics. Intornia-
tion And Communication Engineers of Japan in 1989 (with T Higuchi (’t
U / .) , and the Technically Excellent Award from the Robotics Societ) o t
Japan in 1990 (with T Higuchi et a1).

. .

Tadao Amada received the B.E. and M.E. dc-
grees in electronic engineering from Tohoku Uni-
versity. Sendai, Japan, in 1990 and 1992. respec-
tively.

He joined Fujitsu Limited in 1992. His research
interests and activities include VLSI processors for
robots.

Tatsuo Higuchi (M’70-SM‘83-F‘92) received
the B.E.. M.E.. and D.E. degrees in electronic
engineering from Tohoku University. Sendai. J a -
pan, in 1962. 1964. and 1969. respectivel).

He is currently a Professor in the Department
of Electronic Engineering. Tohoku University.
His general research interests include the desipn
of I-D and 2-D digital filters. multiple-valued
logic systems. fault-tolerant computing. and VLSI
computing structures for signal processing and
image processing.

Dr. Higuchi received the Outstanding Paper Awards at the 1984. 1985.
1987. and 1989 IEEE International Symposiums on Multiple-valued Logic
(with M. Kameyama e/ a / .) , the Outstanding Transactions Paper Award
from the Society of Instrument and Control Engineers of Japan in 1981
(with M. Kawamata), the Technically Excellent Award from the Soclet!
of lnstrument and Control Engineers of Japan in 1986 (with M. Kameyania
et d .) , the Outstanding Transactions Paper Award from the Institute o l
Electronics, Information and Communication Engineers of Japan in I989
(with M. Kameyama et a / ,) , and the Technically Excellent Award from the
Robotics Society of Japan in 1990 (with M . Kameyama rt d.).

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 01,2010 at 21:57:52 EST from IEEE Xplore. Restrictions apply.

