

Diurnal pattern of nitrous oxide emissions from a sewage-enriched river : references to IPCC indirect emission factor

著者	XIA Yongqiu, LI Yuefei, LI Xiaobo, GUO Miao, YAN Xiaoyuan
journal or	Journal of Integrated Field Science
publication title	
volume	9
page range	111-111
year	2012-03
URL	http://hdl.handle.net/10097/54466

Diurnal pattern of nitrous oxide emissions from a sewage-enriched river: references to IPCC indirect emission factor

Yongqiu XIA, Yuefei LI, Xiaobo LI, Miao GUO and Xiaoyuan YAN

Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

There remains considerable uncertainty in the magnitude of indirect nitrous oxide (N₂O) emitted from streams or rivers by the Intergovernmental Panel on Climate Change's (IPCC) methodology. The uncertainty is partially due to a lack of onsite data and great variability of N₂O production, especially on high temporal pattern. Therefore, we measured the N₂O emission rates, concentrations of dissolved N₂O, and potential controlling variables on an hourly basis over one site in a typical sewage enriched river in the Taihu Lake region, China. Results showed that distinct diurnal patterns were observed in N₂O emission, concentrations of dissolved N₂O, and river physicals and chemicals during a 72 h period. N₂O emission and dissolved N₂O saturation averaged 56.1µg N₂O-N m⁻² h⁻¹ (ranged from 41.1 to 87.7µg N₂O-N m⁻² h⁻¹) and 813% (ranged from 597% to 1 372%), respectively. Correlative analysis indicate that dissolved N₂O, pH, DO, NH₄⁺, SO₄⁻²⁻, air temperature, and water temperature operate as important controls on N₂O production, while TN, Cl⁻, DOC, and NO₃⁻⁻ seems less important. The patterns of N₂O production may contribute to coupled nitrification-denitrification processes and the rates might be greater during day than those at night. The results suggested the compounds of salinity such as SO₄⁻²⁻ concentration would expect to be a more reliable factor than salinity in accounting for N₂O variation in aquatic systems.

To include individually explicit N_2O emission in rivers or river sections, we suggest a more constrained emission factor considering river length (EFL):

$$EFL = \frac{N_2O}{Nr \times L}$$

where EFL is the mean emission factor of N_2O from river surface water per unit length of river (kg N_2O -N kg inorganic-N km⁻¹); Nr is inorganic N inputs (kg N yr⁻¹); L is river length (km); Using the EFL metholodogy, we calculated that 0.28 Tg yr⁻¹ of reactive N inputs to N_2O -N in river networks globally, lower than the results of the IPCC methodology and a global river network model.

Our resulting emission factor was 0.24%, very close to the revised IPCC value of 0.25%. Thus our study strongly support the recent revision of EF5-r from 0.75% to 0.25%. Although the revised value of EF5-r agrees well with our results, our EFL methodology is more applicable in reducing uncertainty and simplifying calculation and validation.