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INTRODUCTION 

Autism is a childhood neuropsychiatric disorder de-
spite exhibiting high heritability, has largely eluded 
efforts to identify specific genetic variants underlying 
its etiology [1]. It presents with a triad of core symp-
toms which include a qualitative impairment of social 
interaction (an inability to relate to others often with 
lack of eye contact), stereotypical, ritualistic, repeti-
tive, restrictive patterns of interests, behaviours and 
activities, and major defects in language development 
and in other communication skills. Other non-specific 
symptoms also found in autism such as unusual senso-
ry perception skills and experiences, motor clumsi-
ness, insomnia, and limited intelligence (IQ > 100 in 
5%) [2]. Autism spectrum disorders (ASDs) is com-
posed of three separate diagnoses that include autism 
and two other milder but qualitatively similar disor-
ders, Asperger’s syndrome and Pervasive Develop-
mental Delay Not otherwise Specified (PDD-NOS). The 
wide spectrum of developmental disorders character-
ized by impairments in 3 behavioural domains: social 
interaction, language (including communication and 
imaginative play), and range of interests and activities
[3]. This neurodevelopmental disorder is characterized 
by social and communicative deficits and ritualistic-
repetitive behaviours that are detectable in early 
childhood. As one of the most heritable (>90% herita-
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bility) genetic disorders, autism is classified as a 
‘pervasive developmental disorder’ – pervasive be-
cause it affects many aspects of cognition, behaviour 
and developmental since autistic symptoms emerge 
during development from infancy or perhaps from 
birth [4]. 

The term “idiopathic” autism is refers to cases in 
which children meet the criteria for ASDs but do not 
have any associated medical condition known to cause 
ASDs. Children with idiopathic ASDs demonstrate vari-
able behavioural phenotypes, are somewhat less likely 
to have comorbid with Global Developmental Delay 
(GDD) or Mental Retardation (MR), and generally do 
not have dysmorphic features that herald a recogniza-
ble syndrome [5]. Recently, many candidate genes has 
been associated with ASDs, but no single allele is ordi-
nary described the symptom. Besides, the environ-
ment also believed to play a role in ASDs. Many con-
flicting theories have been presented to explain the 
environmental components of the disease including 
aspects of nutrition, economic status, vaccination, and 
general health care as well as environmental pollu-
tants and family life [6]. However, none of these envi-
ronmental parameters have been shown to be com-
monly linked to ASDs. It has reported that the anoma-
lies of ASDs include the high incidence in middle and 
upper middle class young children as opposed to un-
derprivileged kids living in poverty [7]. 

The candidate genes include aspects of neurogenesis, 
neuronal migration, maturation, differentiation, and 
degeneration. There are also striking examples of 

ABSTRACT 

Autism is childhood neuropsychiatric disorder despite exhibiting high heritability and has largely eluded efforts to 
identify specific genetic variants of biomarkers. This neuropsychiatric disorder is characterized by social and commu-
nicative deficits and ritualistic-repetitive behaviour that are detectable in early childhood. It has been reported that 
some candidate genes has been found in autism children brains. The candidate genes include aspects of neurogene-
sis, neuronal migration, maturation, differentiation, and degeneration. Some of researchers had reported the effects 
of the mutated and sufficiency of the candidate genes in autism brain which believed that might involved in the 
mechanism and causes deficit in social behaviour language impairment and repetitive behaviour. In this review, we 
will summarize the gene candidate which found in autism children brains and their effect of their cognitive function.  

KEYWORDS: Autism; Gene biomarkers; Brain development. 

 
DOI: 10.5455/ijcbr.2018.42.16 
 
 
     eISSN: 2395-0471 
     pISSN: 2521-0394 

mailto:wahida2609@gmail.com


 75 

 

overexpression of certain regions of the prefrontal 
cortex and cerebellum in general, as well as multiple 
sites of dysregulation in both the innate and acquired 
immune response [8]. The regulation of expression of 
some autism candidate genes by neuronal membrane 
depolarization suggests the appealing hypothesis that 
neural activity-dependent regulation of synapse devel-
opment may be a mechanism common to several au-
tism mutations. Early brain development is driven 
largely by intrinsic patterns of gene expression that do 
not depend on experience-driven synaptic activity as 
reported by [9]. 

The search for candidate genes for autism is compli-
cated by the fact that the majority of genes associated 
with the disorder are associated with only one specific 
symptom. The specific genes are contributes to spe-
cific symptoms, such as social difficulties, communica-
tion deficits, or repetitive behaviours. The gene candi-
dates such as En2,[10] reelin [11] GABRB3 [12] AV-
PR1A [13] CADPS2 [14] and FOXP2 [15]. 

Engrailed-2 : Human Engrailed-2 (En2) gene is local-
ized to 7q36, an autism susceptibility locus. This genes 
were introduced on mouse since 2005[10, 16-20]. 
However, it is also found in human brain study [21]. 
The homeobox-containing transcription factor En2 is 
involved in patterning and neuronal differentiation of 
the midbrain/hindbrain region, where it is prominent-
ly expressed. En2 mRNA is also expressed in the adult 
mouse hippocampus and cerebral cortex, indicating 
that it might also function in these brain areas. Ge-
nome-wide association studies revealed that En2 is a 
candidate gene for autism spectrum disorders (ASDs), 
and mice devoid of its expression (by using EN2-/- 
mice) display anatomical, behavioural and clinical 
“autistic-like” features [19]. 

Recent human genetic studies are consistent with the 
homeobox transcription factor En2, being an ASD sus-
ceptibility gene. The En2 knockout mice (EN2--/-) dis-
play subtle cerebellar neuropathological changes simi-
lar to what has been observed in the ASDs brain.(18) 
The En2 knockout mice display hypoplasia of cerebel-
lum and a decrease in the number of Purkinje cell, 
which are similar to those reported for individuals 
with autism [19]. The normal EN-2 downregulation 
that signals Purkinje cell maturation during late prena-
tal and early-postnatal development may not have 
occurred in some individuals with autism and that the 
postnatal persistence of EN-2 overexpression may 
contribute to autism cerebellar abnormalities as re-
ported by [21]. The disturbance in En2 signaling may 
contribute to neuropsychiatric disorders marked by 
social and cognitive deficits, including autism spec-
trum disorders as reported by [10]. 

Reelin (RELN): It has been reported that Reelin plays a 
pivotal role in the development of laminar structures 
including the cerebral cortex, hippocampus, cerebel-

lum and of several brainstem nuclei [22]. Neuroana-
tomical evidence is consistent with Reelin involvement 
in autistic children. Reelin is an important secretory 
glycoprotein responsible for normal layering of the 
brain. B-Cell lymphoma 2 (Bcl-2) is a regulatory pro-
tein responsible for control of programmed cell death 
in the brain. It has been reported recently that longer 
triplet repeats in the 5’ UTR of the Reelin gene confer 
vulnerability to autistic disorder [23]. Current re-
searches were reported that Reelin was found and 
expressed on cerebellar cortex [22,24-26]. It was re-
ported that dysregulation of Reelin and Bcl-2 may be 
responsible for some of the brain structural and be-
havioural abnormalities observed in autism then fol-
lowed by quantification of Reelin and Bcl-2bands 
showed reductions in autistic cerebellum. Measure-
ment of β-actin in the same homogenates did not 
differ significantly [22].  

Recent genetic linkage studies implicate Reelin glyco-
protein in the causation of autism. Reelin deficiency 
may contribute to structural abnormalities as well as 
with abnormal synaptic connectivity. Reduced Reelin 
expression may result from epigenetic effects such as 
hypermethylation of the Reelin promoter, early devel-
opmental events such as activation of the maternal 
immune system during gestation. In the other study, 
mRNA for Reelin was significantly reduced in frontal 
cortex and cerebella of subjects with autism, con-
sistent with the protein data as was mRNA for Disable-
1 (DAB1). In contrast, mRNA for Very low density lipo-
protein receptor (VLDLR) was significantly increased in 
both areas, which may be a compensatory mechanism 
for reduced expression of Reelin [26].  

GABRB3 : Gamma-aminobutyric acid (GABA) is the 
main inhibitory neurotransmitter in the brain. A clus-
ter of GABAA receptor subunit genes, including 
GABRB3, GABRA5, and GABRG3, which encode subu-
nits β3, α5, and γ3 respectively, were mapped to chro-
mosome 15q12 [28]. The reduced expression of 
GABAA receptor subunits including GABRB3 and the 
GABA synthesizing enzymes, glutamic acid decarbox-
ylase (GAD) 65 and 67 were found in several brain 
regions of patients with autism.[24,28,29]. GABRB3 is 
a position candidate gene at chromosome 15q21 that 
has been implicated in the neurobiology of ASDs. The 
altered GABRB3 gene expressions are likely involved in 
the neurobiology of ASDs. The GABRB 3 is biallelically 
expressed in control brain tissue samples.[12] 

The association and linkage study for the γ-
aminobutyric acid type A receptor β3 subunit gene 
GABRB3 which is located within the chromosome 
15q11-q13 autism candidate region and ASDs have 
been evaluated. A study demonstrated with a detec-
tion of four single-nucleotide polymorphisms in 
GABRB3. The results demonstrated that a marker of 
GABRB3 haplotype test transmission did not reveal 
any association between GABRB3 and ASD. The find-
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ing suggested that single-nucleotide polymorphisms in 
GABRB3 may play a significant role in the genetic pre-
disposition to ASD [30].  

Maternal Chromosome 15q11-q13 is a hot region oc-
currence of genomic DNA deletions and duplications 
that are usually associated with developmental disor-
ders including ASD. The maternal duplication of 15q11
-q13 was found in approximately 1 to 3% of patients 
with ASD [31,32]. The 15q11-13 region is subject to 
epigenetic regulations, genomic copy number losses 
and gains cause genomic disorders in a parent-of-
origin-specific manner. The analysis of wild-type and 
mutant β3 subunit-containing α1β3γ2 or α3β3γ2 
GABAA receptors shows reduced whole-cell current 
and decreased β3 subunit protein on the cell surface 
due to impaired intracellular β3 subunit processing. 
The study reported of an association between a spe-
cific GABAA receptor defect and autism which had 
direct evidence that this defect causes synaptic dys-
function that is autism relevant and the first maternal 
risk effect in the 15q11-q13 autism duplication region 
that is linked to a coding variant [32]. 

GABA-ergic system has been associated consistently 
with atypicalities in autism, in both genetic association 
and expression studies. A key component of the GABA
-ergic system is encoded by the GABRB3 gene, which 
has been previously implicated both in ASD and in 
individual differences in empathy. The current study 
confirms the role of GABRB3 as an important candi-
date gene in both ASD and normative variation in re-
lated endophenotypes [33]. 

AVPR1A: Impairment in social reciprocity is a central 
component of autism. In mammals, the neuropeptide 
vasopressin is a key molecule for complex emotional 
and social behaviours [34]. Two microsatellite poly-
morphisms, RS1 and RS3, near the promoter of AV-
PR1A, encoding the receptor subtype most heavily 
implicated in behaviour regulation have been linked to 
autism and behavioural traits [13,34]. Arginine vaso-
pressin (AVP) has been shown to increase a range of 
social behaviours, including affiliation and attachment, 
via the V1a receptor (AVPR1A) in the brain. Both of 
behavioural effects of AVP and the neural distribution 
of the V1a receptor vary greatly across mammalian 
species. This difference in regional receptor expres-
sion as well as differences in social behaviour may 
result from a highly variable repetitive sequence in the 
5’ flanking region of AVPR1A [34]. The current study 
reported that AVPR1A gene in individuals showing 
deficits in social behavior that associated with autism
[35]. A neural mechanism mediating genetic risk for 
autism through an impact on amygdala signalling and 
provide a rationale for exploring therapeutic strate-
gies aimed at abnormal amygdala function in this dis-
order [13,34]. 

CADPS2: Intellectual disability (ID) and Autism spec-

trum disorders (ASDs) are complex neuropsychiatric 
conditions, with overlapping clinical boundaries in 
many patients [36]. CADPS2 is an excellent candidate 
for neurologic development abnormalities, given that 
it is predominantly expressed in the nervous system
[37,38]. This gene is one of the genes that was shown 
to be down regulated in autism brain patient. CADPS2 
is maternally expressed in human blood and amygda-
la. Using Array-CGH analysis, an intragenic deletion of 
~285 kb in CADPS2 on chromosome 7q31.32 on sib-
lings were detected, likely inherited from the de-
ceased mother, since the father did not carry it. Sub-
microscopic deletions in 7q31 encompassing CADPS2 
(Ca2+-dependent activator protein for secretion 2) 
and TSPAN12 (one of the members of the tetraspanin 
superfamily) has confirmed. The CADPS2 plays im-
portant roles in the release of neutrophin-3 and brain-
derived neurotrophic factor. Mutations in TSPAN12 
are a relatively frequent cause of familial exudative 
vitreoretinopathy. It is speculated that haploinsuffi-
ciency of CADPS2 and TSPAN12 would contribute to 
ASDs [14]. 

FOXP2: The FOXP2 gene is located on human 7q31 (at 
the SPCH1 locus). It is encodes a transcription factor 
containing a polyglutamine tract and forkhead do-
main. FOXP2 is mutated in a severe monogenic form 
of speech and language impairment, segregating with-
in a single large pedigree, and is also disrupted by a 
translocation in an isolated case. Several studies of 
autistic disorder have demonstrated linkage to a simi-
lar region of 7q (the AUTS1 locus), leading to the pro-
posal that a single genetic factor on 7q31 contributes 
to both autism and language disorders. It was hypoth-
esized that coding-region variants in FOXP2 do not 
underlie the AUTS1 linkage and that the gene is un-
likely to play a role in autism or more common forms 
of language impairment [15]. 

The receptor tyrosine kinase (MET) regulates neuronal 
differentiation and growth is associated in autistic-
spectrum disorder. An ASD-associated polymorphism 
disrupts MET gene transcription are reduced levels of 
MET protein expression in the mature temporal cortex 
of subjects with ASD. The expression and transcrip-
tional regulation of MET by a transcription factor, 
FOXP2, which is implicated in regulation of cognition 
and language, two function altered in ASD. Consistent 
with this, MET and FOXP2 also are reciprocally ex-
pressed by differentiating normal human neuronal 
progenitor cells (NHNPs) in vitro, is a way to assessed 
whether FOXP2 transcriptionally regulates MET. As 
FOXP2 binds directly to 5’ regulatory region of MET, 
and overexpression of FOXP2 results in transcriptional 
repression of MET in restricted human neocortical 
regions, and its regulation in part by FOXP2, is con-
sistent with genetic evidence for MET contributing to 
ASD risk [39].  
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CONCLUSION 

Several previous findings had reported the effects of 
the mutated and sufficiency of the candidate genes in 
autism brain. It is believed that they might be involved 
in the mechanism that cause deficit in social behaviour 
language impairment, and repetitive behaviour. How-
ever, there are abundant of genes that most probably 
contribute to clinical “autistic-like” feature, brain struc-
tural abnormalities, and deficit in social interaction and 
communication along with repetitive, restricted and 
stereotyped behaviour which had not yet significantly 
correlated.  
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