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Abstract
Mangrove forests occupy a narrow intertidal zone 

of tropical and subtropical regions, an area that has 
been drastically reduced in the past decades. There-
fore, there is a need to conserve effectively the re-
maining mangrove ecosystems. In this mini-review, 
we discuss how recent genetic studies may contribute 
to the conservation of these forests across its distribu-
tion range at different geographic scales. We high-
light the role of mangrove dispersal abilities, marine 
currents, mating system, hybridization and climate 
change shaping these species' genetic diversity and 
provide some insights for managers and conservation 
practitioners. 

Introduction
  Humans are changing the world at an alarming 

rate and at the global scale. These changes are suffi -
cient to leave their stratigraphic, geochemical and ra-
diogenic signatures in the geological records (Waters 
et al. 2016). Additionally, the biosphere also presents 
signs of human activities such as human-driven 
vertebrates extinction rates, which are much higher 
than conservative “background” rates (Ceballos et al. 
2015). Understanding and addressing problems con-
cerning the loss of biodiversity are the main goals of 
conservation biology. It focuses on the application of 
different fi elds of knowledge, from sociology to ecol-
ogy and evolutionary biology, to preserve the bio-
logical diversity from the genetic to the biome level 
(Soulé and Soulc 1985; Wilcove 2009). The variation 
at the DNA level is particularly important because 
it is the foundation of the evolutionary processes. 
With that in mind, conservation geneticists use a vast 
arsenal of techniques to describe patterns of genetic 
variation or to make inferences about evolutionary 

processes concerning different organisms, mainly rare 
and endangered species. This is particularly relevant 
when an entire community is under threat, as is the 
case of mangroves.

Mangrove forests occupy the intertidal zones of 
tropical and sub-tropical regions (Tomlinson 1986), 
and its distribution has been drastically reduced in the 
past decades (Valiela et al. 2001; Duke et al. 2007). 
These tree communities are naturally composed by 
fewer species than other tropical and subtropical for-
ests (Tomlinson 1986). 11 of the 70 true mangrove 
species (sensu Tomlinson 1986) are considered Criti-
cally Endangered (CE), Endangered, or Vulnerable 
according to the International Union for Conserva-
tion of Nature (IUCN) Red List categories of threat, 
whereas seven species are considered Near Threat-
ened species (Polidoro et al. 2010). By describing 
the genetic diversity and understanding the natural or 
“human-made” evolutionary processes that generated 
this variation, it may be possible to detect early signs 
of population reductions and then reduce the changes 
of species extinction. This is only one of the many 
contributions of genetics to the conservation of man-
grove ecosystems. 

In this mini-review, our main objective is to discuss 
some of the recent mangrove conservation genetics 
related papers and highlight species differences and 
commonalities of evolutionary patterns and processes 
to provide some insights concerning mangrove con-
servation. Our focus on recent efforts is justifi ed by 
the existence of an inspiring review (Triest 2008). 

Mangroves as colonizer species 
  Colonization, as the establishment of a given spe-

cies in a site that it has not previously occupied, is a 
general feature of all organisms. However, the extent 
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and scale that this process occurs varies among or-
ganisms and mangrove species are specially adapted 
for colonizing new regions (Tomlinson 1986). As a 
likely adaptation to an intertidal habitat between land 
and sea, most mangrove species share three traits: 
buoyant and salt-water resistant propagules (i.e. dis-
persal units), and embryos that develop while they 
are still attached to the mother tree without dormant 
periods (Tomlinson 1986). These features allow man-
grove plants to travel long distances through water 
so that transoceanic dispersal has been reported for 
different genera both in the western (Nettel and Dodd 
2007; Takayama et al. 2013; Cerón-Souza et al. 2015; 
Mori et al. 2015a) and eastern hemispheres (Takaya-
ma et al. 2013; Lo et al. 2014). From the management 
point of view, incorporating long distance dispersal 
qualitatively or quantitatively into population models 
would likely improve conservation programs’ success 
(Trakhtenbrot et al. 2005). 

Additionally, considering these ‘dispersal’ traits, 
one would also expect that mangrove propagules 
would majorly fl ow through prevailing ocean surface 
currents. It implies that, on the geographic scales 
from hundreds to thousands of kilometers, the sea-
water surface movement would act as both gene fl ow 
maintainer and barrier depending on the populations’ 
geographic location. In the complex land and sea-
scape of South-East Asia, the congruence between 
gene flow patterns and the predominant ocean cur-
rent was reported for different genera (Chiang et al. 
2001; Su et al. 2006; Liao et al. 2006; Yahya et al. 
2014; Wee et al. 2014; Wee et al. 2015). Similarly, 
in the eastern coast of the Neotropical region, the bi-
furcation of the South Equatorial Current into North 
Brazil and Brazil currents seems to be a key driver 
of population subdivision (Pil et al. 2011; Mori et al. 
2015b). Accordingly, land masses play an important 
role as barriers to the gene fl ow in mangrove species 
both between the western and eastern hemisphere and 
within each of these biogeographic regions (Triest 
2008; Takayama et al. 2013; Lo et al. 2014; Sando-
val-Castro et al. 2014; Wee et al. 2014; Cerón-Souza 
et al. 2015). Therefore, due to this apparent general 
feature among mangrove species, conservation pro-
grams that focus on this geographic scale should not 
ignore the population genetic connectivity driven by 
ocean currents and land masses. Inputting these factor 
in metapopulation models (Ouborg et al. 2010), for 
example, would be particularly interesting.

On smaller scales, conversely, mangrove dispersal 
is comparatively limited considering gene flow by 
both pollen and propagules. Although there are dif-
ferences among species due to their natural history 
and ecological traits (Cerón-Souza et al. 2012), gen-
erally there is genetic structure on a local scale even 
when no obvious constrains exists (Geng et al. 2008; 
Islam et al. 2012; Cerón-Souza et al. 2012; Mori et 
al. 2015b). It may lead to a pattern of spatial genetic 
structure (Geng et al. 2008; Islam et al. 2012; Cerón-
Souza et al. 2012). One impressive example of how 
limited mangrove pollen and propagule dispersal may 
be on a local scale is the dispersal distance of only 
tens of meters as estimated for a viviparous species 
from the eastern hemisphere (Geng et al. 2008). This 
limited dispersal is likely linked to the self-compati-
bility and mixed mating system that some mangrove 
species present (Landry and Rathcke 2007; Geng et 
al. 2008; Cerón-Souza et al. 2012; Nadia et al. 2013; 
Landry 2013; Mori et al. 2015b). Collectively, these 
results have many conservation implications; for in-
stance, in view of the limited pollen and propagule 
dispersal on local scales, deforestation of an area 
may imply an irreversible genetic diversity loss even 
within a single estuary (Cerón-Souza et al. 2012).

Hibridization is a major evolutionary process 
in mangrove species

Gene fl ow occurs not only among populations but 
also among species ,and its consequences are quite di-
verse (Hoffmann and Sgrò 2011; Abbott et al. 2013). 
In mangroves, ongoing and/or ancient hybridization 
has been reported for most of true mangrove genera: 
Acrostichum (Zhang et al. 2013), Avicennia (Mori et 
al. 2015a; Mori et al. 2015b), Bruguiera (Sun and Lo 
2011), Ceriops (Tsai et al. 2012), Lumnitzera (Guo 
et al. 2011), Rhizophora (Cerón-Souza et al. 2010; 
Duke 2010; Lo 2010; Takayama et al. 2013), and 
Sonneratia (Zhou et al. 2005; Qiu et al. 2008; Zhou 
et al. 2008). The widespread occurrence of so many 
hybrids in mangrove lineages poses challenges to 
managers and policy makers. First, it is difficult to 
classify individuals identifi ed as hybrids according to 
criteria of origin (natural or anthropogenic) and the 
presence or extent of introgression (Allendorf et al. 
2001). Moreover, it is often diffi cult to determine the 
direction of hybridization, which influences on the 
species extinction risks (Todesco et al. 2016). Despite 
the call for the protection of non-anthropogenic hy-
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brids of some authors (Allendorf et al. 2001), hybrids 
should not be included in the IUCN Red List whatev-
er their origins may be, to avoid making things even 
more complicated to managers and stakeholders. 
For mangrove conservation professionals, the case 
of Bruguiera hainesii, currently under the critically 
endangered (CE) IUCN category, is quite interesting. 
According to genetic data, it is a hybrid between two 
widespread species: B. gymnorhiza and B. cylindrical 
(Ono et al., 2016). Although removing the label of 
CE may reduce this species/hybrid protection, it may 
also allocate any available budget to the protection of 
its parental species and this decision is defi nitely not 
trivial to make.

Climate change
  Although hybridization is a natural process that 

occurs among mangrove species lineages, its oc-
currence may increase as the climate changes and 
geographic distribution of related species shifts 
(Hoffmann and Sgrò 2011). This is only one of the 
consequences of global climatic alterations to man-
grove forests.  Despite the ability of mangrove forest 
to adjust to the sea level rise (Krauss et al. 2013), in 
many areas, the rate at which seas are rising exceeds 
the soil elevation gain (Lovelock et al. 2015). More-
over, the velocity of climate change is projected to 
be the particular high in mangrove forests (Loarie et 
al. 2009) and extreme changes are expected to hap-
pen earlier in mangroves than in other environments 
(Beaumont et al. 2011). Consequently, evidences of 
geographic expansion abound in the recent literature 
(Osland et al. 2013; Cavanaugh et al. 2014; Saintilan 
et al. 2014; Crase et al. 2015; Cavanaugh et al. 2015). 
Predicting how mangroves will respond to the current 
climate changes in medium and long terms is a huge 
challenge. Genetic studies may contribute to this mat-
ter by understanding how selective neutral and non-
neutral variations are distributed in populations. This 
is currently feasible due to relatively recent DNA 
sequencing revolution, which made possible the use 
of the genome-wide information and even whole-
genome sequencing of non-model organisms (El-
legren 2014; Andrews et al. 2016). The information 
regarding species gene functions may be assessed 
by transcriptome analyses and, for some mangrove 
species, this is already available (Dassanayake et al. 
2009; Liang et al. 2012; Huang et al. 2012; Huang et 
al. 2014; Yang et al. 2015). 

Perspectives
  For decades, the body of knowledge concerning 

the mangrove species genetic variation has attracted 
the attention of many researchers from different 
groups all around the world (Triest 2008). We expect 
that this trend will continue and there will be much 
more genetic information from more mangrove taxa 
and, possibly, fully sequenced genomes in the near 
future. However, the translation of this growing fi eld 
of research into management projects and conserva-
tion policies is still a great concern (Laikre 2010; 
Shafer et al. 2015). For species that occur in many 
different political units (countries, states, municipali-
ties), such as mangrove trees, the link between policy 
and research seems even weaker. Despite the exis-
tence of political instruments and treaties that appeal 
to the mangrove conservation (Polidoro et al. 2010), 
the area covered with mangrove forests still decreases 
(Richards and Friess 2015).  Moreover, the list of 15 
countries that contain 74.3% of the world’s mangrove 
areas is composed of 14 developing countries, where 
environmental policies are often neglected or disre-
garded (Giri et al. 2011). Therefore, we urge an equal 
focus on both “genetics” and “conservation” in man-
grove conservation genetics.
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