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Chapter I1

Cell-Surface Xylanase 5 is Essential for the Expression of the2

Xylanase genes in Paenibacillus sp.  W-613

4

5

Introduction6

To prevent facing global warming, we need to shift our  energy7

sources from fossil resources to biological ones that do not  increase8

greenhouse gas.  Cel lulose and hemicellulose are the major components of9

plant cel l wal ls and are most abundant carbohydrate resources on the10

ear th (Wyman, 2007).  Because these carbohydrates are rich in none-edible11

par ts of plants,  such as rice husk, rice straw, and wheat bran, they do not12

compete with foods (e.g.  starch in grains),  making them most promising13

biological resources alternative to fossil fuels.  Glucose and xylose,  the14

hydrolysis products of cel lulose and hemicellulose respectively,  can be15

converted into ethanol (a fuel) and other chemicals by fermentat ion16

(Wong et al . ,  1988).  Many researches have been focusing on enzymatic17

degradation of cel lulose and hemicellulose into the sugars.  Such18

bioconversion processes should also help to reduce agr icultural and19

forestrial residues and wastes.20

Beta-1,4-xylan (xylan) is a backbone polysaccharide of21

hemicellulose (Whistler  et al . ,  1970) and β-1,4-xylanases (EC 3.2.1.8)22

hydrolyzes the xylan backbones into xylo-oligosaccharides and xylose23

(Wong et al . ,  1988; Gilbert et al . ,1993; Sunna & Antranikian,  1997).24

Some microorganisms, which uti lize xylan as a carbon source,  produce25

several xylanases to effectively hydrolyze recalcitrant β-1,4-xylan26

(Gilbert et al . ,  1993).  Apparently several xylanases with different27

catalytic  properties are required to achieve efficient hydrolysis of the28

polysaccharide.  Understanding of catalytic  properties and roles in xylan29
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hydrolysis of xylanases produced by xylan-uti lizing microorganisms1

would provide a clue for  development of an efficient system for2

enzymatic xylan degradation.  3

An aerobic β-1,4-xylanolytic bacterium, Paenibaci llus sp.  W-61,4

formerly classified as Aeromonas caviae  W-61, efficiently  degrades5

xylans via five extracellular xylanases,  (designated Xylanases 1 [Xyn1],  26

[Xyn2],   3[Xyn3],   4[Xyn4],  and 5 [Xyn5],  of 22,  41,  58,  120, and 1407

kDa, respectively)  (Nguyen et al . ,  1993).  Xyn1, Xyn2, Xyn4 and Xyn58

hydrolyze oat  spelt xylan to yield xylobiose (X2),  xylotriose (X3),9

xylotetraose (X4),  xylopentaose (X5),  and xyloheptaose (X6) (Nguyen et10

al . ,  1991; Nguyen et al . ,  1993; Roy et al . ,  2000; Ito  et al . ,  2003),  whereas11

Xyn3 produces xylo-oligosaccharides larger  than xyloheptaose (X7)12

(Okai et al . ,  1998).  Strain W-61 has three xylanase genes,  xyn1 ,  xyn3 ,  and13

xyn5;  xyn1 ,  xyn3 ,  and  xyn5 encode xylanases of the glycoside hydrolases14

family 11, family 5,  and family10, respectively (Okai et al . ,  1998; Ito  et15

al . ,  2003; Watanabe et al . ,  2008).  Xyn2 and Xyn4 are der ivatives of Xyn316

and Xyn5 respectively that are truncated at the C-terminals by proteolysis,17

(Okai et al . ,  1998; Ito  et al . ,  2003).18

In 2003, Ito  et al .  cloned the xyn5  gene.  The product Xyn5 is a19

polypeptide of 1,326 amino acid residues having five domains.  An N-20

terminal domain contains two family 22 carbohydrate-binding modules21

(CBMs), fol lowed by the domains of family 10 glycoside hydrolase,22

family 9 CBM, a region homologous to the lysine-rich region of23

Clostridium thermocel lum  SdbA (Leibovitz  et al . ,  1996; Leibovitz  et al . ,24

1997),  and a domain of three S-layer-homologous (SLH) motifs (Fig.  I-1).25

The SLH domains would anchor Xyn5 to the cel l sur face of strain W-61,26

and CBM9 could combine cel lulose microfibr ils of the plant cel l wal l (Ito27

et al . ,  2003).  Newly synthesized Xyn5 can be exclusively found in the28

cel l envelopes and afterwards its  small por tion is released into the29
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medium (Ito  et al . ,  2003).1

In 1983, Lamed et al  reported that  anaerobic cel lulose degraded2

bacterium  Clostridium thermocel lum  forms a large extracellular3

polysaccharolyt ic complex cal led cel lulosomes. This complex consists of4

a scaffolding protein and many bound cel lulases and which play a key5

role in effective cel lulose degradation (Koguchi et al . ,  2002).6

Cel lulosome has only in anaerobic bacteria.  In contrast,  it  has not  been7

reported that cel l sur face localized xylanases in aerobic bacterium, and its8

role of cel l-surface Xylanase in xylan degradation is poorly understood.9

Functional analysis of Xyn5 wil l elucidate the role of this enzyme in10

xylan degradation by the xylanolyt ic bacterium. Functions of the Xyn511

domains,  except for  the catalytic  domain, in xylan hydrolysis,  as wel l as12

how and what cel l-envelope component  Xyn5 interacts with.  In this13

chapter,  I  show that Xyn5 associates with the cel l sur face via the C-14

terminal SLH domain. I  also show that Xylobiose from Xyn5 hydrolytic15

products of xylan act  as inducers for  the expression of xyn1 ,  xyn3 ,  and16

xyn5  genes.17

18

Materials and methods19

Bacterial  strains,  plasmids,  and cul ture media.20

Paenibaci llus sp.  W-61 was isolated and stocked in our21

laboratory (Nguyen et al . ,  1991).  Bacterial  strains and plasmids used in22

this study are listed in Table I-1 .  Paenibaci llus sp.  W-61 was aerobical ly23

grown at 30ºC in medium I (0.2% yeast extract,  0.25% NaCl,  0.5% NH4Cl,24

1.5% KH2PO4, 3% NaHPO4, 0.025% MgSO4 7H2O, and 0.7% xylan; pH25

7.0) as previously described (Roy et al . ,  2000).  Escherichia col i  DH5α26

and BL21 (DE3) were cul tivated in Lur ia-Ber tani (LB) medium27

(Sambrook et al . ,  1989).28

29
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Construct ion of a xyn5 knockout mutant.1

Standard methods (Sambrook et al . ,  1989) were used for  DNA2

manipulat ions.  A 2.5-kbp DNA fragment encoding the family10 catalytic3

domain of Xyn5 was amplified by PCR using plasmid pUX5S-22 (Ito et4

al . ,  2003) as a template and an oligonucleotide primer pair of xyn5-KO-5

fw (5’-CAGGTCGTTTCCGGGTTACTC-3’) and xyn5-KO-rv (5’ -6

CTCAACGGAATCCTGCTCCC-3’).  The resultant  PCR product was7

blunt- ended and cloned into the Sma I site of plasmid pUC119 (TaKaRa8

Bio, Kyoto,  Japan).  The internal 902-bp HindII I fragment was replaced9

with a cat  gene cassette (Kato. ,  2005).  A resultant xyn5::cat  fragment was10

transferred into the thermo-sensitive shuttle vector pKAF (Kato. ,  2005).11

The resultant  plasmid, pX5K01, was then transformed into Paenibaci llus12

sp.  W-61 by electroporation. Transformants were cul tivated at 42˚C, a13

none-permissive temperature for  the vector plasmid. Knockout mutants of14

xyn5  generated by a single crossover  were selected on LB plate containing15

10 µg chloramphenicol /ml and one of the knockout mutant,  designated as16

PW101, was selected for  fur ther studies.17

A plasmid car rying xyn5  was constructed for use in18

complementation experiments of PW101 as fol lows. The ent ire region of19

xyn5  was amplified by PCR using plamid pUX5S-22 as a template and a20

primer pair,  X5-pro-Fw (5’-CTTCCCGGGAGTGGTATTATCTGGTGAG21

AAAGG-3’)  and X5-ter-RV (5’-GAAGGATCCTTGTTGAGCTGCAAATGGAAA22

CGGTTG-3’).  A resultant  ful l-length xyn5 DNA fragments were blunt-23

ended and inserted the Sma I site of plasmid pHY300PLK, to obtain24

plasmid pX5K02. Strain PW101 harboring pX5K02 was designated as25

PW102. I  also constructed a plasmid harboring Xyn5 lacking the C-26

terminal SLH domain. DNA fragments of xyn5  (nt 2853 to 4140) without27

the SLH coding-region were amplified by PCR using plasmid PUX5S-2228

as a template,  and primer pair X5-pro-Fw (5’-29
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CTTCCCGGGAGTGGTATTATCTGGTGAGAAAGG-3’) and Xyn4-RV1

New (5’-GGGTTAAGACTTGGTTACGTAGGCTACGG-3’).  DNA2

fragments thus amplified were inserted into plasmid pHY300PLK at Sma I3

site,  to obtain pX5K03. Strain PW101 harboring plasmid pX5K03 was4

designated as PW103.5

6

Preparation of cell proteins.7

Strains W-61 (wild type),  PW101 (xyn5::cat ),  and PW1028

(xyn5::cat ,  xyn5 on pX5K02) were grown at 37˚C for  24 h in 4 ml medium I9

containing 0.7% glucose as a carbon source.  Cel ls were harvested by10

centrifugation and suspended in 4 ml medium I without carbon source.11

After shaking at 30˚C for  1 h to deplete int racellular glucose,  cells were12

sedimented by centrifugation and resuspended in 4 ml of medium I13

containing 0.7% xylan as a carbon source at final cel l density of 1.2  x 10914

cel ls/ml.  One-fifth  ml of the cul tures were withdrawn at indicated time of15

incubation per iod, then cel ls and extracelluar proteins in the samples16

were precipitated by adding trichloroacetic  acid (TCA) to a final17

concentration of 10%. Precipitates were col lected by centrifugation,18

washed with cold acetone and dried.  Then the dried protein samples were19

suspended into 100 µ l  of 1 x SDS-PAGE sample buffer.20

21

SDS-PAGE, Western blotting and zymography.22

SDS-PAGE, Western blotting and zymography  were done as23

previously described (Ito et al . ,  2003).  Briefly,  SDS-PAGE was performed24

according to Laemmli (Laemmli. ,  1970).  Proteins resolved by SDS-PAGE25

were electroblotted onto HybondTM-ECLTM membranes (GE Healthcare26

Bio-Science KK,  U. S.  A.) .  Blotted proteins were immuno-stained with27

ant iserum against Xyn5 and alkaline phosohatase-conjugated ant i-rabbit28

immunoglobulin G (Promega, Madison, Wis. ).  Immuno-complexes of29
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Xyn5 on the membranes were visualized using nit roblue tet razolium1

(Wako Pure Chemicals,  Osaka, Japan),  and 5-bromo-4-chloro-2

indolylphosphate (Wako Pure chemicals).  Zymography of xylanases were3

done using Remazol Bri lliant  Blue-stained xylan as a substrate  (SIGMA,4

U. S.  A.)  as previously described (Roy et al . ,  2000).5

6

Immuno-gold labeling of Xyn5 on whole cel ls and electron microscopic7

observation.8

Immuno-gold labeling of Xyn5 on the cel l sur face was performed9

by the method of Egelseer et al .  (1995, 1996) (Ghi tescu et al . ,  1990,10

Balslev et al . ,  1990).  Strains W-61 and PW103 were cul tivated with11

shaking to the ear ly stationary phase (9 h of incubation) in 4 ml medium I12

containing 0.7% soluble xylan. Cel ls from a 1 ml cul ture were harvested13

by centrifugation,  washed once phosphate-buffered sal ine (PBS) and14

suspended in 250 µ l  of PBS. The cel l suspensions were incubated with15

ant iserum against Xyn5 (di luted ten fold with PBS) for  10 h at 4˚C. After16

harvesting and washing as above, cel ls were subsequently treated with 1017

µ l  of concentrated protein A-colloidal gold conjugate (10 nm in diameter;18

GE Healthcare).  After 1 h of incubation at room temperature,  free protein19

A-colloidal gold conjugates were removed by three times of20

centrifugation in 250 µ l  of PBS. Immuno-gold stained cel ls were then21

suspended in 10 µ l  of PBS and immediately applied onto glow-discharged22

carbon-coated copper grids,  fol lowed by observation under a HITACHI23

Z-8100 electron microscope, operated at 75 kV.24

25

Purificat ion of the SLH domain.26

A 1.5 kbp DNA fragment encoding the SLH domain of Xyn5 was27

amplified by PCR using plasmid pUX5S-22 (Ito et al . ,  2003) as a template28

and an oligo-nucleotide primer pair K-slh-Bam-fw (5’-29
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GATGGATCCGGTCAAGGTTACCAGGATACG -3’) and K-slh-rv (5’ -1

GGCCCCGGGATTTGAAAAAAGCTGCCGTCTG –3’).  PCR products2

were digested with BamHI and Sma I (underlined),  and ligated to plasmid3

pGEX4T-1 (GE Healthcare) digested with the same restriction enzymes,4

to fuse in- frame the SLH-coding sequence to the gst  gene on the plasmid.5

The resultant  plasmid containing the SLH domain was designated as6

pX5K05 (gst ::slh ).  The plasmid was int roduced into  E.  col i BL21 (DE3)7

by transformation, and a recombinant harboring pX5K05 was designated8

as PE101. E. col i cel ls were grown in 200 ml LB broth containing9

ampicillin (50 µg/ml) at 30˚C. When A6 0 0  reached 0.5,  isopropyl-β-D-10

thiogalactopyranoside (IPTG) was added the cul ture to a final11

concentration of 1 mM. After 4 hrs,  cel ls were harvested and suspended in12

10 ml of 50 mM sodium phosphate buffer  (pH 7.3),  then disrupted by13

passage through a French pressure cel l at 4000 psi .  After unbroken cel ls14

and large debris were removed by centrifugation at 3,500 x g  for  10 min,15

clear supernatant was centrifuged at 200,000 x g  for  60 min at 4˚C, to16

remove the cel l envelopes.  GST-SLH fusion in the supernatant was17

pur ified using a GSTrap FF column (1 ml,  GE Healthcare) according to18

the manufacture’s protocol.19

20

Preparation of peptidoglycan and secondary cel l wal l polymers from a21

xyn5 knockout mutant.22

Peptidoglycan or secondary cel l wal l polymers were prepared23

from PW101 cel ls (xyn5::cat )  as described by Ries (Ries et al . ,  1997).24

PW101 cel ls were harvested from 1-l iter cul ture in medium I containing25

0.7% glucose and disrupted using a French Pressure Cel l as described26

above. Cel l envelopes were col lected by centrifugation at 4˚C at 100,00027

x g  for  1 hr.  The pel lets were suspended in 50 mM Tris-HCl buffer  (pH28

7.4) containing 0.5% (w/v) Triron X-100 and 5 M guanidine-HCl,  and29
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incubated at 20˚C for  1 hr.  After centrifugation at 40,000 x g  for  30 min at1

4˚C, resultant  pel lets were washed 4 times with 50 mM phosphate buffer2

(pH 7.4).  Washed pel lets were resuspended and incubated in 50 mM3

phosphate buffer  (pH 7.4) containing 1% SDS at 100˚C for  1 hr.4

Precipitates obtained by centrifugation at 40,000 x g  for  30 min at 4˚C5

were washed 6 times with distilled water.  Prepared cel l wal ls were6

resuspended in 50 mM phosphate buffer  (pH 7.4).  Secondary cel l-wall7

polymers were prepared from the cel l wal ls through fol lowing procedures.8

The cel l wal ls were incubated with 48% hydrofluoric acid (HF) at 4˚C for9

48 h.  Pel lets obtained by centrifugation conditions were washed once with10

48% HF and subsequently 5 times with distilled water.  The resultant11

secondary cel l-wall  polymers were dissolved in 50 mM phosphate buffer12

(pH 7.4).13

14

Binding assays of the SLH domain to peptidoglycan and to secondary15

cel l-wal l polymers.16

Ten µg of recombinant GST-SLH polypeptides were added to 5017

µ l  of the secondary cel l-wall  polymer solution in 50 mM sodium18

phosphate buffer  (pH 7.4) or peptidoglycan suspension, and mixed for  119

hr with rotating at 4˚C. Then, cel l-wall  polymers and peptidoglycan were20

recovered by centrifugation.  The fusion proteins in the supernatants and21

in cel l-wall  polymers or peptidoglycan were resolved by SDS-PAGE and22

quantified by Western blotting using ant i-GST ant ibody.23

24

Xylanase assay.25

Xylanase act ivity was measured as described previously (Nguyen26

et al . ,  1991).  One uni t of enzyme was def ined as the amounts of enzyme27

that liberates 1 µmol of the reducing sugar from oat  spelt xylan.28

29
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Isolation of RNA and real  time RT-PCR analysis.1

Strain W-61 and PW101 cel ls were grown in 4 ml of medium I2

containing 0.7%(w/v)  glucose at 37˚C for  24 h.  100 µ l  of the cul tures3

were inoculated into 100 ml medium I containing 0.7%(w/v)  xylan, xylo-4

oligosaccharide,  or glucose,  to O.D6 6 0  of 0.035. The cul tures were5

incubated at 30˚C and 2 ml por tions of the cul ture were centrifuged to6

harvest cel ls at indicated time. Total RNA was prepared by the method7

described by Aiba et al .  (1981).  The amounts of xyn1 ,  xyn3 ,  and  xyn58

mRNA were determined by real-time reverse transcription PCR (real-time9

RT-PCR). cDNAs of xyn1, xyn3, and  xyn5  were synthesized using TaKaRa10

RNA PCR Kit  (AMV) Ver.3.6 (TaKaRa bio,  Kyoto,  Japan) in reaction11

mixtures containing 100 ng of total RNA and primers xyn1-RT (5’-12

CCCAGTTGTCCACCACGTAG-3’), xyn3-RT (5’-13

GTTTCGACCATGTCGCTTGGC-3’) ,  or xyn5-RT (5’-14

CAGCTGCAGATGGATTAACATCC-3’).  Resultant  cDNAs (5 ng)  were15

then used as templates in real time RT-PCR using specific primer pairs,16

Xyn5 f-real (5’ - AGGGCAAAGCAACTCAATCC-3’) Xyn5 r-real (5’  -17

GCAATATCCACGCCATCATAG-3’) for  xyn5 ,  Xyn1 f-real (5’ -18

GCAGAACTGGACAGATGGAG-3’) Xyn1 r-real (5’ -19

CGTCAAATATCCGTTGCCAGATG-3’) for  xyn1 ,  Xyn3 f-real (5’ -20

GCCTCTCATGTTAACGCCGAC-3’) Xyn3 r-real (5’ -21

CGCACCTTGCTCTATGGCTC-3’) for  xyn3 ,  LightCycler (Roche) and22

detected LightCycler-Faststar t DNA Master SYBR Green I kit  (Roche).23

RT-PCR was performed in triplicates.24

25

Luciferase assay.26

A 2.0 kbp fragment of the luciferase gene was amplified by PCR27

using PicaGene Basic Vector 2 (TOYO B-Net) as a template and an28

oligonucleotide primer pair of fw (5’-29
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TCGATAGTACTAACATACGCTCTCC-3’) and rv (5’ -1

CTCATCAATGTATCTTATCATGTCTGC-3’).  Amplified PCR products2

were blunt-ended and cloned into the blunted HindIII  and EcoRI sites of3

plasmid pHY300PLK to obtain pX5K06. Putative xyn5  promoter region4

was PCR-amplified using W-61 chromosomal DNA as a template and5

primers,  Xyn5-luci-fw (5’-CTAGGTACCACTGCCTTATCTTCGGACG-6

3’)  and Xyn5-luci-rv (5’ -7

TAACCCGGGAACGACCTGCTTAAATGATTTCC-3’) .  Resultant  PCR8

products were digested with Kpn I or Sma I,  and cloned into the same9

restriction enzymes site of plasmid pX5K06. PW101 cel ls car rying the10

resulting plasmid pX5K07 (Px y n 5- luciferase) were grown in the medium I11

containing 0.7% xylan. Cel ls were col lected by centrifugation and washed12

in 50 mM sodium phosphate buffer  (pH 7.0).  Then cel ls were suspended13

in 1 ml of same buffer containing 300 µg/ml lysozyme and incubated at14

37˚C for  10 min. The cel l lysate was then centrifuged for  10 min at 5,00015

x g  at 4 °C,  and the resultant  supernatant was incubated at 30 °C with16

agi tation for  different post-irradiation incubation times,  Luciferase17

act ivities in cel ls lysate (100 µ l)  were measured using a PicaGene assay18

system (TOYO B-Net).  Chemiluminescent signals were detected using a19

Luminescencer PSN AB-2200 (ATTO, Tokyo, Japan).  Induction was20

calculated as fol lows: relative light uni ts (RLU) for  sample cul ture/RLU21

for  medium-only control cul ture,  if  RLU for  sample > RLU for  control.  A22

decrease in luciferase act ivity of the sample cul ture compared to the23

control cul ture was calculated as RLU for  control/RLU for  sample.24

25

Results26

Xyn5 is located on the cel l surface.27

Newly synthesized Xyn5 was exclusively detected in the cel l28

envelopes by immunological and enzymatic assays and small por tion of29
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the cel l envelope Xyn5 is released into the medium as a free form (Ito et1

al . ,  2003).  W-61 cel ls,  which were grown for  9 hr in medium I containing2

0.7% (w/v) xylan, were treated with ant i-Xyn5 ant ibodies and immuno-3

gold par ticles to observe immuno-gold stained Xyn5 the cel l sur face4

using a transmission electron microscopy. As shown in Fig.  I-2A5

immuno-gold par ticles were observed on the cel l sur face.  On the other6

hand, no immuno-gold was observed with the W-61 cel ls grown in7

medium I containing 0.7% glucose,  or in medium I supplemented with8

both 0.5% xylan and 0.5% glucose (data not  shown).  These results showed9

that Xyn5 synthesis was inducible by xylan and subjected to catabolite10

repression by glucose.  On the other hand, no immuno-gold was observed11

on the cel l sur face of strain PW103 that produces truncated Xyn5 lacking12

the C-terminal SLH domain (Xyn5∆SLH) (Fig.  I-2B).  From these results,13

I assumed that Xyn5 is anchored onto the cel l sur face via the C-terminal14

SLH domain. To examine this hypothesis,  I  employed Western blotting to15

detect Xyn5 and Xyn5∆SLH in the cel l envelopes and the cul ture16

supernatants.  These strains were cul tivated for  12 h in xylan and17

harvested by centrifugation to separate the cel ls from the cul ture fluids.18

The cel ls were then disrupted by French Pressure Cel l to obtain cel l19

envelopes.  Proteins of 140 kDa and 180 kDa were found in the cel l20

envelopes,  but  not  in the cul ture supernatant,  of the wild type cel ls (Fig.21

I-3A) On the contrary,  a protein of 120 kDa, which corresponds to22

molecular  mass of Xyn5∆SLH,  was detected in the cul ture supernatant,23

but  not  in the cel l envelopes of PW103 (Fig.  I-3B).  These results24

substantiate the not ion that the C-terminal SLH domain anchors Xyn5 on25

the cel l sur face.26

27

Binding of the C-terminal SLH domain to peptidoglycan and secondary28

cel l wal l polymers.29
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Binding of pur ified recombinant SLH (rSLH) domain (see1

Materials and Methods) to the cel l envelope components of strain W-612

was examined in vitro.  The SLH domain was expressed and pur ified as a3

GST fusion polypeptide in strain PE101. Peptidoglycan and secondary4

cel l wal l polymers were prepared from a xyn5  knockout mutant PW1015

and incubated with var ious amounts of GST-SLH. When GST-SLH was6

incubated with peptidoglycan, the amounts of GST-SLH co-precipitated7

with peptidoglycan increased as the amounts of the protein in the reaction8

mixtures increased, with concomitant decrease in the amounts of free9

GST-SLH in the supernatants (data not  shown).  GST-SLH also bound to10

the secondary cel l wal l polymers as to peptidoglycan (Fig.  I-4).  SLH11

domain of Xyn5 thus has abi lity to bind to both peptidoglycan and12

secondary cel l-wal l polymers of strain W-61. Binding affinity of GST-13

SLH to the cel l envelopes was comparable to those to peptidoglycan and14

to secondary cel l-wal l polymers (data not  shown).15

16

Binding of Xyn5 to oat  spelt xylan.17

Previously,  it  was demonstrated that pur ified rXyn5 binds to18

crystalline cel lulose,  and Avicel PH-101, but  not  to oat  spelt xylan (Ito et19

al . ,  2003).  It  appears that CBM9 domain of Xyn5 has a binding abi lity20

specific to cel lulose,  but  CBM22 has no binding act ivity to cel lulose and21

xylan (Ito et al . ,  2003).  However,  Xyn5 should bind to xylan par ticles to22

degrade them. The molecular  par ticle size of oat  spelt xylan (500-710 µm)23

and Avicel PH-101 (40 µm) are different (Obae et al . ,  1999).  So,  I24

predicted that Xyn5 binds to small size xylan par ticles.  Oat spelt xylan25

was homogenized by a mor tar and pestle before being used for  binding26

assay. As shown in Fig.  I-5 ,  rXyn5 co-sedimented with the homogenized27

oat  spelt xylan (Fig.  I-5A) as wel l as with Avicel PH-101 (Fig.  I-5B),28

showing that the SLH domain can bind to both cel lulose and xylan,29
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although binding affinity to cel lulose was significantly higher than that to1

xylan.2

3

Xyn5 is essential  for the uti lization of insoluble xylan.4

To elucidate a role of Xyn5 in xylan uti lization, I  constructed a5

xyn5  knockout mutant (PW101).  This mutant poorly grew in minimal6

media containing insoluble or even soluble xylan. However PW101 grew7

well in minimal medium supplanted with xylo-oligosaccharides8

(xylobiose to xyloheptaose) as a carbon source (data not  shown).  Since9

the mutant assimilated all  kinds of xylo-oligosaccharides,  as confirmed10

by the absence of the oligosaccharides in the cul ture,  it  may produce a11

xylanase (Xyn1 or Xyn3) capable of hydrolyzing the oligosaccharides.12

PW103 harboring plasmid pX5KO3  (xynΔslh ) secreted Xyn5ΔSLH (Fig.13

I-3).  When strain W-61 and PW103 were cul tivated in 0.7% (w/v)14

insoluble xylan medium, growth of PW103 was significantly retarded,15

while soluble Xyn5 was produced.  After cul tivation for  24 hr,  xylanase16

act ivity in the cul ture of PW103 was 0.4-fold lower than wild type strain17

(Fig.  I-6).  In contrast,  PW103 grew similarly  to wild type W-61 in 0.7%18

(w/v) soluble xylan medium (Fig.  I-6).  These results suggest that not  only19

production of Xyn5 but  also its association with the cel l surface are20

important  for  the uti lization of insoluble xylan by strain W-61.21

22

Involvement of Xyn5 in the expression of xyn1 and xyn3.23

To fur ther study the roles of  xyn5  in xylanase synthesis,  I24

compared total xylanase act ivity and xylanase molecules (Xyn1 through25

Xyn3) produced between the wild-type W-61 and the xyn5-knockout26

mutant PW101. Producing of five xylanases were compared by using27

zymography. None of the xylanases was present in the cul ture of PW10128

in the 0.7% (w/v) xylan medium (Fig.  I-7).  Strain PW102, car rying29
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plasmid pX5KO2 (xyn5),  grew wel l in medium I in 0.7%(w/v)  xylan and1

produced all  xylanases,  whose amounts were comparable to those of2

wild-type strain (Fig.  I-7).  Thus,  xyn5 appears to play a crucial role in the3

synthesis of both Xyn1 and Xyn3.4

When PW101 (xyn5::cat ) was cul tivated in medium I containing5

the xylo-oligosaccharides,  it  produced both Xyn1 and Xyn3 (Fig.  I-9A),6

suggesting that the xylo-ol igosaccharides serves as inducers for  Xyn1 and7

Xyn3 synthesis.  To substantiate the induction effects of the xylo-8

oligosaccharides and to examine their effects on xyn1  and  xyn39

transcription, I  measured the amounts of xyn1  and  xyn3 mRNA in PW10110

cel ls grown under inducible (in  xylo-oligosaccharide medium) and none-11

inducible (in  glucose medium) conditions using real-time RT-PCR. When12

PW101 cel ls were cul tivated in xylan medium, no xyn5  mRNA was13

detected (data not  shown) and the amounts of xyn1  and xyn3  mRNAs were14

very low (Fig.  I-8B) .  Strain PW101 started xyn1 and xyn3  transcription15

within 3 hrs after being transferred from glucose medium into xylo-16

oligosaccharide medium (Fig.  I-8C).  The amounts of xyn5  mRNAs17

increased in the wild-type cel ls cul tivated in xylan medium. Transcript ion18

of the xylanase genes ini tiated at different time of cul tivation. In xylan19

medium, xyn5 transcription began around in 3 h and reached maximum20

levels dur ing 4.5 and 7.5 h,  then decreased after 9 h.  Under the same21

condition, xyn1  and xyn3  mRNA synthesis started in 6 and 7.5 h,22

respectively (Fig.  I-8A) .  Very few amounts of xyn1 ,  xyn3 ,  and xyn523

mRNAs were syntheized when the wild type W-61 was cul tured in glucose24

medium (data not  shown).  Xylobiose and xylotriose induced xyn1  and25

xyn3  expression (Fig.  I-9A).  As measured by luciferase act ivity of a26

Xyn5-luciferase fusion, expression of the xyn5-luc (luciferase gene) was27

enhanced 30-fold in the presence of the xylo-oligosaccharides (Fig.  I-10).28

Taken together,  xylobiose and xylotriose resulted from xylan by the29
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act ion of Xyn5 appear to act  as the inducers of the xyn1 ,  xyn3  and xyn51

genes.These findings suggest that expression of xyn5  is also induced by2

xylo-oligosaccharide.3

4

Discussion5

In this chapter,  I  showed that Xyn5 of  Paenibaci llus sp.  W-61 is6

anchored onto the cel l sur face via its  C-terminal SLH domain, that the7

cel l-surface Xyn5 plays a key role in an ini tial stage of xylan degradation,8

and that xylo-oligosaccharides,  possible products of xylan hydrolysis by9

Xyn5, induce the expression of xyn1 ,  xyn3 ,  and xyn5 .10

As revealed by electron-microscopic observation of the W-6111

cel ls labeled with immuno-gold par ticles using ant i-Xyn5 ant ibodies (Fig.12

I-2A), Xyn5 appear to cluster on the surface and the per ipheral of the13

cel ls.  Xyn5 does not  uniformly distribute on the cel l-surface.  Gold14

par ticles can also be observed around the PW103 cel l (Fig.  I-2B),15

although cel ls are washed with 250 µ l  of PBS. Xyn5 lacking the C-16

terminal SLH domain (produced by PW103) seems to freely defuse into17

PBS buffer,  unl ike intact Xyn5 that is anchored on the cel l sur face.  Xyn4,18

a truncated form of Xyn 5,  as wel l as intact Xyn5 are released in lesser19

amounts compared to Xyn5ΔSLH. Some gold par ticles appear directly20

attach on but  not  vei l the W-61 cel ls (Fig.  I-2A).  Bacillus21

stearothermophilus DSM2358 and B. stearothermophilus ATCC12980,22

which produce high molecular-weight amylases associated with the cel ls,23

have the surface layers similar to that of W-61 (Egelseer et al . ,  1995 and24

Egelseer et al . ,  1996).  The cell -associated amylases cover the whole cel l25

surface.  The structure of bacterial  cel l sur face,  its  components,  and cel l26

wal l polymers were not  different among species (Schaffer,  C and P,27

Messner. ,  2005).  Thus,  cel l sur face structure has high diversity  even28

among Bacillus species.29
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Xyn5 is associated with the cel l sur face via its  C-terminal SLH1

domain (Fig I-3).  Cell sur face proteins of Gram-posi tive bacteria have a2

domain necessary for  target ing them onto the cel l wal ls (Fuj ino et al . ,3

1993; Lupas et al . ,  1994).  Such a domain (ca.  55 residues) contains4

modules of 10-15 converted amino acids,  which is referred to the surface5

layer homologous (SLH) domain. SLH domains,  which is composed of6

one or three modules,  have been identified in over 40 proteins of Gram-7

positive bacteria (Engelhardt et al . ,  1998).  The 180-kDa xylanolyt ic8

protein,  which cross-reacts with ant i-Xyn5 ant ibodies (Fig I-3),  appears9

after the cel l-surface Xyn5 is produced (data not  shown).  This 180-kDa10

protein is susceptible to trypsin digestion (Ito et al . ,  2003).  In contrast,11

PW103 (xyn5∆slh ) cel ls that were cul tivated for  12 h in 0.7% xylan12

medium had no 180-kDa protein on the cel l sur face (Fig I-3).  Thus,  Xyn513

may have an interaction with a cel l-surface protein(s) via the SLH domain14

of Xyn5 to make the 180-kDa complex, which is not  dissociated by SDS,15

implying that Xyn5 bounds covalently to this cel l sur face protein.  I16

determined the N-terminal amino acid sequence of the 180-kDa complex.17

The determined sequence was Asp-Thr-Ala-Thr-Ser-Pro-Gln-Gln-Gln-18

Phe-Asp-Ala.  This sequence is identical  to the N-terminal sequence of the19

100-kDa major S-layer protein of strain W-61 (Ito et al . ,  2003).  The20

counterpart of Xyn5 in the complex therefore should be the S-layer21

protein.  A molar rat io of Xyn5 to 180-kDa S-layer protein on the cel ls was22

4:1 (data not  shown).  Further study to understand the molecular nature of23

the Xyn5 complex is way under.24

The  GST-SLH domain of Xyn5 interacts with both peptidoglycan25

and secondary cell wall polymers (Fig. I-4). Secondary cell wall polymers26

(SCWP), which mainly consist of N-acetylglucosamine and N-27

acetylmannnosamine, mediate non-covalent attachment of S-layer proteins and28

SLH domain to under-layer peptidoglycan (Schaffer,  C and P, Messner. ,29
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2005) (Fig. I-11). The binding affinity of GST-SLH to the secondary cell-wall1

polymers is about one-third of that to the peptidoglycan (Fig. I-4). The2

decreased in interaction between 5 µg GST-SLH and peptidoglycan is predicted3

to be saturated GST-SLH protein. So, saturated cell surface localized Xyn54

could be easy to peel off the peptidoglycan, and excreted into the medium. Total5

sugars of the secondary cell-wall polymers and the peptideglycan, as measured6

by the phenol-sulfuric method (Hodge, J. E. and B. T, Hofreiter. 1962), were7

57.8 µg and 14.6 µg per 100 µg dry weight, respectively. The SLH domain of8

Xyn10B from an anaerobic bacterium Clostridium stecorarium binds to9

peptidoglycan but not to secondary cell-wall polymers (Feng et al., 2000).10

Ito et al, reported that recombinant Xyn5 binds to crystalline cellulose11

but not to oat spelt xylan (Fig. I-5). However, it could bind to homogenized oat12

spelt xylan with a smaller particle size with two-times lower affinity that to13

Avicel (Fig. I-5A and I-5B). As xylan usually co-exists with cellulose, binding14

of Xyn5 to cellulose would allow its access to the substrate xylan. CBM9 has15

been shown to bind to cel lulose (Ito et al . ,  2003) .  Xyn5 has another16

cel lulose-binding domain of family 22 (CBM22, Fig.  I-1).  Fur ther study17

is required to elucidate the roles of these CBMs in Xyn5 binding to18

cel lulose and xylan.19

Xyn5 plays a crucial role in the uti lization of insoluble xylan, but20

not  soluble xylan, by strain W-61 (Fig.  I-6).  Anaerobic bacteria that21

efficiently  degrade cel lulose and xylan, including Clostridium22

thermocel lum ,  Clostridium cel lulovorans,  Ruminococcus flavefaciens,23

Acetivibrio cel lulolyticus and, have a super-molecular complex,  termed24

the ‘cel lulosome’,  on their cel l sur face (for  reviews see: Doi  & Kosugi. ,25

2004; Beguin et al . ,  1996; Shoham et al . ,  1999; Bayer et al . ,  2004.,26

Demain et al . ,  2005).  In contrast,  most xylan-uti lizing aerobic bacteria27

secreted xylanases into the extracellular mil ieu,  without localizing them28

on the cel l sur face (Tomme et al . ,  1995; Warren et al . ,  1996).  Scaffoldin29
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is a major component  of the cel lulosome and has ternary functions that1

include binding to cel lulosomal enzymes, binding to substrate  cel lulose,2

and binding to cel l-surface proteins (Doi  & Kosugi. ,  2004).  Cel l-surface3

Xyn5 of strain W-61 resemble the scaffoldin system of anaerobe4

bacterium. Cel lulosomes have many potential  biotechnological5

applications in the conversion of cel lulosic biomass into sugars for  the6

production of valuable products such as ethanol or organic acids (Doi  &7

Kosugi. ,  2004).  Strain W-61 represents aerobic xylanolytic bacteria that8

have potential  for  application in biomass conversion.9

I found that xyn5  knockout mutant grows poorly in media10

containing insoluble xylan as a sole carbon source and that it  produces11

lit tle amount of Xyn1 and Xyn3 (Fig.  I-7).  When xylo-oligosaccharides,12

such as xylobiose and xylotriose,  are present in the medium, the mutant13

became able to produce Xyn1 and Xyn3 (Fig.  I-9B).  The cel l-surface14

Xyn5 appears to play a major role in the expression of xyn1 and xyn315

genes by generating their inducers,  xylobiose and xylotriose,  from xylan.16

When the xyn5  mutation is complemented in trans by xyn5 cloned into17

pHY300PLK, the  xyn5  knockout mutant becomes able to produce the18

xylanases (Fig.  I-7),  confirming that xyn5  is responsible for  xylan-19

uti lization and xylanase synthesis by strain W-61.20

Real  time RT-PCR revealed that the xylanase genes in strain W-21

61 are expressed in the order of xyn5 ,  xyn1 ,  and xyn3  (Fig.  I-8A).22

Regulatory mechanisms underlying the xyn  gene expression are presently23

poorly understood. In Prevotella bryantii  B14, large xylo-24

oligosaccharides (approximately 30-40 degree of polymerization)  are25

responsible for  the induction of the xylanase genes (Miyazaki  et al . ,26

2005).  The xylanase gene expression in Bacillus stearothermophilus No.27

236 and B. subtilis is subjected to catabolite  repression (Cho et al . ,  1999;28

Jeong  et al . ,  2006).  However,  it  is not  known how multiple xylanase genes29
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are regulated.  A remarkable character istic of the xyn5  knockout mutant is1

that other xylanase genes (xyn1 and xyn3) are not  induced even xylan is2

present in the medium (Fig.  I-8B).  In this context,  it  should be noted that3

xylo-oligosaccharides can induce the expression of the xylanase genes in4

the xyn5  mutant and that xyn1 and xyn3 are expressed ear lier in xylo-5

oligosaccharide medium than in xylan medium (Fig.  I-8C).  In conclusion,6

cel l-surface Xyn5 acts in the ini tial stage of xylan degradation to xylo-7

oligosaccharides,  which induce xyn1  and xyn3  expression. Fur ther study8

is needed to elucidate the mechanism involved in the induction of the9

xylanase gene expression in strain W-61.10

 Xylobiose most strongly act ivates xyn1  and xyn3  transcription11

(Fig.  I-9A). Xylotriose can also induce expression of these genes but12

xylose is inert to do so.  These results suggest that xylobiose and13

xylotriose are the inducers for  xyn1  and xyn3  expression. Xyn5 produces14

mainly xylobiose,  xylotriose,  and xylotetraose from oat  spelts xylan (Roy15

et al . ,  2000),  in accordance with a not ion that Xyn5 plays a major role in16

production of the inducers.  Xylo-oligosaccharides also induce xyn517

expression and glucose antagonizes this induction effect (Fig.  I-10),18

showing that xyn5 expression is subjected to catabolite repression by19

glucose.20

In conclusion, in strain W-61 the cel l-surface Xyn5 plays a key21

role in the efficient degradation of insoluble xylan by generating the22

inducers to express itself and the other genes of the xylanases that23

coordinately degrade xylan.24

25
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pUC119 derivative carrying xyn5; Apr

pKAF derivative carrying xyn5 :: cat; Apr Spcr Cmr

pHY300 PLK derivative carrying xyn5 (!CBM9)

pHY300 PLK derivative carrying xyn5 (!SLH)

pHY300 PLK derivative carrying xyn5 ; Apr Tcr

PW101 harboring pX5K04

Expression vector for GST fusion protein; Apr

Paenibacillus sp. W-61

pUX5S-22

pX5K01

pX5K04

pX5K03

pX5K02

Plasmid

Strain or plasmid Description or genotype

PW101 Derivative of  W-61, xyn5 :: cat

PW102 PW101 harboring pX5K02

PW103 PW101 harboring pX5K03

PW104

pKAF

Table I-1.  Bacterial strains and plasmids used in this study

pUC119

pHY300PLK

TaKaRa Bio

TaKaRa Bio

pGEX4T-1 GE Healthcare

Source or reference

This study

This study

This study

This study

Ito et al., 2003

Our lab

This study

This study

This study

This study

pGEX4T-1 derivative carrying the slh  regionpX5K05 This study

Eschrichia coli 

DH 5"

BL21 (DE3)

BL21 (DE3) harboring pX5K05PE101 This study

Invitogen

TOYO B-NetPlasmid carrying the luciferase gene (luc)PicaGene Basic vector 2

pX5K06 pHY300PLK derivative carrying the  luciferase (luc) gene This study

PW105 PW101 harboring PX5K06 This study

pX5K07 pHY300PLK derivative carrying the Pxyn5 – luciferase (luc) fusion This study

Strains

W-61 Wild type

supE44 lacU169 (80 lacZM15) recA1 endA1 hsdR17 thi-1 gyrA96 relA1

F- ompT hsdSB (γB
-mB

-) gal dcm (DE3) Novagen

Cloning vector; Apr

Shuttle vector of E.coli and Bacillus subtilis ; Apr Tcr

Ts ori shuttle vector containing ori (pUC18), Ts ori (S. aureus pE194 ); Apr Spcr

Nguyen et al., 1991

Ap, ampicilline; Tc, tetracycline; Spc, spectinomycin; Cm, chloramfenicol

Fig. I-1. Modular structure of Paenibacillus sp. W-61 Xyn 5 (Ito et al., 2003).

Xyn5 can be dissected into six domains having the following features; a signal

peptide region for secretion, two family 22 cellulose binding modules (CBMs),

a catalytic domain of the family 10 glycoside hydrolase, family 9 CBM, lysine

(K)-rich domain, and a domain containing S-layer homologous (SLH)

modules. a.a. refers amino acid residues.

200 a.a.

Signal peptide Family 22 CBMs

Family 10 

catalytic domain

CBM 9

domain

K-rich 

domain SLH domain



Fig. I-2. Electron micrographs of immunogold stained Xyn5 molecules on the cell surface of Paenibacillus

sp. W-61 (wild type, A) and PW103 (xyn5!slh, B).

Xyn5 molecules were  labeled with polyclonal anti-Xyn5 antibodies and protein A-colloidal gold and

observed under a transmission electron microscopy. A, W-61 cells grown in medium I containing with 0.7%

(w/v) xylan. B, PW103 (xyn5!slh) producing Xyn5 without the SLH domain. Bars indicate 2 !m.

A BW-61 PW103

Fig. I-3. Western blot analysis of sub-cellular location of Xyn5.

Cells of strains W-61 (wild type) and PW103 (xyn5!slh) were cultivated at 37°C for 12 h in

medium containing 0.7% (w/v) xylan to prepare their cytosols (sup) and cell envelops (ppt).

Presence of Xyn5 in these sub-cellular preparations was analyzed by Western blotting using anti-

Xyn5 antiserum.

sup ppt pptsup

Wild PW103

120 kDa

180 kDa

140 kDa



Fig. I-4. Binding of the SLH domain to peptidoglycan (PG) and secondary cell wall-polymers (SCWP) of strain

W-61. PG or SCWP was incubated with various amounts (0 to 5 !g) of GST-SLH at 4˚C for 1 hr and reaction

mixtures were centrifuged at 100,000 x g for 1 hr to precipitate the cell-wall components. GST-SLH associated

with the cell-wall components were detected by Western blotting using anti-GST antiserum (top two figures). The

amounts of GST-SLH were quantified against a standard curve of GST-SLH using NIH image. Bars represent

standard deviations.
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Fig. I-5. Binding of rXyn5 to oat spelt xylan and Avicel.

Ten !g of rXyn5 was incubate with indicated amounts of oat spelt xylan (A) or Avicel PH-101 (B) at 4˚C for 30

min in 300 !l of 50 mM potassium phosphate buffer (pH 7.0). Xylan and Avicel recovered by centrifugation were

washed once with the phosphate buffer and suspended in the buffer (300 !l). Portions (100 !l) of the free  and

suspensions of xylan and Avicel (Bound) were analyzed for the presence of rXyn5 by Western blotting. The

amounts of rXyn5 were quantified as in Fig. I-4 (bottom figures).

A B
Oat spelt Xylan (mg) Avicel PH101® (mg)

10 20 40

Free  Bound 

0

1

2

4

0

1

2

3

4

rX
y
n

5
 (
!

g
) 3

10 20 40

rX
y
n

5
 (
!

g
)

Free  Bound Free  Bound Free  Bound Free  Bound Free  Bound 



Fig. I-6.   Effect of cell surface localized Xyn5 growth in insoluble xylan.

Strains W-61 (wild type, circle) and PW103 (xyn5!slh, triangle) were grown in medium I supplemented

with 0.7% (w/v) water-insoluble xylan (red) or water soluble xylan (black) at 30˚C. Cell number in the

cultures were counted at indicated time of incubation under a microscope.
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Fig. I-7. Knockout of xyn5 abolishes of Xyn1 and Xyn3 synthesis.

Zymogram of xylanases, wild, PW101 and PW102 cells were grown on 0.7%

(w/v) xylan containing medium, and cell culture was analyzed by

zymography.
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Fig. I-8. Transcription profiles of the xyn genes in strains W-61

(wild type) and PW101 (xyn5::cat) growing in xylan or xylo-

oligosaccharide media.

Wild-type cells were grown in medium I supplemented with 0.7%

(w/v)  xylan at 30˚C (A). PW101 cells were grown in medium I

supplemented with either xylan (B) or xylo-oligosaccharides (C).

Total RNA was extracted from the cells grown as above at the

denoted time and used for RT-PCR.
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Fig. I-9. Inducible synthesis of xyn1 and xyn3 by xylo-oligosaccharides.

A, Zymographies of xylanases in the cultures of W-61 (wild-type) and PW101 incubated in the

presence of xylo-oligosaccharides at 30˚C for 12 h .

B, Total RNA was extracted from PW101 cells grown in minimal medium I containing, xylose (X1), or

xylo-oligosaccharide (xylobiose, X2; xylotriose, X3; xylotetraose, X4, xylopetaose, X5; xylohexaose,

X6) at 30˚C for 12 h  and used as templates in real time RT-PCR. The amounts of xyn1 and xyn3

transcripts as relative amounts to those in the cells grown in glucose medium.
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Fig. I-10. Effects of xylo-oligosaccharides on xyn5 expression.

PW105 cells carrying plasmid pX5K07 ((Pxyn5::luc ) were cultivated in medium I containing glucose

(circle) or xylo-oligosaccharides (square) at 0.7% (w/v). Cell growth was measured  by a

spectrophotometer at 660 nm (OD660). Extracts were prepared from the cells harvested from glucose

(open bars) and xylo-oligosaccharide cultures (closed bars) at indicated period of incubation and used to

measure the activities of luciferase. Thin bars represent standard deviations.

Fig. I-11.   Schematic representation of bacillus cell wall.

SP, surface protein; PG, peptidogycan; CM, cytoplasmic membrane; SLG, S-layer glycoprotein; SCWP, secondary

cell-wall polymers (dot ellipses). SCWP is covalently bound to muramic acid of PG  and non-covalently to SP

through a lectin-type interaction.
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Chapter II1

Membrane location of Paenibacillus  sp.  W-61 LpX2

lipoprotein and its  function as a chaperon of Xylanase 13

synthesis4

5

Introduction6

During cloning and expression experiments of xyn1  in E. col i ,  i t7

was found that the E. col i  cel ls,  which harbored a plasmid containing8

xyn1  and its  downstream region (tentatively named as orf6),  accumulated9

rXyn1 with enzyme act ivity in the cel ls,  whereas the cel ls having xyn110

alone accumulated insoluble rXyn1 without act ivity.  In this chapter,  I11

show that ORF6 is a membrane lipoprotein (LpX) and LpX is located on12

the outer leaflet of the cytoplasmic membrane and is a crucial protein for13

secretion of Xyn1 outside the cel ls as a soluble and act ive form. As the14

amount of xyn1  mRNA in a lpx mutant was similar to that in the wild-type15

strain W-61, I  concluded that LpX is not  mRNA stabilizer,  like XaiF, for16

Bacillus stearothermophi lus xylanase gene (xynA) (Cho et al . ,  1995, and17

Cho et al . ,  1998),  but  a membrane lipoprotein having chaperone-like18

function dur ing Xyn1 secretion through the cytoplasmic membranes.  I19

wil l discuss the properties of LpX in detail.20

21

Material and methods22

Materials.  Restriction enzymes, T4 DNA ligase,  Taq  DNA23

polymerase,  and plasmids pUC119 and pHY300PLK were from TaKaRa24

bio (Otsu,  Japan).  Thermosensitive (Ts) vector plasmid pKAF was used25

for  gene replacement was a stock of our  laboratory.  Ant i-His tag ant ibody,26

HiTrap chelating HP column, Hybond ECL membrane,  ECL detection27

system were from GE Healthcare (Buckinghamshire,  UK). [1- 1 4C]28

Palmitic acid (1.85 GBq/mmol)  was from Dai ichi Pure Chemicals (Tokyo,29
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Japan).  Oat-spelt xylan, PEG (Mr:  6,000),  proteinase K from Tri tirachium1

album ,  ant ibiotics,  DNase I,  RNase A, and Freund’s complete adjuvant2

were from Wako Pure Chemical Industry (Osaka, Japan).  Ant i-rabbit IgG3

(Fc)-alkal ine phosphatase conjugate was from Promega (Madison,  WI) .4

ABI PRIZM BigDye Terminator Cycle Sequencing Ready Reaction kit5

were from Applied Biosystems (Foster,  CA). Water soluble xylan was6

prepared from oat-spelt-xylan (Fluka, U. S.  A) by the method described7

previously (Watanabe et al . ,  2008).  Unless otherwise stated,  chemicals8

used were of the best grade commercially available.9

Bacterial  strains,  plasmids,  and media .  Bacterial  strains and10

plasmids were listed in Table II-1.  Medium I (Nguyen et al . ,  1991)11

containing water soluble xylan and LB medium were used for  growth of12

Paenibaci llus species and E. col i  strains,  respectively.  Ant ibiotics were13

added to cul tures,  when necessary.  Liquid cul tures were shaken at 37˚C14

unless otherwise noted.15

    DNA sequencing of the 5’ and 3’ flanking regions of xyn1 .  The 5’16

and 3’ flanking regions of xyn1  were sequenced by inverse PCR walking.17

Inverse PCR was done using sel f-ligated chromosomal DNA fragments18

digested by an appropriate  restriction enzyme as a template.  Nucleotide19

sequence was determined using ABI 377 cycle sequencing system, and20

sequences were assembled by GENETYX-Mac ATSQ sof tware (Genetyx21

Co.,  Tokyo, Japan).  Open reading frame (ORF) identification and22

multiple sequence alignments were performed using GENETYX program23

(Genetyx Co. ,  Tokyo, Japan).  Homology search was performed using24

FASTA and BLAST programs implemented at the DDBJ/EMBL/GenBank25

nucleotide sequence database and SWISSPROT/NBRF-PIR protein26

databases.  The nucleotide sequence of the  xyn1locus (12-kb) has been27

deposited in the in DDBJ/EMBL/GenBank databases under accession no.28

AB274730.29
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     Cloning of xyn1 and xyn1-orf6  in E. col i .  The xyn1  and xyn1-orf61

genes were amplified by PCR using Paenibaci llus sp.  W-61 chromosomal2

DNA as a template and oligonucleotide primers xyn1-pmt Bam (5’-3

TTTGGATCCGCACGTACCGCACATC-3’) and xyn1-term Hin (5’ -4

AAAAAGCTTCCACTTTTTCATTCTATGTCTCC-3’) ,  or orf6-full  Hin5

(5’ -TTTAAGCTTATGTTCTCTGTCGTCTTC-3’),  respectively.  PCR6

products were digested with BamHI (single underline) and HindII I7

(double underlines),  and then inserted into BamHI-HindII I sites of8

pUC119. Resultant  plasmids containing  xyn1  alone and xyn1-orf6 were9

designated as pX1T and pXFT, respectively (Table II-1).  These plasmids10

were int roduced into E. col i DH5α ,  and   the cel ls harboring  pX1t and11

pFXT were designated as UX101 and UX102, respectively (Table II-1).12

Construct ion of orf6  knockout mutant of Paenibaci llus sp.  W-61 .13

An orf6  knockout mutant was obtained as described previously14

(Watanabe.,  2006).  A 2.5-kbp DNA fragment containing xyn1  and orf615

was amplified by PCR using Paenibaci llus sp.  W-61 chromosomal DNA16

as a template and primers,  xyn1-pmt Bam (5’-17

TTTGGATCCGCAGGACGTACCGCACATC-3’) and orf6 dco rv (5’ -18

TACAAGCTTCTCATGATTTCCAACGCCG-3’).  The resultant  product19

was digested with BamHI (underlined site) and HindII I (double20

underlined site),  and cloned into the BamHI and HindII I sites of plasmid21

pHY300PLK. The internal 740-bp Stu I and Ban II fragment of inserted22

orf6  was replaced by a cat  cassette (Kato et al . ,  2005).  Resultant  orf6::cat23

fragment was inserted into the temperature-sensitive shuttle vector pKAF24

to obtain plasmid pKMC (Table II-1).  This plasmid was int roduced into25

Paenibaci llus sp .  W-61 by electroporation, and transformants were26

incubated at 43˚C. An orf6  knockout mutant was selected on LB plate27

containing chloramphenicol  (10 µg/ml),  and designated as PSC301 (Table28

II-1).  For  complementation experiments,  the orf6  expression plasmid was29
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constructed as fol lows. A promoter region of xyn1  was amplified using1

Paenibaci llus sp.  W-61 chromosomal DNA as a template and primers,2

xyn1-pmt fw Eco (5’ -CAGGAATTCCCGCACATCTGGTATGAAGAG-3)3

and xyn1-pmt rv Bam (5’-4

TCCGGATCCTTGGATTAGTTTTTGAATAATTCGGTAC-3’),  and5

digested with EcoRI and BamHI (underlined sites).  Resultant  EcoRI-6

BamHI fragment containing xyn1 promoter was inserted EcoRI and BamHI7

sites of pHY300PLK. Then orf6  with its  own ribosomal  binding site and8

termination loop was amplified using Paenibaci llus sp.  W-619

chromosomal DNA as a template and primers,  orf6-SD fw Bam (5’-10

CCAGGATCCAGAAGGAGACATAGAATG-3’) and orf6-full  Hin.  The11

amplified product was digested with BamHI and HindII I (underlined site).12

Resultant  fragment was inserted into BamHI and HindII I site in13

immediate downstream of xyn1  promoter to obtain pHPX4T (Table II-1).14

Paenibaci llus strain PSC301 was transformed by plasmids pHY300PLK15

and pHPX4T to obtain strains PSC401 and PSC402, respectively (Table16

II-  1).17

Total RNA preparation and Northern blotting analysis.  Cells of18

Paenibaci llus sp.  W-61 and its  mutants were grown in medium I19

containing 0.7% soluble xylan. When appropriately,  chloramphenicol  (1020

µg/ml),  spectinomycin (100 µg/ml),  or tet racycl ine (1 µg/ml) were added21

into medium. Total RNA was prepared according to the method of Aiba et22

al .  (1981).  Nor thern blotting analysis was done according to a23

manufacture’s instructions of ECL TM random prime system, version II and24

gene image CDP-StarTM detection module (GE Heal thcare).  Xyn1  specific25

probe was prepared as fol lows. A 846-bp DNA fragment was amplified26

from plasmid pXFT as a template DNA by PCR using primers,  xyn1-pmt27

Bam and xyn1-R (5’-28

ATTAAGCTTGGATCCTTACCAAACGGTCACGTTGGA-3’).  Resulting29
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product was labeled by ECL TM random prime labeling system, version II1

(GE Healthcare).2

Preparation of anti N-His6-tagged fusion ORF6 (N-His-ORF6)3

ant iserum. A 308 bp DNA fragment of a par t of orf6,  encoding an N-4

terminal 102-amino acid polypeptide of ORF6 was amplified from the5

plasmid pXFT as a template DNA by PCR using primers,  orf6-N Nde fw6

(5’ -AGAAGGAACATATGGAGATCATGGGCGAG-3’) and orf6-N Xho7

rv (5’ -TCCACTCGAGACGTAGTTCATGCTTTTTTG-3’),  and the8

resultant  product was digested with NdeI (underlined site) and Xho I9

(double underline),  and cloned into the NdeI and Xho I sites of the plasmid10

pET15b. The resultant  plasmid, which was designated as pEN2, was11

int roduced into E. col i DH5α .  For  preparation of the N-His-ORF612

polypeptide,  plasmid pEN2 was int roduced into E. col i BL21 (DE3),13

designated as ELN102 (Table 1).  An N-His-ORF preparation was obtained14

from this transformant which was grown at 30˚C in the LB broth15

containing I mM isopropyl  β-1- thiogalactopyranoside.  The crude N-His-16

ORF6 preparation was applied to a HiTrapTG Chelating HP column17

chromatography.  The N-His-ORF6 fraction was then applied to SDS-18

PAGE to remove some contaminants.  The area corresponding to a N-His-19

ORF6 band in the polyacrylamide gel  was cut  out  and stored at -80˚C.20

Mice ant iserum raised against N-His-ORF6 ant iserum was prepared as21

described previously (Yamaguchi  et al . ,  2006).  The mashed N-His-ORF622

ant igen was mixed with Freund's complete or incomplete adjuvant,  and23

used to immunize mice.24

Preparation of protoplasts from Paenibaci llus strain PSC402 .25

Protoplasts from  Paenibaci llus PSC402 ,  which produces an appreciable26

amount of ORF6, were prepared by the method of Egelseer et  al  (1995).27

The cel ls were grown in medium I containing 0.7% of soluble xylan,28

chloramphenicol  (10 µg/ml),  spectinomycin (100  µg/ml),  and tet racycl ine29
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(1 µg/ml).  At the mid-exponential  phase,  cel ls were col lected and1

suspended in 50 mM Tris-HCl (pH 8.0) containing 20 mM MgCl2 and2

7.5% PEG (buffer A).  The cel l suspension was incubated at 37˚C for  603

min in the presence of a 40µg/ml of egg-white lysozyme.  Formation of4

protoplasts was ver ified under a phase-contrast microscopy. All  cel ls5

became protoplasts after 60 min-incubation.  Protoplasts were col lected by6

centrifugation at 7,000 x g  for  10 min at room temperature and suspended7

in buffer A.8

Preparation of inside-out vesicles of the cytoplasmic membranes9

from protoplasts of Paenibaci llus PSC402.  Inside-out vesicles of the10

cytoplasmic membranes were prepared from the protoplasts of11

Paenibaci llus PSC402 by the method of Futai et al .  (1974).  Protoplasts12

were suspended in 5ml of 50 mM Tris-HCl (pH 8.0) containing 20 mM13

MgCl2 (buffer B) and disrupted by passage through a French pressure14

cel ls at 8,000 psi  and centrifuged at 100,000 x g  for  120 min at 4˚C to15

col lect inside-out vesicles.  The vesicles were suspended in 4 ml of buffer16

B.17

Proteinase K treatment  of the protoplasts and inside-out vesicles18

of cytoplasmic membranes from Paenibaci llus.  The protoplasts and19

inside-out vesicles of the cytoplasmic membranes from Paenibaci llus20

species were treated with proteinase K (50 µg/ml) in buffers A and B,21

respectively,  for  0,  2.5,  5,  and 10 min at 20˚C in the presence or absence22

of 1% SDS. At denoted points of time, por tions of the reaction mixtures23

were withdrawn and PMSF was immediately added to the samples at the24

final concentration of 4 mM for  analysis by SDS-PAGE.25

Detection of Xyn1 and ORF6 proteins.  Xyn1 and ORF6 were26

detected by Western blotting using ant i-Xyn1 and ant i-N-His-ORF627

ant isera respectively,  as described previously (Okai et al . ,  1998).28

Measurement of Xyn1 act ivity .  Xyn1 act ivity was measured as29
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described previously (Watanabe et al . ,  2008).  One uni t of the enzyme was1

def ined as the amount of enzyme required to liberate 1 µmole of the2

reducing sugar as xylose from xylan per  minute.3

     Radioisotope-labeling of ORF6 .   Paenibaci llus PSC402 strain4

was grown in 100 ml of medium I at 37˚C.  At the mid-exponential phase5

(O.D.6 0 0  = 0.2),  1.85 MBq of [1-1 4C]-palmitic acid (1.0 x 10-8  M) was6

added  to the cul ture and incubation was continued unt il the ear ly7

stationary phase (O.D.6 0 0  = 2.5).  Cel ls were harvested by centrifugation,8

washed twice with 50 mM Tris-HCl buffer (pH 8.0)  at 4˚C, and lysed with9

a mor tar and a pestle in the presence of sea sands on ice.  The cel l lysate10

was treated with DNase I (50 µg/ml) and RNase A (50 µg/ml).  Sea sands11

were removed by centrifugation at 1,000 x g and then the supernatant was12

fur ther centrifuged at 200,000 x g  at 4˚C for  1 hr to col lect the13

cytoplasmic membranes.  The membranes were washed with 50 mM Tris-14

HCl buffer (pH 8.0) ,  solubilized with 75 µ l  of 10% SDS, and analyzed by15

SDS-PAGE. Radioactive protein bands on dried PAGE plates were16

detected using a Fuj i Film FIA-2000 fluoro-imaging analyzer (Tokyo,17

Japan) by the method of Kempf et al .  (97).18

19

Results20

Cloning of xyn1  and its flanking region.  When xyn1  was21

expressed together with its  flanking gene (Fig.  II-1) in E. col i  UX10222

(carrying pXFT [xyn1-orf6 ]),  the recombinant strain formed clear halos23

around their colonies on an RBB-xylan plate.  In contrast,  colonies of24

strain UX101, which harbored plasmid pX1t containing xyn1  alone,25

formed very tiny and cloudy halos,  although this strain produced rXyn126

protein in the about half amount of UX102 strain 23 ng/109 cel ls vs.  5027

ng/109 cel ls .  This result suggests that ORF6 is necessary to express28

rXyn1 as an act ive form in E. col i .  ORF6 shows 61% identity with the29
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transcription regulator  XaiF (Fig.  II-2).  The gene for  this regulator  lies1

immediate downstream of the xynA  gene for  low-molecular  xylanase of2

Bacillus stearothermophi lus (Cho et al. ,  1998).3

Effect of ORF6 on xylanase act ivity of a recombinant Xyn14

(rXyn1).  E. col i  UX101 and UX102 cel ls grown in LB broth to the5

stationary phase were disrupted by sonication and centrifuged at 50,000 x6

g  for  10 min to obtain the membrane and soluble fractions.  In the UX1027

cel ls,  act ive rXyn1 protein was detected in the suluble fraction (Fig.  II-3).8

Similar result was obtained with the E. col i ACX104 cel ls car rying9

compatible plasmids pAC-X1T and p2N6T that expresses xyn1  and orf610

genes in trans (data not  shown).  In contrast,  in the E. col i  UX101 cel ls,11

rXyn1 protein was detected in the membrane preparation, but  it  had no12

detectable enzyme act ivity (Fig.  II-3).  These results indicated that orf6  is13

required to express rXyn1 as an act ive enzyme and that ORF6 act  as a14

post-translational act ivator  of rXyn1 in E. col i .15

 Identification of ORF6. The predicted amino acid sequence of16

ORF6 showed that this protein has a signal peptide of 18-amino acid17

residues (M-1 8 KKWMLFLFIAAVACL-3S-2A-1C1S2) in its  N-terminal.  It18

has a putative lipo-box sequence (double underlined),  which is commonly19

present in bacterial  lipoproteins Wu et al . ,  1986),  in the C-terminal par t20

of the signal peptide Fig.  II-2).  It  is wel l known that the lipobox21

sequences are cleaved between the Ala-1  and Cys1 residues by signal22

peptidase II to produce a Cys1 residue at the N-terminus of a mature23

lipoprotein and that the N-terminal Cys-residue is modified by thiol-24

linked diacylglycerol,  to which three fat ty acids and amide-linked25

palmitic acid are covalently linked (Wu et al . ,  1986).  To examine whether26

ORF6 is a lipoprotein,  I  grew Paenibaci llus PSC402 cel ls in medium I27

supplemented with [1 4C]-palmitic acid and measured radioactivity of the28

palmitic acid in ORF6. As shown in Fig.  II-4,  [1 4C]-palmitic acid was29
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detected in a 31-kDa membrane protein of the PSC402 cel ls.  This protein1

was cross-reacted with ant i-N-His-ORF6 ant iserum. In an orf6-knockout2

mutant (st rain PSC401),  no radioactivity was detected in the 31-kDa3

protein (Fig.  II-4,  lane 2),  supporting a not ion that ORF6 is a lipoprotein.4

Other radioactive proteins observed in both strains may also be5

lipoproteins.  Hereafter ,  I  cal l ORF6 and its  gene as LpX (Lipoprotein for6

Xyn1 secretion) and lpx ,  respectively.  LpX has no motifs,  such as hel ix-7

turn-helix and zinc finger,  typical to DNA binding proteins.8

Presence of LpX on the cytoplasmic membranes.  To determine9

the location of LpX on the cytoplasmic membranes (i. e.  outer or inner10

leaflet),  accessibi lity of LpX to proteinase K on protoplasts and inside-11

out  membrane vesicles from PSC402 protoplasts were examined.  As12

shown in Fig.  II-5A,  LpX molecules on the protoplasts were rapidly and13

completely digested with proteinase K, whereas those on the inside-out14

membrane vesicles were not  digested with proteinase K (Fig.  II-5B) .15

When the inside-out membrane vesicles were lysed with 1% SDS, LpX16

molecules became completely digested with proteinase K (Fig.  II-5B) .17

Hence, it  was concluded that LpX is located on the outer leaflets of the18

cytoplasmic membranes and that the N-terminal region of LpX was19

exposed to the per iplasm in Paenibaci llus strain PSC402, because the20

protoplasts were cross-reacted with polyclonal ant ibodies raised against21

the N-terminal 108-amino acid polypeptide of LpX.22

LpX function for normal secretion of Xyn1 out  of cel ls in23

Paenibaci llus.  The cel ls from PSC401 and PSC402 strains were grown in24

medium I containing xylan unt il stationary phase (1 x 109  cel ls/ ml) .  After25

centrifugation,  the secreted Xyn1 protein in the supernatant was assayed.26

The PSC402 secreted Xyn1 protein at the concentration of 8 ng/ml.  This27

was similar amount of Xyn1 protein secreted in the wild type strain W-61.28

In contrast,  the PSC401 secreted only 0.35 ng/ml of Xyn1 in the medium.29
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On the other hand, both strains secreted Xyn3 and Xyn5 into the cul ture1

medium to a same extent as wild type W-61 strain (data not  shown).  These2

data suggested that LpX has the positive effect for  the Xyn1 secretion and3

that the positive effect is Xyn1-specific in Paenibaci llus sp.  W-61.4

DNA sequencing analysis of the flanking region of xyn1 .  We5

identified 8 orfs in a 12 kb-flanking region of xyn1 ,  in which  orf5 and6

orf6  cor respond to xyn1  and lpx ,  respectively (Fig.  II-1).  ORF1, which7

consists of 574 amino acid,  had 26% identity in amino acid sequence with8

that of endo-β-1,4-glucanase from Clostridium cel lulovorans (accession9

no.  AAB40891) .  ORF2, which is composed of 380 amino acid residues,10

had 77% identity with an int racellular exo-oligoxylanase (Rex) from11

Bacillus halodurans C-125, which catalyzes release of D-xylose from the12

reducing end of low-molecular xylooligosaccharide (Honda et al . ,  2004,13

and Fushinobu et al . ,  2005).  The C-terminal 260-residues of ORF3 with14

434-amino acid residue had 29% identity with 205 amino acid residues of15

CAS35p of Cryptococcus neoformans var.  grubii ,  which is known to be16

involved in a glucuronoxylomannan capsule formation in this organism17

(Moyrand et al . ,  2007, and Chang et al . ,  1996).  ORF3 may recognize a18

xylosidated saccharide and involve in degrading hemicellulose in the19

Paenibaci llus W-61 strain.  ORF4 with 261-amino acid residue had 47%20

identity with that of the feruloyl esterase domain of endo β-1,4-xylanase21

from Clostridium thermocel lum ,  which hydrolyzes the feruloyl-ester22

between L-arabinose side chain of xylan and ferulic acid covalent ly23

binding to lignin (Blum et al . ,  2000).  ORF7, which encodes a possible24

secreted protein consisting of 238-amino acid residue, had 89% and 88%25

identity in amino acid sequence with that of endo-1,3-1,4-β-glucanases26

from Paenibaci llus polymyxa  (Accession no.  AAN85721)  and27

Paenibaci llus macerans,  respectively (Borris et al . ,  1990).  ORF8, which28

consists of 545 amino acid residues and had 68% homology in amino acid29
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sequence to that of B .  clausii  sugar-uptake ABC transporter substrate-1

binding protein (Accession no.  BAD63263) .2

      Transcription analysis of xyn1 and lpx genes in Paenibaci llus3

sp.  W-61.  From the Nor thern blotting analysis of xyn1  and lpx  in the W-4

61 strain,  both genes were found to be transcribed as one mRNA together5

with orfs3  and 4 (Fig.  II-6,  band orf3-lpx).  A shorter mRNA encoding6

orfs3 ,  4 ,  and xyn1 without lpx  was also transcribed (Fig.  II-6,  band orf3-7

xyn1).  On the other hand, one mRNA coding orfs 3,  4,  xyn1 ,  and8

chloramphenicol  acetyl transferase gene (cat ),  which was inserted into9

lpx,  was detected in the strain PCS401 (Fig.  II-6C, band orf3-xyn1-cat ).10

In the strain PSC402, in which the disruption of lpx  was complimented by11

transformation of a plasmid pKMC containing lpx ,  the amount of mRNA12

coding orfs 3,  4,  xyn1 ,  and cat  genes was almost similar as that of PSC401.13

Thus, it  was concluded that the amount of secreted Xyn1 in Paenibaci llus14

sp.  W-61 was dependent  on the presence of LpX but  not  the transcription15

level of xyn1. Thus, it  was concluded that the amount of secreted Xyn1 in16

Paenibaci llus sp.  W-61 was not  dependent  on the transcription level of17

xyn1 .  Interestingly,  possible promoter sequence between orf4  and xyn118

seems to be not  used in the  Paenibaci llus sp.  W-61, because a short19

mRNA encoding xyn1 ,  or xyn1and  lpx was not  observed.  However,  this20

promoter was act ive in E. col i and Paenibaci llus sp.  W-61 when orf4  was21

eliminated from upstream of xyn1  e.g .; (pX1t,  pXFT and pHPX4T).22

23

Discussion24

In this study, we identified LpX which is the crucial membrane25

lipoprotein for  the normal secretion of Xyn1 across the cytoplasmic26

membrane in Paenibaci llus sp.  W-61. The LpX-disruption mutant of the27

strain W-61 did not  accumulate Xyn1 protein either in the cul ture medium28

or in the cel ls.  Although the reason is not  clear yet ,  Xyn1 molecules29
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synthesized in the cel ls seem to aggregate dur ing secretion step out  of the1

cytoplasmic membrane in the cel ls,  lacking LpX molecules,  and the2

aggregated Xyn1 molecules may be degraded by a predicted protease(s)3

on the cel l sur face or cul ture medium. In W-61, LpX may prevent Xyn14

from misfolding and aggregation dur ing its  secretion step.5

LpX has 61% identity in the amino acid sequence with the reported6

transcription act ivator ,  XaiF, for  Bacillus stearothermophi lus xylanase7

gene (xynA) (Cho et al . ,  1998, and Cho et al . ,  1995).  Jeong et al.  reported8

that XaiF protects the xynA  mRNA from the RNases by its  binding to 3’-9

untranslational  region (UTR) of the xynA  transcript and that the amoun of10

xynA  mRNA is drastical ly decreased in the E. col i  strain car rying xynA11

alone (Jeong et al . ,  2006).  We showed clearly in this study that the12

amount of xyn1 mRNA is almost same regardless of the presence or13

absence of lpx  in Paenibaci llus sp.  W-61. We have also ascertained no14

dif ference in the case of E. col i  by using the plasmid containing xyn115

(pX1T) and xyn1-lpx  (pXFT) (data not  shown).  Therefore,  we could16

mention that LpX is not  the mRNA stabilizer like XaiF but  membrane17

lipoprotein having chaperone-like function dur ing Xyn1 secretion through18

cytoplasmic membrane in  Paenibaci llus sp.  W-61. It is of interest to note19

that XaiF may be also bacterial  lipoprotein like LpX, because of the20

presence of lipobox sequence (Val-Thr-Ala-Cys) in the typical signal21

peptide sequence in N-terminal region of the prematured XaiF (Fig.  II-4),22

predicted from the DNA sequencing data (Cho et al . ,  1998).23

   Recently,  it  has been reported that peptidyl prolyl-cis /trans24

isomerase (PPIase: EC5.2.1.8) (PrsA),  which is a membrane lipoprotein25

involving in cis /trans alteration of proline residue in secreted protein(s),26

is a crucial enzyme for  protein secretion (Kontinen et al. ,  1993).  The27

prsA-disruption in Bacillus subtilis caused disorder in α-amylase28

secretion (Kontinen et al. ,  1998) and other secreted proteins (Kim et al . ,29
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2005).  Although it is not  clear that LpX is involved in the normal1

secretion of other secreted protein(s) besides Xyn1 in Paenibaci llus sp.2

W-61, it  is feasible that LpX is par ticipated in the secretion of only Xyn13

of the secreted xylanases 1,  3,  and 5 reported in Paenibaci llus sp.  W-61,4

because lpx  never fai led to be transcribed with xyn1  (Fig.  II-6C)  and the5

normal secretion of xylanases 3 and 5 in the lpx-disruption mutant  of the6

W-61 strain (data not  shown) was occurred. Homology search showed that7

LpX has low homology to PPIase and other known chaperones.  Thus,  it  is8

concluded that LpX is a novel bacterial  membrane lipoprotein involving9

in the secretion of Xyn1 in Paenibaci llus sp.W-61.10

11
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pUC119 derivative carrying Pxyn1-xyn1; AprpX1T

pUC119 derivative carrying Pxyn1-xyn1-orf6; AprpXFT

pHY300 PLK derivative carrying Pxyn1-SD- orf6; Apr Tcr pHPX4T

pKAF derivative carrying xyn1-orf6 :: cat; Apr  pKMC

pEN2 pET15b derivative carrying the N-terminal 108 amino acid region of orf6 ; Apr

UX101 DH 5! harboring pX1T

UX102 DH 5! harboring pXFT

PSC101 W-61 harboring pKMC

PSC301 W-61 derivative (orf6::cat)

PSC401 PSC301 harboring pHY300 PLK

PSC402 PSC301 harboring pHPX4T

pKAF Ts ori shuttle vector contains a pUC18 ori, S. aureus pE194 Ts ori; Apr Spcr

ELN102 BL21 (DE3) harboring pEN2

Cloning vector; Apr

Shuttle vector for E.coli and Bacillus subtilis ; Apr Tcr

Paenibacillus sp. W-61

Plasmids

Strain or plasmid Description or genotype 

pUC119

pHY300PLK TaKaRa bio

TaKaRa bio

Source or reference

Watanabe., 2006

Eschrichia coli K-12 strains

DH 5! supE44 lacU169 (80 lacZM15) recA1 endA1 hsdR17 thi-1 gyrA96 relA1

BL21 (DE3) F- ompT hsdSB (γB
-mB

-) gal dcm (DE3) Novagen

Invitogen

Watanabe., 2006

Watanabe., 2006

Watanabe., 2006

Watanabe., 2006

Watanabe., 2006

Watanabe., 2006

Watanabe., 2006

Watanabe., 2006

Laboratory collection

Watanabe., 2006

Watanabe., 2006

Watanabe., 2006

Wild type Nguyen et al., 1991W-61

Strains

Ap, ampicilline; Tc, tetracycline; Spc, spectinomycin

Table II-1.  Bacterial strains and plasmids used in this study

UX105 DH 5! harboring pC19A Thiis study

pET15b derivative carrying orf6 point mutant C19A; AprpC19A This study

orf1 orf3 orf4

orf6

(lpx)

xyn1

orf2 orf7 orf8

1 kb

Fig. II-1. Gene organization of the xyn1 locus of the Paenibacillus sp. W-61 chromosome.

Open arrows shows sizes and directions of orf 1 through orf 8. A putative promoter and a rho-

independent terminator are shown by a bent arrow and a hairpin mark, respectively.



LpX    1 MKKWMLFLFIAAVACLSACSSTNADVGDHFVY------VEGGTFKSTKST-FSGKDVTVS

XaiF   1 MSM--I-LPIAIMVLVTACSQAAMGRLERQND-SF-VLVQGGSVKNTRSNFYGSGEVLA-

XylR   1 MRKRFIFLVI-VMIVASACSQVKTVNSENPVSNDHLVLVEGGTFTSTKTNDYEETITID-

         * .  ..* *. .   .***.      .  .     ..*.**....*... .    .   

LpX   54 DFYIGKYEVTQKEWMEIMGENPSGFKGDDLPVEMVSWYDAVEYCNQRSIKENLKPYYNID

XaiF  55 DFYIGKYEVTQREWVEVMGSNPSQFQGDDLPVEMVSWYDVIEYCNQRSIKEGLKPFYNID

XylR  59 DFYIGKYEVTQKEWMDVMGSNPSHFKGDDLPVEMVSWYDAIEYCNKRSIKEGLEPYYNIN

         ***********.**...**.*** *.*************..****.*****.*.*.***.

LpX  114 KNTTDPSNKNENDNLKWTITVNEGADGYRLPTEAEWEYAASGGQKSMNYVYSGSSNPDEV

XaiF 115 KQKIDPNNQSEFDPVKWTVTINPDANGYRLPTEAEWEYAAGGGQLSQSYKYSGSSRVDDV

XylR 119 KNELDPNNKSEYDHIKWTVTINEGVNGYRLPTEVEWEYAASGGQLSESYTYSGSHNVDEV

         *.  **.*..* *  ***.*.*....*******.******.***.* .* ****...*.*

LpX  174 AWYWINAGDKILTGDWSWPAIESNRNQTQKVGTMKANELGIHDMSGNVREWCWDWYSHPE

XaiF 175 AWYWRNAGKEYLSGDWNWPIIESNQSRTRPVGGKEPNELGLYDMSGNVREWCWDWYGDEV

XylR 179 AWYWRNAGDQYLSGDWSWPTIENNNNQTNSVGLKEPNELGLFDMSGNVREWCWDWYGELG

         ****.***. .*.***.** **.* ..*  ** ...****. **************.   

LpX  234 SPENTW---RVVKGGGWIGGVNNNEISFPGKFDANGFGPDQGFRVVRGI

XaiF 235 NQNYDGGLFRVVKGGGWIGDVSSSEVAFRGKFEASGFGPDQGFRLARNK

XylR 239 GDNESGSL-RVVKGGGWLGDVSSNEISFRGKFEASGIGPDQGFRVARNK

           .  . . ********.*.*...*..*.***.*.*.*******..*..

Fig. II-2. Alignment of the amino acid sequences of Paenibacillus sp. W-61 ORF6,  XaiF from Bacillus

stearothermophilus, and XylR from Bacillu halodurans C-125.

 Identical and conserved amino acid residues are indicated by asterisks and dots, respectively. Typical

“lipo-boxes” conserved in lipoproteins are boxed. Signal sequence of LpX is underlined.

UX101 UX102

Xylanase activity (U)

Relative amount of Xyn1 (%)

W        S          P         W         S          P

65.0

0

0.00

0

61.4

0

100

1.8

91.8

1.9

0.14

0.1

Fig. II-3. Western blots and xylanase activities of rXyn1 expressed in E. coli UX101 and UX102.

Mid-exponential phase cells of UX101 and UX102 were disrupted by sonication. Whole cell extracts (W),

and supernatants (S), and precipitates (P) obtained by centrifugation at 50,000 x g for 10 min were

analyzed by Western blotting. To measure the amounts of Xyn1, purified Xyn 1 (Watanabe et al., 2008) ,

was used to produce a standard curve. Intensities of the immunostained membrane Xyn1 were measured

using NIH image. Intensities were proportional to the amounts of Xyn1 up to 100 ng. Relative amounts of

Xyn 1 were calculated as ratios to the amount of Xyn 1 in the UX102 cell. For measurement of xylanase

activity, see text.



A) B)

PSC401

LpX
LpX

Fig. II-4. Western blots of 14C-palmitic acid-labeled Paenibacillus PSC402 PSC401 and PSC402  using

anti-LpX antiserum.

Strains PSC401 and PSC402 were grown in medium I supplemented with 14C-palmitic acid. Cell lysates

were centrifuged by 100,000 x g for 60 min to separate the cytoplasmic membrane and the cytoplasm and

Xyn 1 in the preparations were detected  by Western blotting (panel A) and radioactivities  incorporated

into the protein were using a FLA-2000 (Fuji photo film, Tokyo, Japan) (panel B) according to the method

of  Kempf et al. (1997). For detection of radioactivies on a membranes, the film was exposed for 10 days.

LpX is indicated by arrowheads.

PSC402

Sup. Ppt. Sup. Ppt.

PSC401 PSC402

Sup. Ppt. Sup. Ppt.

A)

Proteinase K         +        +       +      +         -        -        -        -

Time  (min.)          0       2.5     5     10        0      2.5      5      10

+      +      +      +      +     +     +     +       -       -        -       -

+      +      +      +       -      -        -      -       +      +       +      +

0     2.5    5     10      0    2.5    5    10     0     2.5     5     10

Proteinase K

SDS

Time (min.)

B)

LpX

LpX

Fig. II-5. Proteinase K treatment of the protoplasts (A) and the inside-out membrane vesicles of the

protoplasts (B) of the Paenibacillus PSC402 in the presence or absence of SDS.

The samples were treated with proteinase K (50 !g/ml) in the presence or absence of 1% SDS at 20˚C for 0,

2.5, 5, and 10 min, and analyzed for LpX by SDS-PAGE using 12.5% gel. LpX was detected by Western

blotting using anti-LpX antiserum.
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Fig. II-6.  Growth (A) and xyn1 and lpx mRNA levels (B and C) in Paenibacillus sp. W-61, PSC401, and

PSC402

(A). Cells were grown in medium I containing 0.7% soluble xylan with shaking. Diamonds, squares, and

triangles represent growth of W-61, PSC401 and PSC402, respectively. (B and C). Northern-blot analysis

was done using xyn1 region as a probe in W-61 (B), and PSC401 and PSC402 (C). Total RNAs from the

cells were prepared as described in “Materials and Methods”. The orfs are depicted as white (orfs-3 and -4),

black (xyn1 and lpx), and gray (cat) arrows. Arrow length corresponds to the sizes of their products. The

thin arrows represent polysistronic mRNAs. A putative promoter and a rho-independent terminator are

shown by bent arrow and stem roop mark, respectively, upper orfs.
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