Effects of Extra- and Intracellular Ca Deprivation on ^<45>Ca Efflux and Amylase Release from Perifused Mouse Pancreatic Segments | 著者 | KATOH Kazuo | |-------------------|---| | journal or | Tohoku journal of agricultural research | | publication title | | | volume | 45 | | number | 3/4 | | page range | 61-68 | | year | 1995-03-31 | | URL | http://hdl.handle.net/10097/29960 | Tohoku Journal of Agricultural Research Vol. 45 No. 3-4, March 1995 Printed in Japan ## Effects of Extra- and Intracellular Ca Deprivation on ⁴⁵Ca Efflux and Amylase Release from Perifused Mouse Pancreatic Segments #### Kazuo Katoh Department of Animal Physiology, Tohoku University, Faculty of Agriculture, Tsutsumidori Amamiyamachi, Aoba-ku, Sendai 981, Japan (Received, January 31, 1995) ### Summary The present experiment was carried out to investigate the role of $\mathrm{Ca^{2^+}}$ release from intracellular stores and $\mathrm{Ca^{2^+}}$ entry from extracellular medium on amylase release and $^{45}\mathrm{Ca^{2^+}}$ efflux in response to stimulation with a submaximal $(1.1\times10^{-7}\,\mathrm{M})$ and a supramaximal $(5.5\times10^{-6}\,\mathrm{M})$ concentration of ACh in mouse pancreatic segments loaded with $^{45}\mathrm{CaCl_2}$. To deplete extracellular $\mathrm{Ca^{2^+}}$, or extracellular and internally stored $\mathrm{Ca^{2^+}}$, the tissue segments were incubated in a $\mathrm{Ca^{2^+}}$ -free medium containing EGTA $(10^{-4}\,\mathrm{M})$, or EGTA and a calcium ionophore, A23187 $(2\times10^{-6}\,\mathrm{M})$, for 20 min after loading $^{45}\mathrm{CaCl_2}$. ACh at both concentrations significantly (P<0.05) caused a sustained increase in amylase release and transient $^{45}\mathrm{Ca}$ efflux. $\mathrm{Ca^{2^+}}$ depletion with EGTA and A23187 significantly (P<0.05) reduced an ACh-induced increase in amylase release and $^{45}\mathrm{Ca}$ efflux. After an extended period, $\mathrm{Ca^{2^+}}$ depletion with EGTA and A23187 completely abolished increases in amylase release and $\mathrm{Ca^{2^+}}$ efflux induced by ACh at a submaximal concentration. Application of $\mathrm{CaCl_2}$ to increase medium $\mathrm{CaCl_2}$ concentration up to 2.56 mM caused a significant (P<0.05) and sustained increase in amylase release and $^{45}\mathrm{Ca}$ efflux. These data suggest that amylase release induced by stimulation with ACh is dependent on Ca²⁺ transiently released from intracellular stores and long-lasting Ca²⁺ entry from the medium in mouse pancreatic acinar cells. #### Introduction It is well established that Ca^{2+} plays a crucial role in stimulus-secretion coupling (1). Agonist-stimulated cytoplasmic Ca^{2+} signals have a complex spatial and temporal regulation, known as Ca^{2+} wave and oscillation, respectively (2). The stimulus-induced cytoplasmic Ca^{2+} signal is evoked by Ca^{2+} entry through Ca^{2+} channels and/or by release of Ca^{2+} from intracellular Ca^{2+} stores 62 K. Katoh including those in the endoplasmic reticulum. Furthermore, regulation of Ca²⁺ release from intracellular stores is controlled by two distinct Ca²⁺ channels which are opened by inositol trisphosphate (IP3) and ryanodine, although the Ca²⁺ entry mechanism remains unclear (3). In the present experiment, dynamic changes of amylase release and ⁴⁵Ca²⁺ efflux from intracellular stores in response to ACh stimulation were investigated to assess the role of extra- and intracellular Ca²⁺ to cause amylase release from mouse pancreatic segments. #### Materials and Methods A calcium ionophore, A23187, was purchased from Sigma (St. Louis, MO). $^{45}\mathrm{CaCl_2}$ (1.2 GBq/mg Ca) was purchased from Amersham. Ethylene glycol-O, O'-bis (2-aminoethyl)-N, N, N', N'-tetraacetic acid (EGTA) and other reagents used were highest grade products of Wako Pure Chem. The pancreas was isolated from female mice (ddY) and cut into small pieces with a pair of fine scissors at room temperature in an oxygenated Krebs-Henseleit solution (125 mM NaCl, 4.7 mM KCl, 25 mM NaHCO₃, 1.13 MgCl₂, 2.56 mM CaCl₂, 2.8 mM D-glucose, 4.9 mM Na pyruvate, 4.9 mM Na glutamate and 2.7 mM Na fumalate) with 5% CO₂ and 95% O₂ gas. The procedure for the measurement of 45 Ca efflux was, in principle, similar to that previously reported by Matthews et al. (4) and Case and Clausen (5). The segments were perifused after being loaded with 45 CaCl₂ as described below. That is, tissue segments of about 250 mg were incubated for 1 hr at 37°C in 10 ml Krebs-Henseleit solution containing 45 CaCl₂ (740 KBq). The segments were then dipped in "cold" Krebs-Henseleit solution on a sheet of gauze to wash out the isotope, and placed into a flow chamber (1.0 ml) which was perifused with a Krebs-Henseleit solution or a modified solution (Ca-free solution containing EGTA (10^{-4} M) and/or A23187 (2×10^{-6} M)) using a peristaltic tube pump at a flow rate of 1 ml/min. After 15-min pre-perifusion, effluent samples were collected at 1 min intervals using a fraction collector. Stimulation was made by superfusing the tissue segments with a solution containing ACh at a sub-(1.1×10^{-7} M) or a supramaximal (5.5×10^{-6} M) concentration. At the end of each experiment, tissue segments were weighed and solubilized for 2 days in 1 ml solubilizing solution (NCS, Amersham). ⁴⁵Ca specific activity (cpm) in effluent samples or solubilized tissues was measured with a liquid scintillation counter (Aloka, LSC-751). ⁴⁵Ca efflux (rate coefficient) was calculated from the following formula: ⁴⁵Ca efflux (min⁻¹)= $$\Delta X/\Delta t \cdot Xt$$ where ΔX represents 45 Ca (cpm) released in the time interval Δt , and Xt the tissue ⁴⁵Ca content (cpm) at the mid-point of interval ⊿t (1 min). Amylase concentration was determined by the method previously reported (6) using $100 \,\mu l$ of effluent samples, and amylase release (u/g/min) was calculated from amylase concentration, flow rate of perifusion (1 ml/min) and wet weight of tissue segments used. The results are represented as mean \pm S.E. (n=3). Statistical analysis was made by Student's t-test. #### Results The effects of deprivation of extra- and intracellular Ca²⁺ on amylase release and ⁴⁵Ca efflux from pancreatic segments loaded with ⁴⁵CaCl₂ are depicted in Fig. 1 and 2. As shown in Fig. 1A, stimulation with a submaximal concentration of ACh $(1.1\times10^{-7}\,\mathrm{M})$ for 5 min caused a rise in amylase release in the control solution from 29.9 ± 1.0 (at 0 min) to 60.9 ± 2.2 (the peak value at 4 min post-stimulation) u/g/min, in a Ca-free solution containing EGTA $(10^{-4}\,\mathrm{M})$ from 39.3 ± 1.9 to 64.1 ± 1.6 (at 3 min post-stimulation) u/g/min and a Ca-free solution containing EGTA and A23187 $(2\times10^{-6}\,\mathrm{M})$ from 31.2 ± 2.0 to 35.9 ± 0.9 (at 3 min post-stimulation) u/g/min, respectively. The increment in amylase release stimulated with ACh in a Ca-free solution containing EGTA and A23187 to decrease both extra- and intracellular concentrations was suppressed to 15.2% of the control, being statistically significant (P<0.01). The increment in amylase release stimulated with ACh in a Ca-free solution containing EGTA to decrease mainly the extracellular concentration was suppressed to 80.0% of the control, but was not statistically significant (P>0.05). Stimulation with a submaximal concentration of ACh concurrently caused a rise in 45 Ca efflux (rate coefficient) (Fig. 1B), time reaching a peak value after stimulation which coincided with that of the amylase increment. 45 Ca efflux in the control solution increased from 0.0233 ± 0.0008 (at 0 min) to 0.0395 ± 0.0017 (at 4 min post-stimulation)/min, in a Ca-free solution containing EGTA from 0.0242 ± 0.0007 to 0.0369 ± 0.0011 (at 3 min post-stimulation)/min and in a Ca-free solution containing EGTA and A23187 from 0.0303 ± 0.0012 to 0.0330 ± 0.0024 (at 3 min post-stimulation)/min, respectively. The increment in 45 Ca efflux stimulated with ACh in a Ca-free solution containing EGTA and A23187 to decrease both extra- and intracellular concentrations was suppressed to 16.5% of the control, which was statistically significant (P < 0.01). On the other hand, the increment in 45 Ca efflux stimulated with ACh in a Ca-free solution containing EGTA to decrease mainly the extracellular concentration, was suppressed to 77.4% of the control, but was not statistically significant (P > 0.05). Stimulation with a supramaximal concentration of ACh (5.5×10⁻⁶ M) for 5 64 Fig. 1. Effects of ACh stimulation $(1.1\times10^{-7}\ M)$ on amylase release (A) and 45 Ca efflux (rate coefficient) (B) from 45 CaCl₂-loaded mouse pancreatic segments in the control solution containing 2.56 mM CaCl₂ (\bullet), in a Ca-free solution containing EGTA ($10^{-4}\ M$) (\circ), or in a Ca-free solution containing EGTA ($10^{-4}\ M$) and A23187 ($2\times10^{-6}\ M$) (\triangle). ACh stimulation period (5 min) is shown as a rectangle in B. The results are represented as mean \pm S.E. (n=3). Fig. 2. Effects of ACh stimulation (5.5×10⁻⁶ M) on amylase release (A) and ⁴⁵Ca efflux (rate coefficient) (B) from ⁴⁵CaCl₂-loaded mouse pancreatic segments in the control solution containing 2.56 mM CaCl₂ (♠), in a Ca-free solution containing EGTA (10⁻⁴ M) (○), or in a Ca-free solution containing EGTA (10⁻⁴ M) and A23187 (2×10⁻⁶ M) (△). ACh stimulation period (5 min) is shown as a rectangle in B. The results are represented as mean ± S.E. (n=3). min caused a rise in amylase release in the control solution (Fig. 2A) from 35.0 ± 0.4 (at 0 min) to 80.7 ± 7.1 (the peak value at 3 min post-stimulation) u/g/min, in a Ca-free solution containing EGTA from 32.5 ± 0.3 to 73.5 ± 0.9 (at 3 min post-stimulation) u/g/min and a Ca-free solution containing EGTA and A23187 from 32.7 ± 1.6 to 65.6 ± 4.2 (at 3 min post-stimulation) u/g/min, respectively. The value for amylase release at 10 min post-stimulation (51.1 ± 3.2 u/g/min) was still significantly (P<0.05) greater than that at 0 min, although a transient increment in 45 Ca efflux ceased. The increment in amylase release stimulated with ACh in a Ca-free solution containing EGTA, or both EGTA and A23187 was suppressed to 89.7 or 72% of the control, the latter being statistically significant (P<0.05). On the other hand, stimulation with a supramaximal concentration of ACh concurrently caused a transient rise in 45 Ca efflux (rate coefficient) (Fig. 2B), time reaching a peak value at 3 min post-stimulation which coincided with that of the amylase increment. 45 Ca efflux in the control solution increased from 0.0229 ± 0.0004 (at 0 min) to 0.0770 ± 0.0039 (at 3 min post-stimulation)/min, in a Ca-free solution containing EGTA from 0.0218 ± 0.0002 to 0.0724 ± 0.0018 /min and in a Fig. 3. Effects of extra- and intracellular Ca²⁺ deprivation and addition of 2.56 mM CaCl₂ into a Ca-free solution on amylase release (○) and ⁴⁵Ca efflux (rate coefficient) (●) in response to ACh stimulation (1.1×10⁻⁷ M) in ⁴⁵CaCl₂-loaded mouse pancreatic segments. The tissue segments had been incubated for 50 min in a Ca-free solution containing EGTA (10⁻⁴ M) and A23187 (2×10⁻⁶ M) before ACh stimulation after ⁴⁵CaCl₂ loading. The segments were stimulated with ACh in a Ca-free solution containing EGTA and A23187, then the CaCl₂ concentration of the medium was raised to 2.56 mM. The results are represented as mean ± S.E. (n=3). ⁴⁵Ca rate coefficient $(\times 10^{-3}$ /min; \bullet) Ca-free solution containing EGTA and A23187 from 0.0281 ± 0.0018 to $0.0636 \pm 0.0033/\text{min}$, respectively. The increment in ^{45}Ca efflux stimulated with ACh in a Ca-free solution containing EGTA, or both EGTA and A23187 was suppressed to 93.5 or 65.6% of the control, the latter being statistically significant (P < 0.05). The effects of Ca application to a medium on amylase release and 45 Ca efflux in response to ACh stimulation was investigated in tissue segments deprivated of extra- and intracellular calcium by incubation in a Ca-free solution containing EGTA and A23187 for an extended period (50 min before stimulation). In this experiment, a submaximal ACh concentration was used because an increment in 45 Ca efflux was more easily suppressed in response to the submaximal ACh concentration than the supramaximal concentration as shown in Figs. 1 and 2. Stimulation with ACh $(1.1\times10^{-7} \,\mathrm{M})$ in the tissue segments incubated in a Ca-free solution containing EGTA and A23187 did not cause a rise in both amylase release and 45 Ca efflux (Fig. 3). After 5 min in the presence of ACh stimulation, the application of CaCl₂ into a medium to increase Ca²⁺ concentration up to 2.56 mM, which caused a significant (P < 0.05) and sustained increase in amylase release from 28.5 ± 3.7 (at 5 min) to 40.9 ± 2.8 (at 10 min) u/g/min and 45 Ca efflux from 0.0208 ± 0.006 to $0.0267\pm0.0013/$ min (at 8 min post-stimulation). #### Discussion It has been reported that digestive enzyme release and fluid secretion depend on the existence of Ca²⁺ in a medium (7-10). As described in the **Introduction**, an increase in intracellular Ca²⁺ concentration is caused both by Ca²⁺ entry from a medium and by release from intracellular stores. It was Petersen and Ueda (7) who showed the important role of Ca²⁺ entry for amylase release stimulated with ACh in rat pancreatic segments. Furthermore, an increase in ⁴⁵Ca²⁺ efflux means the release of Ca²⁺ from intracellular stores in response to agonists, and also coincides with digestive enzyme release (4, 5). We previously showed that increases in amylase release and ⁴⁵Ca²⁺ efflux induced by a variety of agonists, except VIP and secretin which activate the cyclic-AMP system, were dose-dependent and both are well coincided in mouse pancreatic segments (11). Furthermore, amylase increment is sustained while that of ⁴⁵Ca²⁺ efflux is transient as shown in Fig. 2 and our previous report (11). The increased amylase release is sustainable because of the dependence on Ca²⁺ released from stores and entry through the plasma membrane. The present data show that a small decrease of extracellular Ca²⁺ rarely affects Ca²⁺ release induced by ACh stimulation from intracellular stores, although Ca²⁺ decreases in both the medium and intracellular stores by incubation for an extended period in Ca²⁺-free solution containing EGTA and A23187, completely abolished ACh-induced responses. Application of Ca²⁺ into a 68 K. Katoh medium caused a sustained amylase release, which coincides with previous results by Petersen and Ueda (7). However, Ca²⁺ efflux was also concurrently increased with amylase release. The reason for the result is not clear at present, but suggests that a part of the Ca²⁺ stored intracellularly might be exchangeable with a new portion of Ca²⁺ in the medium, or Ca²⁺ bound to digestive enzymes is released in response to ACh stimulation. The present data show that amylase release induced by stimulation with ACh is dependent on Ca²⁺ transiently released from intracellular stores and long-lasting Ca²⁺ entry from a medium. #### References - Petersen, O.H., Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. *Journal of Physiology*, 448, 1-51 (1992). - 2) Miyazaki, S., IP₃ receptor-mediated spatial and temporal Ca²⁺ signaling of the cell. *Japanese Journal of Physiology*, 43, 409-434 (1993). - 3) Berridge, M.J., A tale of two messengers, Nature, 365, 368-369. (1993). - 4) Matthews, E.K., Peterse, O.H. and Williams, J.A., Pancreatic acinar cells: acetylcholine induced membrane depolarization, calcium efflux and amylase release. *Journal of Physiology*, **234**, 689-701 (1973). - 5) Case, R.M. and Clausen, T., The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas. *Journal of Physiology*, **235**, 75-83 (1973). - 6) Katoh, K and Tsuda, T., Effects of acetylcholine and short-chain fatty acids on acinar cells of the exocrine pancreas of sheep. *Journal of Physiology*, **356**, 479-489 (1984). - 7) Petersen, O.H. and Ueda, N., Pancreatic acinar cells: the role of calcium in stimulus-secretion coupling. *Journal of Physiology*, **254**, 583-606 (1976). - 8) Argent, B.E., Case, R.M. and Scratchard, T., Amylase secretion by the perfused cat pancreas in relation to the secretion of calcium and other electrolytes and as influenced by the external ionic environment. *Journal of Physiology*, 230, 575-583 (1973). - 9) Williams, J.A. and Chandler, D.E., Ca⁺⁺ and pancreatic amylase release. American Journal of Physiology, 228 (6), 1729-1735 (1975). - 10) Kanno, T. and Nishimura, O., Stimulus-secretion coupling in pancreatic acinar cells: inhibitory effects of calcium removal and manganese addition on pancreozymine-induced amylase release. *Journal of Physiology*, 257, 309-319 (1976). - 11) Katoh, K. and Nishiyama, A., ⁴⁵Ca²⁺ efflux and amylase release from pancreatic fragments of mouse and rat. *Tan to Sui*, **3**, 1465–1473 (1982).