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Abstract

Dynamically-programmable gate arrays (DPGAs)
promise lower-cost implementations than conventional FP-
GAs since they efficiently reuse limited hardware re-
sources in time. One of typical DPGA architectures is a
multi-context one. Multi-context FPGAs (MC-FPGAs) have
multiple memory bits per configuration bit forming con-
figuration planes for fast switching between contexts.
The additional memory planes cause significant over-
head in area and power consumption. To overcome
the overhead, a fine-grained reconfigurable architec-
ture called reconfigurable context memory (RCM) is pre-
sented based on the fact that there are redundancy and
regularity in configuration bits between different con-
texts. Switch blocks are efficiently implemented by using
RCM as context decoders and routing switches. By us-
ing the RCM in logic blocks, an adaptive multi-context
logic block table is introduced where the size of look-up ta-
bles and the number of different configuration planes of
look-up tables are adaptively determined at each logic
block. Moreover, non-volatile ferroelectric-based func-
tional pass-gates are used as components of the RCM to
achieve compactness and low static power. Under a con-
straint of the same number of contexts, an area of the pro-
posed MC-FPGA is 45% of that of the conventional
MC-FPGA. In the functional-pass-gate-based evalua-
tion, the area of the proposed MC-FPGA is reduced to 37%
of the conventional MC-FPGA one.

1. Introduction

Dynamically-programmable gate arrays (DPGAs) [1]
provide more cost-effective implementations than con-
ventional FPGAs where hardware resources are dedi-
cated to a single context. A DPGA can be sequentially
configured as different processors in real time, and ef-
ficiently reuse the limited hardware resources in time.
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One of typical DPGA architectures is a multi-context
one. Multi-context FPGAs (MC-FPGAs) have multi-
ple memory bits per configuration bit forming configura-
tion planes for fast switching between contexts. However,
the additional memory planes cause significant over-
head in area and power consumption [2]. Figure 1 shows
the overall structure of an MC-FPGA. Each cell con-
sists of a programmable logic block and a programmable
switch block. Figure 2 shows the structure of a conven-
tional multi-context switch. The switch has multiple mem-
ory bits for multi-contexts and its contexts are selected
from the memory bits according to a context ID. In the con-
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Table 1. Redundancy and regularity in config-
uration data
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Table 2. Relations between contexts and
context-ID bits

ventional approach, each switch requires n bits to store n
contexts. Most previous works for DPGAs reduce the over-
head using device-level solutions. That is, compact memory
devices such as DRAM and FeRAM were used to store con-
figuration data [1, 3].

To reduce the overhead of configuration memory in MC-
FPGAs, this paper proposes an architectural-level solution
based on the fact that there are redundancy and regularity in
configuration bits between contexts. To illustrate the redun-
dancy and regularity, Table 1 shows an example of configu-
ration data of the switch block shown in Fig. 1. Each row de-
notes configuration data of each switch. The configuration
data G3 and G9 have redundancy in themselves. That is,
there is no change in their configuration bits. It is said that
less than 3% of configuration data are changed when con-
texts are switched [4]. There is another type of redundancy
between configuration data of different switches. For exam-
ple, G2 and G4 have the same configuration data. More-
over, there is regularity in configuration data such as G2
and G4. The configuration data G2 and G4 can be repre-
sented by repeating bits in an order of (0,1). To exploit the
redundancy and regularity, a fine-grained reconfigurable ar-
chitecture called “reconfigurable context memory” is pre-
sented. The switch block consists of fine-grained switch el-
ements where each switch element use a single 2-to-1 mul-
tiplexer, two memory bits and a pass-gate as components.
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Figure 3. Configuration-bit patterns that are
independent of a context ID

The switch elements are used in two ways. Firstly, they
are used as programmable interconnections between logic
blocks like conventional FPGAs. Secondly, they are used
to make reconfigurable decoders that generate configura-
tion bits from the context ID. By exploiting the redundancy
and regularity in configuration data, the decoders are con-
figured in an area-efficient way. Moreover, we show that
ferroelectric-based functional pass-gates [5] can be used to
implement the switch elements for area efficiency. To ex-
ploit the redundancy of configuration data in logic blocks
for area efficiency, an adaptive multi-context logic block is
introduced. The number of inputs of look-up tables (LUTs)
and the number of different configuration planes of LUTs
are adaptively determined at each logic block. LUTs with a
larger number of inputs reduce the total number of required
LUTs for a mapping.

Under a constraint of the same number of contexts, the
area of the MC-FPGA using the reconfigurable context
memory and adaptive multi-context logic block is compared
to that of a conventional MC-FPGA. In the CMOS-circuit-
based evaluation, the area of the proposed MC-FPGA is
45% of the conventional MC-FPGA one. In the functional-
pass-gate-based evaluation, the area of the proposed MC-
FPGA is 37% of the conventional MC-FPGA one.

2. Redundancy And Regularity in Configura-
tion Data

Redundancy and regularity in configuration data can be
used to reduce the area of the context memory. In this paper,
an architecture with four contexts is considered as an exam-
ple although our approach is also applicable to architectures
with other number of contexts. Contexts are switched by a
2-bit context ID (bit S1 and bit S0) as shown in Table 2.
For a 4-context switch, there are 16 possible configuration-
bit patterns as listed in Figs. 3, 4 and 5. Note that each row
in the figures represents one of the configuration-bit pat-
terns for the switch. Figure 3 shows configuration-bit pat-
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Figure 4. Configuration-bit patterns that de-
pend on a context-ID bit

terns that are independent from the context ID because the
switch is programmed to be always turned on or off. A sin-
gle memory bit is sufficient to control the switch, while four
memory bits is required for the conventional switch shown
in Fig. 2. Figure 4 shows configuration-bit patterns that de-
pend on a single context-ID bit. Note that each bit pattern is
same as the bit patterns of S1 (or S1) or S0 (or S0) shown
in Table 2. A switch using a single context-ID bit is smaller
than a conventional switch which uses two context-ID bits.
Figure 5 shows the other configuration-bit patterns that de-
pend on S1 and S0. Each bit pattern can be generated using
a 2-to-1 multiplexer as shown in the right-most column of
Fig. 5. The multiplexer is slightly larger than the hardware
to generate the bit patterns shown in Figs. 3 and 4. How-
ever, the bit patterns in Fig. 5 are not frequently used in a
multi-context architecture since less than 3% of configura-
tion bits change when contexts are switched [4].

3. Switch Block Architecture Using the
Reconfigurable Context Memory

Figure 6 shows a basic MC-FPGA architecture that uses
reconfigurable context memory (RCM) as switch blocks. A
detail architecture will be discussed in the next paragraph.
Figure 7 shows the structure of the RCM that consists of

fine-grained switch elements (SEs), programmable switches
(denoted by P) and input controllers (denoted by C). A pro-
grammable switch connects a vertical track with a horizon-
tal track as shown in Fig. 7(b). An input controller can be
programmed to invert its input as shown in Fig. 7(c). An
SE consists of a pass-gate, a multiplexer and two mem-
ory bits (D1 and D0) as shown in Fig. 8. As described in
the previous section, configuration-bit patterns with redun-
dancy and regularity are frequently used. They can be im-
plemented with much simpler circuits than the conventional
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Figure 5. Configuration-bit patterns that de-
pend on two context-ID bits

circuits as shown in Figs. 3 and 4. The RCM is designed in
such a way that the frequently-used configuration-bit pat-
terns are implemented area-efficiently using a single SE.
For an example, to implement a switch with a configura-
tion bit-pattern shown in the bottom row of Fig. 3, D0 is
1 and D1 is 0. As another example, to implement a switch
with a configuration bit-pattern shown in the bottom row of
Fig. 4, D1 is 1 and a multiplexer variable input (U) is con-
nected to S1. Configuration-bit patterns shown in Fig. 5 are
not frequently used and are implemented using several SEs.
Figure 9 shows an example to generate the configuration-
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Figure 6. Basic MC-FPGA architecture using
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bit patterns where (C3, C2, C1, C0) = (1, 0, 0, 0). Four SEs
are sufficient to form the multiplexer. Wires that are used to
form the multiplexer are indicated by thick lines.

High speed double-length lines are used in the MC-
FPGA to complement routing delay in the RCM. The delay
is large if a signal is routed through many SEs in series. Fig-
ure 10 shows double-length lines that bypass alternate dia-
mond switches. Each diamond switch connects a line from
one direction to another three lines at different directions.
The double-length lines are connected to the logic blocks
through RCM blocks. Figure 11 shows a diamond switch
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that consists of SEs and connects to the RCM through U1
to U6. To achieve a short delay time in a mapping, critical
paths are routed with double-length lines while non-critical
paths are routed with RCM. To prevent RCM from degrad-
ing the context-switching speed, context-ID bits are routed
with high-speed global wires and decoded locally with the
RCM.

4. Architecture of an Adaptive Multi-Context
Logic Block

The main component of an adaptive multi-context logic
block is a locally controlled multi-context multi-granularity
LUT (MCMG-LUT). Figure 12 shows an MCMG-LUT that
is programmable to be a 4-input LUT (four different config-
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uration planes) or a 5-input LUT (two different configura-
tion planes), where each dashed box represents a configu-
ration plane. A configuration plane is a group of memory
bits that are selected under the same context-ID state. Note
that two configuration bits (S0, S1) are used in the 4-input
LUT and only one configuration bit (S0) is used in the 5-
input LUT. Without changing the number of memory bits,
the size of an MCMG-LUT [6] can be increased by reduc-
ing its number of different configuration planes. The size
represents the number of computation data that are selected
as inputs of an LUT.

Figure 13 shows the mapping of DFGs in contexts 1 and
2 into globally controlled MCMG-LUTs. A global control
signal (J) programs each of the MCMG-LUTs as a 2-input
LUT (two different configuration planes) as shown in Fig.
13(b). Using a global control signal is not area-efficient be-
cause redundant configuration data is stored in the MCMG-
LUTs. For example, two configuration planes of LUT3 in
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Figure 12. Number of different configuration
planes and the size for a multi-context multi-
granularity LUT

Fig. 13(b) store the same configuration data for O3 that is
repeated in contexts 1 and 2.

Figure 14 shows the mapping of the DFGs into locally
controlled MCMG-LUTs to achieve area efficiency. The
DFGs are redrawn as shown in Fig. 14(a) where nodes O2
and O3 are shared between contexts 1 and 2, and the shared
nodes are combined as O5. Figure 14(b) shows that two lo-
cally controlled MCMG-LUTs are sufficient to map the re-
drawn DFG compared to three globally controlled MCMG-
LUTs shown in Fig. 13(b). Each locally controlled MCMG-
LUT has a programmable size-controller that causes area
overhead if a dedicated controller is used. To reduce the area
overhead, the RCM is used to form the controller that is only
required when there are different configuration planes.
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5. Evaluation

The proposed MC-FPGA using the RCM and adaptive
multi-context logic blocks is compared with a typical MC-
FPGA. The typical MC-FPGA uses switch blocks and logic
blocks with fixed context memory. Let us assume that the
number of contexts is four and 6-input 2-output MCMG-
LUTs are used. The percentage of changes in configuration
data between contexts is assumed to be 5% based on the fact
that less than 3 % of new configuration memory bits are dif-
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Figure 14. Mappping of a DFG into locally
controlled MCMG-LUTs

ferent from those already in the configuration memory [4].
Under a constraint of the same number of contexts, an area
of the proposed MC-FPGA is 45% of the area of the typi-
cal MC-FPGA.

The RCM can be implemented area-efficiently by us-
ing ferroelectric-based functional pass-gates (FePGs) [5] as
SEs. FePGs are compact because logic and storage func-
tions are merged at the device level. FePGs can also re-
duce static power consumption because configuration data
are stored in non-volatile ferroelectric devices. Figure 15
shows the circuit of an FePG, its equivalent CMOS circuit
and its truth table. Same as an SE, an FePG selects a con-
stant or a variable input depending on contents of two mem-
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ory bits. The area of an FePG-based SE is 50% of that of a
CMOS-based SE. The area of the proposed MC-FPGA us-
ing FePG-based SEs is estimated to be 37% of that of a typ-
ical CMOS-based MC-FPGA.

6. Conclusion

An MC-FPGA architecture using reconfigurable context
memory and adaptive multi-context logic blocks is pro-
posed to reduce overhead of configuration memory. Map-
ping tools that exploit regularity and redundancy of config-
uration bits will be investigated in the future to support the
architecture.
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