Transfer of Carbon from Short-Chain Fatty Acids to Glucose and Lipids in Rumen Epithelium of Cow | 著者 | SETO Katsuo, NEGORO Hideo, KIMURA Fukuko,
OTSUKA Keiko, YANASE Masahiro, FUJII
Hiroshi, KAWAKAMI Masazumi, SAITO Hideo,
KIKUCHI Akie, YAMAJI Mizuko, TSUDA
Tsuneyuki | |-------------------|--| | journal or | Tohoku journal of agricultural research | | publication title | | | volume | 22 | | number | 4 | | page range | 207-218 | | year | 1972 | | URL | http://hdl.handle.net/10097/29615 | # Transfer of Carbon from Short-Chain Fatty Acids to Glucose and Lipids in Rumen Epithelium of Cow Katsuo Seto, Hideo Negoro, Fukuko Kimura, Keiko Otsuka*, Masahiro Yanase, Hiroshi Fujii** and Masazumi Kawakami Second Department of Physiology, Yokohama City University, School of Medicine, Yokohama, Japan ## Hideo Saito and Akie Kikuchi Department of Physiology, Kanagawa Prefectural College of Medical Technology, Yokohama, Japan Mizuko Yamaji and Tsuneyuki Tsuda Department of Animal Science, Faculty of Agriculture, Tohoku University, Sendai, Japan (Received, Sept. 4, 1971) #### Summary Ruminants produce large amounts of short-chain fatty acids in their rumen which, during absorption through rumen epithelium, are partly converted into other substances. The present study was designed to elucidate how is transformation is influenced by the presence of glucose or some glucose metabolites. Statistics were obtained on the transfer of ¹⁴C to glucose, lipids and CO₂ from ¹⁴C-acetate, -propionate, and -butyrate with the use of the rumen epithelium of cow, in vitro. - 1. Carbon from the propionate was incorporated into the glucose to a greater extent than carbon from other substrates; carbon from butyrate was converted into lipids and CO_2 to a greater extent than carbon from other substrates. - 2. Glucose labeling from acetate and propionate was decreased by the addition of glucose and phosphoenolpyruvate; lipid synthesis and CO₂ production from acetate and propionate was increased by the addition of glucose and phosphoenolpyruvate. - 3. There was no apparent affect on the transfer of carbon from butyrate to glucose, lipid, or CO₂ when glucose, pyruvate, phosphoenolpyruvate or lactate were added to the system. From these results and those previously obtained, it may be deduced that the glucose-phosphoenolpyruvate system affects acetate and propionate metabolism, but there appears to be no relationship between butyrate metabolism and glycolysis in rumen epithelium. Present Address *Kekio Otsuka, Second Department of Internal Medicine, Yokohama City University, School of Medicine, Yokohama, Japan. ** Hiroshi Fujii, Department of Urology, Yokohama City University, School of Medicine, Yokohama, Japan. It is generally accepted that large quantities of short-chain fatty acids in the rumen are absorbed through the rumen epithelium and many experiments have shown that some parts of the short-chain fatty acids are converted into ketone bodies (1, 2, 3), succinate (4, 5), malate (4), lactate (4, 5), fumarate (4), citrate (6), pyruvate (5), lipids (5, 7) and CO_2 (7, 8) in rumen epithelium of ruminants. It has also been recognized that enzymes affecting carbohydrate and lipid metabolism are present in rumen epithelium of bovine (9). But there is not sufficient evidence to evaluate their role in glucose formation from short-chain fatty acids in rumen epithelium. This paper reports our investigation on the glucose formation from ¹⁴C-short chain fatty acids in rumen epithelium of cow. It also presents data on lipid synthesis and CO₂ production from short-chain fatty acids in the presence of glucose and its metabolites. #### Methods and Material Fresh cow rumen epithelium was obtained from the slaughter house. It was separated from the muscle layer and cut into pieces of about $1\times1\times0.3$ cm. Incubation was carried out in 50 ml Erlenmyer flasks fitted with 2 ml center wells. To each flask was added 2 g of rumen epithelium, 10 ml of Krebs-Ringer bicarbonate buffer pH 7.2, and 100 μ moles (1 μ C) of ¹⁴C labelled sodium acetate, propionate, or butyrate. The flasks were closed with serum caps after gassing with O_2+CO_2 (95:5). Three flasks were incubated for each animal to allow for separate assays of glucose, lipid, and CO_2 . Incubations were carried out for 3 hrs. at 38°C with a shaking rate of 100 strokes/minute. Glucose was isolated as the glucose pentaacetate from the incubation medium by Jone's method (10). Total lipid was extracted from the tissue and medium with a mixture of chloroform and methanol (2:1), followed by aqueous washing of the extract as described by Folch, Lees and Sloane-Stanley (11). lipid fraction was effected on silicic acid columns. Successive fractions were eluted with 2 per cent ethyl ether in n-hexane (fraction A), 10 per cent ethyl ether in n-hexane (fraction B), 50 per cent ethyl ether in n-hexane (fraction C), 25 per cent methanol in ethyl ether (discarded), and pure methanol (fraction D). Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol and phospholipid, respectively. To trap the CO₂, 1 ml of Hyamine was injected into the center well of the Erlenmyer flask and $0.5~\mathrm{ml}$ of $10~\mathrm{N}~\mathrm{H}_2\mathrm{SO}_4$ into the medium. Then the flasks were shaken 30 minutes in ice prior to quantitative removal of the Hyamine for estimation of total radioactivity in the trapped CO_2 . The total radioactivity in each of these fractions was measured by using 15 ml of a scintillation system in toluene composed of 0.01 per cent POPOP and 0.5 per cent PPO by the liquid scintillation counter. Nitrogen determinations in rumen pithelium were carried out by the micro-Kjeldahl method. Results are expressed s mean μ mC/3hr/g of tissue nitrogen±standard deviation (S.D.). # Results and Discussion 1. The formation of $^{14}\mathrm{C}\text{-glucose},~^{14}\mathrm{C}\text{-lipids}$ and $^{14}\mathrm{CO}_2$ from $^{14}\mathrm{C}\text{-short-chain}$ acids The first investigation was made on the utilization of ¹⁴C-1-acetate, ¹⁴C-2-cetate, ¹⁴C-1-propionate, ¹⁴C-2-propionate, ¹⁴C-1-butyrate, ¹⁴C-2-butyrate, and ¹²C-3-butyrate, in order to observe what parts of the short-chain fatty acids were onverted into each fraction. As shown in Table 1, ¹⁴C from all positions of acetate, propionate, and butyate was converted into glucose, lipids and CO₂. ¹⁴C-Propionate was incorporated ato glucose to a greater extent than acetate or butyrate. Acetate, propionate and utyrate labeled in the C-2 position produced more ¹⁴C-glucose than those labelled a other positions. These results were almost the same as in the case of sheep-liver ices (12). Table 1. Formation of ¹⁴C-Glucose, ¹⁴C-Lipid and ¹⁴CO₂ from ¹⁴C-Short-Chain Fatty Acids in Rumen Epithelium of Cow | | | | 14C I | ncorporate | d into | | | |------------------------------|---------------------|----------------|--------------|--------------|--------------|--------------|---------------| | Substrate | Glucose | Total
Lipid | Fraction Aa) | Fraction Ba) | Fraction Ca, | Fraction Ca) | CO2 | | ¹⁴ C-1-Acetate | 9.4 | 68.8 | 2.8 | 11.4 | 4.8 | 38. 2 | 290.3 | | | ±0.8 ^b) | ±3.5 | ±0.3 | ±0.6 | ±0.5 | ±1. 1 | ±6.3 | | ¹⁴ C-2-Acetate | 18.7 | 92.5 | 5. 2 | 12. 8 | 6.5 | 56. 1 | 98.6 | | | ±1.1 | ±3.1 | ±0. 2 | ±0. 9 | ±0.8 | ±3. 4 | ±3.5 | | ¹⁴ C-1-Propionate | 32.5
±2.1 | 17.1
±0.8 | Tc) | 4.8
±0.5 | T | 9.4
±0.6 | 153.6
±7.4 | | ¹⁴ C-2-Propionate | 61. 2
±2. 4 | 29.3
±1.9 | T | 5.1
±0.8 | T | 22.5
±0.9 | 28.7
±1.4 | | ¹⁴ C-1-Butyrate | 15.7 | 118.3 | 6. 1 | 14.3 | 8.4 | 68.6 | 961. 0 | | | ±0.9 | ±2.4 | ±0. 5 | ±1.0 | ±0.6 | ±4.9 | ±23. 2 | | ¹⁴ C-2-Butyrate | 25.4 | 170.9 | 7. 2 | 32. 0 | 9. 1 | 104. 1 | 214. 2 | | | ±1.6 | ±4.9 | ±0. 7 | ±1. 7 | ±0. 5 | ±4. 3 | ±9. 7 | | ¹⁴ C-3-Butyrate | 16. 1 | 115. 1 | 5.2 | 15.5 | 8. 1 | 69. 0 | 414.4 | | | ±0. 5 | ±3. 5 | ±0.3 | ±1.0 | ±0. 7 | ±5. 1 | ±16.8 | a) Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. c) Trace, b) Mean μ mC per g of tissue N±S.D. in 10 animals. ¹⁴C-Butyrate gave rise to more highly labelled lipids than ¹⁴C-acetate, and the lipid labelling from ¹⁴C-propionate was very low. ¹⁴C labelling of phospholipids from all ¹⁴C-acetate, propionate and butyrate was considerably higher than any other lipid fractions. These relationships were also seen with sheep rumen epithelium (6, 7, 13). ¹⁴C-2-labelled acetate and butyrate produced more ¹⁴C-lipids than those labelled in other positions. ¹⁴C-butyrate produced the greatest level of ¹⁴CO₂, exceeding acetate, while ¹⁴CO₂ production from ¹⁴C-propionate was the lowest. These results were essentially similar to sheep rumen epithelium (6, 7, 13). As expected, ¹⁴C-1-labelled acetate, propionate and butyrate produced more ¹⁴CO₂ than those labelled in other positions. These tendencies were the same as in the case of sheep liver slices (12). 2. The influences of glucose and its metabolite upon the formation of ¹⁴C-glucose, ¹⁴C-lipids and ¹⁴CO₂ from ¹⁴C-acetate It has been shown that the metabolism of short-chain fatty acids and glucose have interacting effects in rumen epithelium (7), liver slices (14) and mammary gland slices (15) of ruminants. Therefore, an investigation was made on the effect of glucose, and some of its metabolites, pyruvate, phosphoenolpyruvate and lactate, upon the formation of ¹⁴C-glucose, ¹⁴C-lipids and ¹⁴CO₂ from ¹⁴C-short-chain fatty acids. As shown in Table 2, the ¹⁴C-glucose formation from ¹⁴C-1-acetate and ¹⁴C-2-acetate was decreased by the addition of glucose. The incorporation of ¹⁴C-1- | TABLE 2. | Effect of Glucose on Formation of 14C-Glucose, 14C-Lipid and 14CO2 from | |----------|---| | | ¹⁴ C-Acetate in Rumen Epithelium of Cow | | | | • | 14C I | corporate | d into | | | |---------------------------|---------------------|----------------|---------------------------|--------------|--------------|--------------|--------| | Substrate | Glucose | Total
lipid | Fraction A ^a) | Fraction Ba) | Fraction Ca, | Fraction Da) | CO_2 | | ¹⁴ C-1-Acetate | 10.1 | 69.6 | 3.4 | 12.4 | 5.1 | 36.9 | 298. 1 | | | ±1.1 ^b) | ±4.4 | ±0.7 | ±0.7 | ±0.6 | ±1.5 | ±8. 2 | | +glucose ^c) | 5.8 | 86.1 | 4.1 | 13.7 | 5.8 | 44.8 | 374.5 | | | ±0.7 | ±3.6 | ±0.8 | ±1.0 | ±0.4 | ±1.2 | ±15.8 | | ¹⁴ C-2-Acetate | 19.3 | 95.3 | 5.9 | 14.1 | 6.3 | 53. 9 | 97.5 | | | ±1.2 | ±3.9 | ±0.9 | ±0.8 | ±0.6 | ±2. 8 | ±3.7 | | +glucose ^c) | 12.6 | 117.3 | 6.3 | 17. 9 | 9. 0 | 69.4 | 118.0 | | | ±0.9 | ±5.2 | ±0.5 | ±1. 2 | ±0. 7 | ±4.2 | ±4.5 | a) Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. b) Mean μ mC per g of tissue N±S.D. in 10 animals. c) 100 μ moles of cold glucose added into incubation flask. Table 3. Effect of Pyruvate on Formation of ¹⁴C-Glucose, ¹⁴C-Lipid and ¹⁴CO₂ from ¹⁴C-Acetate in Rumen Epithelium of Cow | | | 14C Incorporated into | | | | | | | | | | |---------------------------|-----------------------------|-----------------------|--------------|---------------------------|--------------|--------------|-----------------|--|--|--|--| | Substrate | Glucose | Total
lipid | Fraction Aa) | Fraction B ^a) | Fraction Ca) | Fraction Da) | CO_2 | | | | | | ¹⁴ C-1-Acetate | 10.3
±0.7 ^b) | 72.5 ± 4.0 | 3.7
±0.9 | 13.4
±0.5 | 3.8
±0.7 | 37.5
±1.9 | 296. 8
±9. 3 | | | | | | 14C-1-Acetate | 9.6 | 56.1 | 2.8 | 8.2 | 3.1 | 21. 1 | 231. 9 | | | | | | +pyruvate ^c) | ±0.4 | ±3.9 | ±0.7 | ±0.4 | ±0.5 | ±1. 3 | ±7. 1 | | | | | | ¹⁴ C-2-Acetate | 21.4 | 101.6 | 6.3 | 13.9 | 6.9 | 49.2 | 103.3 | | | | | | | ±1.2 | ±4.3 | ±0.6 | ±0.9 | ±0.3 | ±3.0 | ±5.1 | | | | | | 14C-2-Acetate | 21. 1 | 84.4 | 4.1 | 11. 2 | 4.8 | 31. 8 | 64. 1 | | | | | | +pyruvate ^c) | ±0. 9 | ±5.1 | ±0.3 | ±0. 8 | ±0.5 | ±2. 2 | ±3. 7 | | | | | - a) Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. - b) Mean μ mC per g of tissue N±S.D. in 10 animals. - c) $100 \mu \text{moles}$ of cold pyruvate added into incubation flask. Table 4. Effect of Phosphoenolpyruvate (PEP) on Formation of ¹⁴C-Glucose, ¹⁴C-Lipid and ¹⁴CO₂ from ¹⁴C-Acetate in Rumen Epithelium of Cow | | ¹⁴ C Incorprated into | | | | | | | | | | |---------------------------|----------------------------------|----------------|--------------|--------------|--------------|--------------|--------|--|--|--| | Substrate | Glucose | Total
lipid | Fraction Aa) | Fraction Ba) | Fraction Ca) | Fraction Da) | CO_2 | | | | | ¹⁴ C-1-Acetate | 9.6 | 71.9 | 3.9 | 13.6 | 4.9 | 40.2 | 301.6 | | | | | | ±0.7 ^b) | ±4.7 | ±0.4 | ±0.9 | ±0.2 | ±1.7 | ±10.4 | | | | | +PEPc) | 6.2 | 89.7 | 4.3 | 14.8 | 6. 1 | 48.3 | 366.4 | | | | | | ±0.5 | ±2.9 | ±0.7 | ±1.1 | ±0. 5 | ±2.1 | ±11.6 | | | | | ¹⁴ C-2-Acetate | 20.8 | 94.1 | 6. 1 | 14.8 | 7 3 | 56.8 | 106.8 | | | | | | ±1.4 | ±3.5 | ±0. 7 | ±1.0 | ±0.6 | ±3.4 | ±4.3 | | | | | 14C-2-Acetate | 15. 2 | 121. 1 | 6.9 | 18. 1 | 8.7 | 71. 3 | 121. 6 | | | | | +PEPc) | ±0. 9 | ±3. 7 | ±0.9 | ±1. 1 | ±0.7 | ±3. 9 | ±3. 6 | | | | - a) Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. - b) Mean μ mC per g of tissue N±S.D. in 10 animals. - c) 100 μ moles of cold phosphoenolpyruvate (PEP) added into incubation flask. acetate and ¹⁴C-2-acetate into lipids was slightly incressed by the addition of glucose. Unexpectedly, ¹⁴CO₂ production from ¹⁴C-1-acetate was increased by the glucose addition and the ¹⁴CO₂ production from ¹⁴C-2-acetate was slightly increased by the addition of glucose. As shown in Table 3, the addition of pyruvate had no effect on the formation of ¹⁴C-glucose from ¹⁴C-1-acetate and ¹⁴C-2-acetate. The incorporation of ¹⁴C-1- acetate and ¹⁴C-2-acetate into lipids and ¹⁴CO₂ production from ¹⁴C-1-acetate and ¹⁴C-2-acetate were slightly decreased by the addition of pyruvate. Thus, the pyruvate effects on the metabolism of acetate differed from those of glucose. As shown in Table 4, the appearance of ¹⁴C in glucose from ¹⁴C-1-acetate and ¹⁴C-2-acetate was slightly decreased by the addition of phosphoenolpyruvate. The incorporation of ¹⁴C-1-acetate and ¹⁴C-2-acetate into lipids was slightly increased by the addition of phosphoenolpyruvate. The ¹⁴CO₂ production from ¹⁴C-1-acetate was increased by the addition of phosphoenolpyruvate and also the ¹⁴CO₂ production from ¹⁴C-2-acetate was slightly increased by the addition of phosphoenolpyruvate. These effects of phosphoenolpyruvate on acetate metabolism were the same as the glucose effects. As shown in Table 5, there was no affect of lactate addition upon the transfer of ¹⁴C into glucose, lipids or CO₂ from ¹⁴C-1-acetate and ¹⁴C-2-acetate. Table 5. Effect of Lactate on Formation of ¹⁴C-Glucose, ¹⁴C-Lipid and ¹⁴CO₂ from ¹⁴C-Acetate in Rumen Epithelium of Cow | G 1 | | 14C Incorporated into | | | | | | | | | | |---------------------------|----------------------------|-----------------------|--------------|----------------|--------------|-------------------|------------------|--|--|--|--| | Substrate | Glucose | Total
lipid | Fraction Aa) | Fraction Ba) | Fraction Ca) | Fraction Da) | CO_2 | | | | | | ¹⁴ C-1-Acetate | 9.8
±1.3 ^b) | 67. 6
±5. 2 | 3.2
±0.7 | 13. 1
±1. 1 | 4.3
±0.7 | $37.1 \\ \pm 2.2$ | 286. 3
±15. 3 | | | | | | +lactate ^c) | 9.3 | 65. 1 | 3. 1 | 13.6 | 4.1 | 38. 3 | 290. 1 | | | | | | | ±1.1 | ±4. 9 | ±0. 6 | ±0.7 | ±0.8 | ±1. 6 | ±14. 1 | | | | | | ¹⁴ C-2-Acetate | 22. 9 | 92.4 | 4.8 | 15.4 | 6. 1 | 47.1 | 98. 1 | | | | | | | ±1. 7 | ±5.2 | ±0.9 | ±1.3 | ±0. 7 | ±4.5 | ±6. 1 | | | | | | +lactate ^c) | 23.4 | 96. 6 | 4. I | 14.3 | 6.7 | 48.7 | 104.6 | | | | | | | ±1.2 | ±6. 1 | ±0. 8 | ±1.2 | ±0.5 | ±4.1 | ±6.5 | | | | | a) Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. b) Mean μ mC per g of tissue N±S.D. in 10 animals. c) 100 μ moles of cold lactate added into incubation flask. The affect of glucose, pyruvate, phosphoenolpyruvate or lactate on the ¹⁴C-lipids synthesis and ¹⁴CO₂ production from ¹⁴C-l-acetate were almost the same as with sheep rumen epithelium (7). As reported previously, ketone body formation from acetate was suppressed by the addition of glucose and phosphoenolpyruvate, but pyruvate and lactate had no effect on the ketone body formation from acetate in the rumen epithelium of sheep (7) or cow (16). Glucose accelerated acetate oxidation but there was no effect of pyruvate and lactate on the acetate oxidation in rumen epithelium of cow (17). Therefore, it may be assumed that the glucose-phosphoenolpyruvate system has some role in acetate metabolism of rumen epithelium, but there is no apparent relationship between acetate metabolism and the metabolism of pyruvate and lactate. 3. The influences of glucose and its metabolites upon the formation of ¹⁴C-glucose, ¹⁴C-lipids and ¹⁴CO₂ from ¹⁴C-propionate As shown in Table 6, the ¹⁴C-glucose formation from ¹⁴C-1-propionate and ¹⁴C-2-propionate was decreased by the glucose addition, while the incorporation of ¹⁴C-1-propionate and ¹⁴C-2-propionate into lipids was increased by the addition Table 6. Effect of Glucose on Formation of ¹⁴C-Glucose, ¹⁴C-Lipid and ¹⁴CO₂ from ¹⁴C-Propionate in Rumen Epithelium of Cow | | | ¹⁴ C Incorporated into | | | | | | | |------------------------------|-----------------------------|-----------------------------------|--------------|---------------|--------------|----------------|------------------|--| | Substrate | Glucose | Total
lipid | Fraction Aa) | Fraction Ba) | Fraction Ca) | Fraction Ca, | CO_2 | | | ¹⁴ C-1-Propionate | 34.6
±1.8 ^b) | 15.9
±0.7 | Tc) | 3.9
±0.4 | Т | 9. 2
±0. 7 | 148.2
±9.1 | | | +glucose ^d) | 25.0
±1.7 | 22.1
±0.8 | T | 4.2
±0.3 | T | 14.4
±1.2 | 251.7 ± 11.7 | | | ¹⁴ C-2-Propionate | 64.2
±2.7 | 28.4
±1.2 | T | 4.7
±0.6 | T | 21. 7
±1. 1 | 31.7
±1.5 | | | +glucose ^d) | 51. 2
±2. 3 | 35.3
±1.6 | T | 6. 1
±0. 8 | T | 28. 1
±1. 0 | 42. 1
±1. 0 | | a) Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. of glucose. Unexpectedly, the ¹⁴CO₂ production from ¹⁴C-1-propionate and ¹⁴C-2-propionate also increased when glucose was added to the medium. As shown in Table 7, there was no effect of pyruvate addition on the transfer of ¹⁴C to glucose, lipids or CO₂ from ¹⁴C-1-propionate or ¹⁴C-2-propionate. These results show that pyruvate and glucose have different effect. As shown in Table 8, the transfer of ¹⁴C into glucose from ¹⁴C-1-propionate or ¹⁴C-2-propionate was decreased by the addition of phosphoenolpyruvate. The incorporation of ¹⁴C-1-propionate and ¹⁴C-2-propionate into lipids was slightly increased by the addition of phosphoenolpyruvate. The production of ¹⁴CO₂ from ¹⁴C-1-propionate and ¹⁴C-2-propionate was also increased by the addition of phosphoenolpyruvate. These results were the same as in the case of the glucose addition. As shown in Table 9, lactate addition had no effect on the formation of ¹⁴C-glucose, ¹⁴C-lipids and ¹⁴CO₂ from ¹⁴C-1-propionate and ¹⁴C-2-propionate. b) Mean μ mC per g of tissue N±S.D. in 10 animals. c) Trace. d) $100 \mu \text{moles}$ of cold glucose added into incubation flask. Table 7. Effect of Pyruvate on Formation of ¹⁴C-Glucose, ¹⁴C-Lipid and ¹⁴CO₂ from ¹⁴C-Propionate in Rumen Epithelium of Cow | _ | ¹⁴ C Incorporated into | | | | | | | | | |--|-----------------------------------|----------------|--------------|---------------------------|--------------|---------------|-----------------|--|--| | Substrate | Glucose | Total
lipid | Fraction Aa) | Fraction B ²) | Fraction Ca) | Fraction Ca) | CO^2 | | | | ¹⁴ C-1-Propionate | 33.8
±2.9 ^b) | 17.4
±1.1 | Tc) | 3.7
±0.8 | Т | 9.1
±0.8 | 150.9
±10.3 | | | | 14C-1-Propionate
+pyruvate ^d) | 34.7
±3.2 | 16.9
±1.4 | Т | 4.2
±0.9 | Т | 8. 9
±1. 0 | 148.7
±8.4 | | | | ¹⁴ C-2-Propionate | 61.6
±3.1 | 31.7
±2.4 | T | 5.3
±1.0 | Ť | 23.5
±1.3 | 30.4 ± 1.6 | | | | 14C-2-Propionate
+pyruvate ^d) | 60.4
±3.7 | 29. 1
±2. 1 | Т | 4.9
±0.7 | T | 22.6
±1.5 | 29.4
±1.8 | | | - a) Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. - b) Mean μ mC per g of tissue N±S.D. in 10 animals. - c) Trace. - d) 100 μ moles of cold pyruvate added into incubation flask. Table 8. Effect of Phosphoenolpyruvate (PEP) on Formation of ¹⁴C-Glucose, ¹⁴C-Lipid and ¹⁴CO₂ from ¹⁴C-Propionate in Rumen Epithelium of Cow | ~ | | | ¹⁴ C Incorporated into | | | | | | | |---|------------------------------|----------------|-----------------------------------|---------------|--------------|----------------|-----------------|--|--| | Substrate | Glucose | Total
lipid | Fraction Aa) | Fraction Ba) | Fraction Ca) | Fraction Da) | $\mathrm{CO_2}$ | | | | ¹⁴ C-1-Propionate | 31. 1
±1.5 ^b) | 16.9
±0.9 | Tc) | 3.2
±0.5 | ${f T}$ | 9.3
±0.5 | 149.4
±8.1 | | | | ¹⁴ C-1-Propionate
+PEP ^d) | 19.7
±1.1 | 23.5
±0.8 | T | 4.9
±0.3 | T | 16.2
±0.9 | 236.4
±10.8 | | | | ¹⁴ C-2-Propionate | 62. 2
±2. 3 | 31.4
±1.1 | Т | 5. 2
±0. 6 | T | 22. 1
±0. 8 | 29. 2
±1. 4 | | | | ¹⁴ C-2-Propionate
+PEP ^d) | 46.9
±2.6 | 36.2
±1.5 | T | 6.8
±0.5 | T | 28.5
±1.2 | 43.8
±1.6 | | | - a) Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. - b) Mean μ mC per g of tissue N±S.D. in 10 animals. - c) Trace. - d) 100 μ moles of cold phosphoenolpyruvate (PEP) added into incubation flask. As presented previously, the production of ¹⁴CO₂ from ¹⁴C-1-acetate was markedly increased by the addition of glucose and phosphoenolpyruvate, but pyruvate and lactate addition had no effect on the ¹⁴CO₂ production from ¹⁴C-1-propionate in rumen epithelium of sheep (7). This was also true for the glucose accelerated propionate oxidation in rumen epithelium of cow (17). | Q . | | · · · · · · · · · · · · · · · · · · · | ¹⁴ C Incorporated into | | | | | | | |---|-----------------------------|---------------------------------------|-----------------------------------|--------------|--------------|--------------|-----------------|--|--| | Substrate | Glucose | Total
lipid | Fraction Aa) | Fraction Ba) | Fraction C2) | Fraction Da) | CO ₂ | | | | ¹⁴ C-1-Propionate | 32.5
±2.8 ^b) | 18.0
±1.4 | Tc) | 3.6
±0.5 | T | 9.7
±0.8 | 147.3
±9.9 | | | | ¹⁴ C-1-Propionate
+lactate ^d) | 31.8
±3.0 | 18.4
±1.3 | Т | 3.7
±0.4 | T | 9.5
±0.4 | 141.1
±10.2 | | | | ¹⁴ C-2-Propionate | 62.5
±3.5 | 30.3
±2.1 | Т | 5.4
±0.6 | T | 21.4
±1.4 | 29.6
±1.7 | | | | ¹⁴ C-2-Propionate
+lactate ^d) | 63.4
±3.6 | 31.4 ± 2.3 | T | 5. 1
±0.4 | T | 22.6 | 30.1 | | | Table 9. Effect of Lactate on Formation of ¹⁴C-Glucose, ¹⁴C-Lipid and ¹⁴CO₂ from ¹⁴C-Propionate in Rumen Epithelium of Cow Therefore, it may be assumed that there was a very close relationship between propionate metabolism and the glucose-phosphoenolpyruvate system, but that pyruvate and lactate have no role in the propionate metabolism of rumen epithelium. 4. The influences of glucose and its metabolites upon the formation of $^{14}\mathrm{C}\text{-}$ glucose, $^{14}\mathrm{C}\text{-}lipids$ and $^{14}\mathrm{CO}_2$ from $^{14}\mathrm{C}\text{-}butyrate$ As shown in Table 10, the glucose addition had no effect on the transfer of ¹⁴C to glucose, lipids or CO₂ from ¹⁴C-1-butyrate, ¹⁴C-2-butyrate, or ¹⁴C-3-butyrate. These results differ from those obtained with ¹⁴C-acetate and ¹⁴C-propionate. As shown in Table 11, pyruvate addition had no effect on the transfer of ¹⁴C to glucose, lipids or CO₂ from ¹⁴C-1-butyrate, ¹⁴C-2-butyrate and ¹⁴C-3-butyrate; the same result was obtained with ¹⁴C-acetate and ¹⁴C-propionate. As shown in Table 12, the transfer of ¹⁴C to glucose, lipids or CO₂ from ¹⁴C-1-butyrate, ¹⁴C-2-butyrate and ¹⁴C-3-butyrate was not influenced by the addition of phosphoenolpyruvate. These results are different from the results with ¹⁴C-acetate and ¹⁴C-propionate. As shown in Table 13, lactate addition had no detectable affect on the transfer of ¹⁴C to glucose, lipids or CO₂ from ¹⁴C-1-butyrate, ¹⁴C-2-butyrate and ¹⁴C-3-butyrate. This result was also obtained with ¹⁴C-acetate and ¹⁴C-propionate. On the whole, the formation of ¹⁴C-glucose, ¹⁴C-lipids and ¹⁴CO₂ from ¹⁴C-butyrate was not influenced by the addition of glucose or its metabolites. As presented previously, the addition of glucose, pyruvate, phosphoenolpyruvate and a) Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. b) Mean μ mC per g of tissue N±S.D. in 10 animals. c) Trace. d) 100 μ moles of cold lactate added into incubation flask. Table 10. Effect of Glucose on Formation of ¹⁴C-Glucose, ¹⁴C-Lipid and ¹⁴CO₂ from ¹⁴C-Butyrate in Rumen Epithelium of Cow | | | | ¹⁴ C Inc | corporated | into | | | |----------------------------|---------------------|-----------------|---------------------------|---------------------------|----------------|---------------|------------------| | Substrate | Glucose | Total
lipid | Fraction A ^a) | Fraction B ^a) | Fraction Ca) | Fraction Da) | $\mathrm{CO_2}$ | | ¹⁴ C-1-Butyrate | 14.9 | 120.4 | 6.4 | 14.0 | 8.6 | 69. 2 | 953. 6 | | | ±1.2 ^b) | ±4.1 | ±0.3 | ±0.8 | ±0.5 | ±4. 3 | ±18. 7 | | 14C-1-Butyrate+ | 15.3 | 119.3 | 5.8 | 13.8 | 7. 9 | 67. 8 | 963. 1 | | glucose ^c) | ±0.9 | ±3.9 | ±0.4 | ±1.3 | ±0. 6 | ±5. 1 | ±19. 0 | | ¹⁴ C-2-Butyrate | 23. 9
±2. 0 | 179. 6
±3. 9 | 7.8
±0.6 | 30.8
±2.3 | 10. 2
±0. 8 | 108.3
±6.0 | 203.5 ± 11.2 | | 14C-2-Butyrate | 23.3 | 182.4 | 8.2 | 31.6 | 9.8 | 114. 2 | 212.6 ± 12.5 | | +glucose ^c) | ±1.9 | ±4.6 | ±0.5 | ±2.5 | ±0.5 | ±6. 7 | | | ¹⁴ C-3-Butyrate | 15.8 | 118.3 | 5.6 | 15.8 | 8.7 | 71.5 | 422.7 | | | ±0.6 | ±4.2 | ±0.3 | ±1.3 | ±0.7 | ±5.2 | ±12.9 | | +glucose ^c) | 16. 2 | 116.5 | 6.1 | 16.4 | 9. 2 | 68. 2 | 419.3 | | | ±0. 8 | ±4.8 | ±0.8 | ±1.7 | ±0. 8 | ±4. 9 | ±13.2 | a) Fraction A, B, C and D were emposed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. Table 11. Effect of Pyruvate on Formation of ¹⁴C-Glucose, ¹⁴C-Lipid and ¹⁴CO₂ from ¹⁴C-Butyrate in Rumen Epithelium of Cow | Substrate | ¹⁴ C Incorporated into | | | | | | | | |----------------------------|-----------------------------------|--------------------|---------------------------|-----------------------------|--------------|----------------|------------------|--| | | Glucose | Total
lipid | Fraction A ^a) | Fraction
B ^{a)} | Fraction Ca) | Fraction Da) | CO_2 | | | ¹⁴ C-1-Butyrate | 16. 1
±1.4 ^b) | $121.0 \\ \pm 4.5$ | 5.9
±0.5 | 15.4
±1.1 | 8.7
±0.4 | 70. 2
±5. 0 | 965.5
±21.4 | | | ¹⁴ C-1-Butyrate | 15.4 | 118. 9 | 6.2 | 16. 1 | 9. 2 | 65.8 | 959.3 ± 18.3 | | | +pyruvate ^c) | ±1.8 | ±5. 1 | ±0.8 | ±0. 9 | ±0. 5 | ±4.6 | | | | ¹⁴ C-2-Butyrate | 24. 1 | 176. 1 | 9. 1 | 32.6 | 10.6 | 111.6 | 208. 2 | | | | ±1. 2 | ±4. 1 | ±1. 2 | ±2.6 | ±0.8 | ±6.3 | ±11. 4 | | | ¹⁴ C-2-Butyrate | 25.5 | 181. 0 | 9.3 | 33. 8 | 10. 2 | 105.8 | 214.9 | | | +pyruvate ^c) | ±2.4 | ±5. 6 | ±0.9 | ±2. 3 | ±0. 6 | ±4.9 | ±13.4 | | | ¹⁴ C-Butyrate | 14.9 | 121. 6 | 6.0 | 14.9 | 8. 9 | 71. 2 | 411.8 | | | | ±0.7 | ±4. 1 | ±0.8 | ±1.0 | ±0. 5 | ±4. 3 | ±13.5 | | | +pyruvatec) | 15.4 | 117.3 | 5.4 | 15.4 | 9.3 | 68. 2 | 426.7 | | | | ±0.6 | ±3.9 | ±0.5 | ±1.6 | ±0.7 | ±4. 7 | ±14.1 | | a) Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. Mean μ mC per g of tissue N±S.D. in 10 animals. c) 100 μ moles of cold glucose added into incubation flask. b) Mean μ mC per g tissue N±S.D. in 10 animals. c) 100 μ moes of cold pyruvate added into incubation flask. Table 12. Effect of Phosphoenolpyruvate (PEP) on Formation of ¹⁴C-Glucose, ¹⁴C-Lipid and ¹⁴CO₂ from ¹⁴C-Butyrate in Rumen Epithelium of Cow | Substrate | ¹⁴ C Incorporated into | | | | | | | | |----------------------------|-----------------------------------|----------------|--------------|----------------|--------------|-------------------------|------------------|--| | | Glucose | Total
lipid | Fraction Aa) | Fraction Ba) | Fraction Ca) | Fraction D ² | CO_2 | | | ¹⁴ C-1-Butyrate | 15.7 | 122. 0 | 6. 2 | 14.8 | 9. 1 | 69.5 | 962. 2 | | | | ±0.9 ^b) | ±3. 7 | ±0. 7 | ±0.3 | ±0. 5 | ±4.3 | ±23. 7 | | | +PEPc) | 16. 2
±1. 2 | 117.3
±4.8 | 5.7
±1.0 | 15. 2
±0. 8 | 8.7
±0.7 | 74. 2
±5. 1 | 954.1 ± 25.3 | | | ¹⁴ C-2-Butyrate | 26.0 | 175.9 | 8.2 | 29.7 | 9.8 | 112.5 | 208.5 | | | | ±1.8 | ±6.1 | ±0.5 | ±1.9 | ±0.6 | ±5.4 | ±15.0 | | | 14C-2-Butyrate | 25.5 | 182.5 | 7.6 | 28.2 | 10.5 | 107. 1 | 202. 6 | | | +PEPc) | ±1.3 | ±6.6 | ±0.7 | ±1.8 | ±0.7 | ±5. 1 | ±18. 1 | | | ¹⁴ C-3-Butyrate | 17. 1 | 113. 9 | 6.4 | 13.9 | 9. 0 | 69.5 | 430.3 | | | | ±0. 9 | ±4. 9 | ±0.4 | ±1.1 | ±0. 8 | ±4.3 | ±16.3 | | | +PEPc) | 16.4 | 108.4 | 7.1 | 14.3 | 8.3 | 70. 9 | 421. 0 | | | | ±0.4 | ±5.1 | ±0.8 | ±0.8 | ±0.7 | ±5. 1 | ±19. 4 | | a) Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. b) Mean μ mC per g of tissue N±S.D. in 10 animals. c) 100 μ moles of cold phosphoenolpyruvate (PEP) added into incubation flask. Table 13. Effect of Lactate on Formation of ¹⁴C-Glucose, ¹⁴C-Lipid and ¹⁴CO₂ from ¹⁴C-Butyrate in Rumen Epithelium of Cow | | | | | | 9,000 | | | | |----------------------------|------------------------------------|----------------|---------------------------|---------------------------|--------------|--------------|-----------------|--| | Substrate | ¹⁴ C' Incorporated into | | | | | | | | | | Glucose | Total
lipid | Fraction A ^a) | Fraction B ²) | Fraction Ca) | Fraction Ca) | $\mathrm{CO_2}$ | | | ¹⁴ C-1-Butyrate | 15.4 | 127.7 | 6.3 | 15.8 | 7.7 | 68.1 | 967. 8 | | | | ±0.7 ^b) | ±3.7 | ±0.7 | ±0.9 | ±0.3 | ±5.2 | ±27. 2 | | | +lactate ^c) | 16. 1 | 122.7 | 6.5 | 16.2 | 7.8 | 66. 1 | 951.8 | | | | ±0. 9 | ±3.5 | ±0.4 | ±0.6 | ±0.4 | ±5. 1 | ±25.2 | | | 4C-2-Butyrate | 24.7 | 185.9 | 8.6 | 32.5 | 11.0 | 106.5 | 221. 3 | | | | ±1.8 | ±9.2 | ±0.5 | ±2.4 | ±0.6 | ±5.1 | ±17. 6 | | | 4C-2-Butyrate | 23.9 | 177.3 | 8.4 | 30.6 | 12. 1 | 111. 2 | 214.0 | | | +lactate ^c) | ±2.0 | ±5.4 | ±0.6 | ±3.0 | ±1. 1 | ±6. 3 | ±18.2 | | | 4C-3-Butyrate | 14.2 | 121.3 | 5.8 | 16.3 | 8. 1 | 73.0 | 417.3 | | | | ±0.6 | ±4.6 | ±0.8 | ±0.9 | ±0. 7 | ±5.9 | ±19.6 | | | ⁴ C-3-Butyrate | 15.1 | 111.4 | 6.3 | 14.8 | 7.6 | 70.8 | 430.7 | | | +lactate ^c) | ±0.7 | ±5.4 | ±0.5 | ±0.6 | ±0.5 | ±4.2 | ±20.5 | | a) Fraction A, B, C and D were composed of cholesterol ester, triglyceride, free cholesterol, and phospholipid, respectively. b) Mean μ mC per g of tissue N±S.D. in 10 animals. c) 100 μ moles of cold lactate added into incubation flask. lactate did not influence ¹⁴C-lipid synthesis or ¹⁴CO₂ production from ¹⁴C-1-butyrate in rumen epithelium of sheep (7), nor did they effect ketone body formation from butyrate in the rumen epithelium of sheep (7) or of cow (16). Therefore, it may be concluded that there is no relationship between butyrate metabolism and glucolysis in rumen epithelium. ### Acknowledgements The authors wish to express their appreciation to Dr. Arther L. Black, Professor of Physiological Chemistry and Chairman, Department of Physiological Sciences, University of California for his reivew of this paper and his invaluable suggestion in the preparation of this manuscript. #### References - 1) Pennington, R.J., Biochem. J., 51, 251 (1952) - 2) Sutton, J.D., McGillinard, A.D., Richard, M., and Jacobson, N.L., J. Dairy Science, 46, 530 (1963) - 3) Hird, F.J.R., and Weidemann, M.J., Biochem. J., 92, 585 (1964) - 4) Pennington, R.J., and Sutherland, T.M., Biochem. J., 63, 618 (1956) - 5) Shoji, Y., Jap. J. Nutritional Physiology, 11, 13 (1967) (in Japanese) - 6) Seto, K., Kato, K., Sekiguchi, M., Miyamoto, T., Kimura, F., Kawakami, K., Naito, S., and Otsuka, K., J. Jap. Biochem. Soc., 42, 27 (1970) (in Japanese) - 7) Seto, K., Kato, K., Sekiguchi, M., Miyamoto, T., Kimura, F., and Otsuka, K., J. Jap. Biochem. Soc., 42, 19 (1970) (in Japanese) - 8) Pennington, R.J., Biochem. J., 65, 534 (1957) - 9) Young, J.W., Thorp, S.L., and Lermen, H.Z.D., Biochem. J., 114, 83 (1969) - 10) Jones, G.B., Analytical Biochem., 12, 249 (1965) - Folch, J., Lees, M., and Sloane-Stanley, G.H., J. Biol. Chem., 226, 497 (1957) - 12) Leng, R.A., and Annison, E.F., Biochem. J., 86, 319 (1963) - Seto, K., Honma, K., Sekiguchi, M., Miyamoto, T., Kimura, F., Sakanishi, S., and Otsuka, K., J. Jap. Biochem. Soc., 42, 120 (1970) (in Japanese) - 14) Seto, K., Okabe, I., Tsuda, T., and Umezu, M. Tohoku J. Agr. Res., 9, 133 (1959) - 15) Seto, K., "The Science of Dairy Cow", ed. by M. Umezu, Nobunkyo, Tokyo, p. 302 (1966) (in Japanese) - 16) Seto, K., Tsuda, T., and Umezu, M., J. Jap. Bioehem. Soc., 27, 213 (1955) (in Japanese) - 17) Seto, K., Tsuda, T., Ambo, K., and Umezu, M., J. Jap. Biochem. Soc., 29, 17 (1957) (in Japanese)