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Abstract

Dynamically-programmable gate arrays (DPGAs)
promise lower-cost implementations than conventional
FPGAs since they efficiently reuse limited hardware
resources in time. One of typical DPGA architectures is
a multi-context one. Multi-context FPGAs (MC-FPGAs)
have multiple memory bits per configuration bit forming
configuration planes for fast switching between contexts.
The additional memory planes cause significant overhead
in area and power consumption. To overcome the over-
head, a fine-grained reconfigurable architecture called
reconfigurable context memory (RCM) is presented based
on the fact that there are redundancy and regularity in con-
figuration bits between different contexts. A floating-MOS
functional pass-gate, where storage and switch functions
are merged, is used to construct the RCM area-efficiently.

1 Introduction

Dynamically-programmable gate arrays (DPGAs) pro-
vide more cost-effective implementations than conventional
FPGAs where hardware resources are dedicated to a single
context[1],[2]. A DPGA can be sequentially configured as
different processors in real time, and efficiently reuse the
limited hardware resouces in time. One of typical DPGA
architectures is a multi-context one. Multi-context FPGAs
(MC-FPGAs) have multiple memory bits per configuration
bit forming configuration planes for fast switching between
contexts. However, the additional memory planes cause sig-
nificant overhead in area and power consumption [3]. Espe-
cially, switch blocks require a much larger memory capacity
than look-up tables.

Figure 1 shows the overall structure of an MC-FPGA.
Each cell consists of a programmable logic block and a pro-
grammable switch block. Figure 2 shows the structure of
a conventional multi-context switch. The switch has mul-
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Figure 1. Overall structure of an MC-FPGA

tiple memory bits for multi-contexts and its contexts are
selected from the memory bits according to a context ID.
In the conventional approach, each switch requires n bits
to store n contexts. Most previous works for DPGAs re-
duce the overhead using only device-level solutions. That
is, compact memory devices such as DRAM were used to
store configuration data [1].

To reduce the overhead of configuration memory in MC-
FPGAs, this paper proposes an architectural-level solution
based on the fact that there are redundancy and regularity
in configuration bits between contexts. To illustrate the re-
dundancy and regularity, Table 1 shows an example of con-
figuration data of the switch block shown in Fig. 1. Each
row denotes configuration data of each switch. The con-
figuration data G3 and G9 have redundancy in themselves.
That is, there is no change in their configuration bits. It
is said that less than 3% of configuration data are changed
when contexts are switched [4]. There is another type of re-
dundancy between configuration data of different switches.
For example, G2 and G4 have the same configuration data.
Moreover, there is regularity in configuration data such as
G2 and G4. The configuration data G2 and G4 can be repre-
sented by repeating bits in an order of (0,1). To exploit the
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Figure 2. Conventional multi-context switch
(four contexts)

Table 1. Redundancy and regularity in config-
uration data
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0
1
0
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0
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0
0
1

redundancy and regularity, a reconfigurable context mem-
ory is proposed based on a floating-gate MOS functional
pass-gate (FGFP). The FGFP is the device that can merge
a logic operation and storage in a single floating-gate MOS
transistor[5]. An arbitrary switch function can be decom-
posed into switch functions called “window literals”, each
of which is efficiently implemented by using the FGFP. The
number of the window literals corresponds to the number
of configuration bits for the switch function. In the FGFP-
based RCM, the number of window literals can be flexi-
bly changed by reconfiguring the FGFP network connec-
tion. By using the FGFP-based RCM, the number of tran-
sistors of switch block can be reduced to 10% in compari-
son with conventional SRAM-based switch block. The use
of FGFPs will be efficient in static power in comparison
with the SRAM-based implementation because no supply
voltage is required to keep the storage.

2 Switch Block Architecture Using the Re-
configurable Context Memory

Redundancy and regularity in configuration data can be
used to reduce the area of the context memory. In this paper,
an architecture with four contexts is considered as an exam-
ple although our approach is also applicable to architectures
with other number of contexts. Contexts are switched by a
2-bit context ID (bit S1 and bit S0) as shown in Table 2.

Figure 3 shows configuration-bit patterns that are inde-
pendent from the context ID because the switch is pro-

Table 2. Relations between contexts and con-
text ID bits
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Figure 3. Configuration-bit patterns that are
independent of a context ID

grammed to be always turned on or off. A single memory
bit is sufficient to control the switch, while four memory
bits are required for the conventional switch shown in Fig.
2. Figure 4 shows configuration-bit patterns that depend on
a single context-ID bit. Note that each bit pattern is same as
the bit patterns of S1 (or S1) or S0 (or S0) shown in Table
2. A switch using a single context-ID bit is smaller than the
conventional switch which uses two context-ID bits. The
other configuration-bit patterns depend on S1 and S0. Each
bit pattern can be generated using a 2-to-1 multiplexer. The
multiplexer is slightly larger than the hardware shown in
Figs. 3 and 4. However, the bit patterns are not frequently
used in a multi-context architecture since less than 3% of
configuration data change when contexts are switched [4].

Figure 5 shows an MC-FPGA architecture that uses re-
configurable context memory (RCM) as switch blocks. A
logic block is connected to a RCM block. RCMs are con-
nected by 2 types of interconnections: single-length lines
and double-length lines to achieve both of flexibility and
high speed data transfer. Single-length lines connect neigh-
bor RCMs. Double-length lines connect RCMs every 2
RCMs. To simplify the figure, only single-length lines are
illustrated. The single-length lines allow flexible connec-
tions between RCMs, but it may decrease speed of data
transfer between distant LBs. The double-length lines al-
low high-speed data transfer between distant LBs through
less RCMs.
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Figure 5. MC-FPGA architecture using the
reconfigurable context memory as switch
blocks

3 Implementation of an RCM using an
FGPG

Let us consider the function F shown in Fig. 6(a).
The function can be given by OR-ing the functions
FWL1 (Fig.6(b)) and FWL2(Fig.6(c)) called window liter-
als. Given S1 and S2 (S1 ≤ S2), a window literal is de-
fined as follows.

FWL(S, S1, S2) =
{

1 S1 ≤ S < S2
0 otherwise

The function F is given by OR-ing 2 window literals as
follows:

F (S) = FWL(S, 0, 1) + FWL(S, 2, 3) (1)

For the case of N contexts, the function of an MC switch
can be given by OR-ing N/2 window literals at most.

Let us consider the window literal FWL2 shown in Fig.
7(a). The window literal can be AND-ing the functions FUL

and FDL called “up-literal” and “down-literal” respectively.

Figure 6. Function of the multi-context switch
(4 contexts).

An up-literal is a monotone increasing function as shown
in Fig. 7(b). Given the threshold value T , an up-literal
FUL(S, T ) is given by

FUL(S, T ) =
{

1 T ≤ S
0 otherwise

A down-literal is a monotone decreasing function as shown
in Fig.7(c). Given the threshold value T , a down-literal
FDL(S, T ) is given by

FDL(S, T ) =
{

1 S ≤ T
0 otherwise

Hence, the window literal FWL2 is expressed as

FWL(S, 2, 3) = FUL(S, 2) · FLDL(S, 2)

Finally, Eq.(1) can be rewritten as

F (S) = FUL(S, 0) · FLDL(S, 0)
+FUL(S, 2) · FLDL(S, 2)
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From this equation, the circuit of the MC switch for N con-
texts is provided as shown in Fig. 8. The function of the
4-context MC switch is generated by wired-OR-ing the out-
puts of 2 window literals. In general, the function of the N -
context MC switch is generated by wired-OR-ing the out-
puts of less than N/2 window literals. The output of each
window literals is generated by wired-AND-ing the outputs
of an up-literal and a down-literal. If we use the FGMOS as
a 4-valued device, each of an up-literal and a down-literal
is implemented by a single FGPG[5] where an FGMOS is
used not only as a storage device but also pass transistor.
The threshold value of an up-literal or a down-literal is pro-
grammed by injecting a controlled amount of electrons into
the floating gate. Figure 9 shows the symbol of the FGFP,
where threshold voltage is denoted by Vth bounded by a
broken line. Figure 10 shows the implementation of the
switch function F shown in Fig.6, where VS and V̄S denotes
the control-gate voltages corresponding to S and S̄. In N-
valued logic, S̄ is defined as N −S − 1. Hence, S̄ = 3−S
for N = 4. Note that the down literal FDLforS(Fig.7) can
be implemented by the up literal for S̄ as shown in Fig.7.
Based on this observation, we propose the RCM as shown
in Fig. 11. To simplify the figure, only 4 tracks are illus-
trated. The RCM consists of three types of FGFPs. The
FGFPs with the control-gate voltage VS and V̄S are used to
implement up-literals and down-literals, respectively. The
FGFPs denoted by small squares are used to connect(or dis-
connect) horizontal and vertical tracks. This type of FGFPs
can implement the configuration-bit patterns with high re-
dundancy (Fig. 3) area-efficiently. For example, implemen-
tation of MC-switches shown in Fig.12 is denoted by thick
lines in Fig.11. For the case of 4 contexts and 4 tracks, the
number of transistor is reduced to about 10% and 60% in
comparison with the SRAM-based implementation and the
FGFP-based implementation without redundancy.

4 Conclusion

This paper presents novel switch block architecture for
multi-context FPGAs. The key technologies are architec-
ture to exploit redundancy between context data and FGFPs
to implement configuration circuits area-efficiently. The use
of FGFPs will be efficient in static power in comparison
with the SRAM-based implementation because no supply
voltage is required to keep the storage. The implementation
of the test chip is undergoing using 0.35µ EPROM technol-
ogy.
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Figure 7. Decomposition of a window literal
into an up-literal and a down-literal(4 con-
texts).

Figure 8. Circuit of an MC switch (4 contexts).

Figure 9. Floating-Gate MOS transistor.
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Figure 10. Implementation of the MC switch
using FGFPs.

Figure 11. RCM using FGFPs.

Figure 12. Example of MC switches.
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