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ABSTRACT  

Tissue engineering is mainly used to replace the impaired or damaged tissues with new tissues. The key cells involved for tissue 

engineering are stem cells, the morphogens or growth factors. They will rapidly multiply and differentiates and forms tissues.  This new 

technique is now most commonly used in endodontics. The aim of this study was to review about the dental pulp stem cells, which are 

most common growth factors, and the scaffolds used to control their differentiation. To study the clinical technique for the management 

of immature non-vital teeth based on this novel concept.  
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INTRODUCTION 

Now a day’s root canal treatment has high level of success for 

several conditions. The main concept in this treatment is 

regenerative approach. In which replace diseased or necrotic 

pulp tissues with healthy pulp tissues, mainly to revitalize teeth. 

This type of regenerative approach if we are using in 

endodontics it’s called as regenerative endodontics. This 

method provides a new range of biologically based clinical 

treatments in endodontic diseases. 

Tissue Engineering 

Tissue engineering is a rapidly developing field. It has the 

principle of engineering and life science. These principles are 

mainly applied for, the development of biological substitutes 

which can restore, maintain or improve functioning of tissue. 

The major elements involved for tissue engineering are stem 

cells, morphogens or growth factors, and an extracellular matrix 

scaffold. The chief tissues required for regenerative endodontics 

are dentin, pulp, cementum and periodontal tissues [1-3]. 

Key Elements for Tissue Engineering 

Stem cells 

These were considered to be the most important cells in 

regenerative medicine.   

Research on stem cells provided knowledge about, the 

development of an organism from a single cell, and how healthy 

cells can replace damaged ones in adult organisms. Stem cells 

have the capacity for continuous division.  Either for self-

replication (replicate themselves), or multilineage 

differentiation (to produce specialized cells which can 

differentiate into various other types of cells or tissues) [4]. 

  Types of stem cells 

Early embryonic stem cells 

The human development occurs with the division of newly 

fertilized egg or zygote. It produces a group of stem cells called 

an embryo. These early stem cells are called totipotent, which 

means theses can be developed to any kind of cell in the body. 
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Blastocyst embryonic stem cells 

After five days of fertilization, embryo develops a hollow ball-

like structure which is known as blastocyst. The embryonic stem 

cells of the blastocyst are pluripotent, means they have the 

ability to become almost any kind of cell in the body. 

Researchers can induce these cells to create a specialized cells. 

But, this method is not yet fully developed.  Mainly due to the 

source of embryonic stem cells which is controversial, and it’s 

mainly associated with ethical and legal issues. This reduced the 

development of new therapies [5]. 

Fetal stem cells 

8 weeks after development of embryo is known as a fetus. By 

this period a human-like form will be developed. Fetal stem cells 

were responsible for the initial development of all tissues before 

birth. Fetal stem cells were also pluripotent. 

Umbilical cord stem cells 

Fetus gets the nutrients and oxygen rich blood from placenta by 

umbilical cord. Umbilical cord blood contains stem cells, which 

are genetically similar with new born.  Stem cells of umbilical 

cord are multipotent. They can be developed to a limited range 

of cell types. For the purpose of medical therapy umbilical cord 

stem cells can be stored cryogenically.  

Adult stem cells 

These stem should be called as post natal stem cells. Because, 

these cells are also present in infants and children. These cells 

mainly stay on tissues which are already developed, and they 

maintain the growth of these tissues throughout life. 

These were also multipotent. Usually adult stem cells generate 

the same cell types, on which they are residing.  Researchers had 

observed plasticity with these cells. It means that stem cells from 

one tissue may develop cells of different tissues[6]. These 

particular stem cells were present on almost whole body 

tissues[7], including dental tissues [8, 9]. Till  now, four types of 

human dental stem cells have been isolated and characterized: i) 

Dental pulp stem cells (DPSCs) [10], ii) Stem cells from human 

exfoliated deciduous teeth (SHED) [11], iii) Stem cells from 

apical papillae (SCAP) [12,13], and iv) Periodontal ligament stem 

cells (PDLSCs) [14]. 

All these dental stem cell were developed from permanent teeth, 

except SHED. Identification of theses stem cell provided a better 

knowledge, on the regenerative property of pulp and periodontal 

ligament tissues after tissue damage [1].  

Progenitor cells 

Generally intermediate cells are known as precursor or 

progenitor cells. These progenitor cells are developed from stem 

cells. Before to the full differentiation of stem cells these cells 

were formed.  These cells will be differentiated along a 

particular cellular development pathway. Till the stem cells get 

the property of multitissue differentiation and self renewal 

properties, they were considered as progenitor cells [15].  

Dental pulp stem cells (DPSCs) 

Gronthos et al first isolated DPSCs in the year 2000. They have 

capacity to regenerate dentin pulp complex similar to 

regeneration caused by normal human teeth.   Later, same group 

identified [16], that these cells have a high proliferative capacity, 

a selfrenewal property and a multi-lineage differentiation 

potential. Scientists also isolated a selected subpopulation of 

DPSCs called as Stromal Bone-producing Dental Pulp Stem 

Cells (SBP-DPSCs). These are multipotential cells, they have 

the ability to give a variety of cell types and tissues. They are 

osteoblasts, adipocytes, myoblasts, endotheliocytes, and 

melanocytes, as well as neural cell progenitors (neurons and 

glia), being of neural crest origin [17-21]. 

Several studies were conducted on DPSCs [10, 16, 22-30]. These 

studies has shown that DPCs were multipotent stromal cells, 

they have extensive proliferative capacity, they can be safely 

cryopreserved, they have several scaffolds of applications, they 

posses long lifespan, immunosuppressive properties[31], and they 

can form mineralized tissues which is similar to dentin [32, 33]. 

Paakkonen et al.  demonstrated that DPSCs got gene expression 

pattern which was similar to the mature native odontoblasts. 

This property can be helpful for in vitro studies of odontoblasts, 

that they can form a humanderived cell line. [34] However, no 
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definite proof was established for their ability to produce a 

dentin. R  Takeda et al. isolated the hDPSCs from tooth germs 

at the crown-completed stage.  They had observed that these 

cells were highly proliferative and had the potential to generate 

a dentin-like matrix in vivo. [35] 

These properties are not long lasting due to changes in gene 

expression profile. Abe et al. isolated apical pulp derived cells 

(APDCs) present on human teeth. They described that these 

cells has the capacity to regenerate even on hard tissues. [36] 

SHED 

These cells were first isolated by Miura et al. [11].  They observed 

that these cell have a greater capacity to regenerate to a variety 

of cells in comparison to DPSCs. They can regenerate to neural 

cells, adipocytes, osteoblast-like and odontoblast-like cells. The 

main function of these cells is to form mineralized tissue [18, 37, & 

38]. This can be used for regeneration of orofacial bone [39]. 

Because of the ethical issues associated with the use of 

embryonic stem cells, and limited availability of autologous 

postnatal stem cells with multipotentiality, SHED has become 

an alternate source for dental tissue engineering [11]. Compared 

to the stem cells from adult human teeth, SHED was more 

helpful for tissue engineering.  They got high proliferation rate 

than stem cells from permanent teeth [11]. They can also be 

retrieved from a tissue that is disposable and readily accessible 

[40].  They were suitable for young patients during mixed 

dentition, who were already suffered with pulp necrosis 

immature permanent teeth because of trauma. [41]  

SCAP 

Sonoyama et al discovered a new variety of population of 

mesenchymal stem cells (MSCs), which were residing on the 

apical papilla of permanent immature teeth. They were also 

known as stem cells from the apical papilla (SCAP) [13]. They 

reported that these cells express various mesenchymal stem cell 

markers. These cells has the capacity to form odontoblast-like 

cells, producing dentin in vivo.  They were also primary source 

for odontoblasts formation on root dentin. It was observed that 

on the infected immature permanent teeth with periradicular 

periodontitis or abscess, apexogenisis may occur. It is mainly 

due to the presence of SCAP on the apical papilla. It can survive 

during pulp necrosis, mainly because of its proximity to the 

vasculature of the periapical tissues. So, these cells has the 

capacity to generate primary odontoblast for complete root 

formation after the endodontic disinfection [13].  

Periodontal ligament stem cells (PDLSCs) 

Seo et al fist described the presence of multipotent postnatal 

stem cells in the human PDL (PDLSCs).  They used same 

methodology which was used for isolation of MSCs from 

deciduous and adult pulp for these cells also [42]. They described 

that PDLSCs can differentiated into cementoblast-like cells, 

adipocytes, and collagen-forming cells under definite cell 

cultures. In  immunocompromised rodents, PDLSCs  generated 

a cementum/PDL-like structure and promoted the healing of 

periodontal tissue repair. Trubiani et al also supported the 

presence of MSCs in the periodontal ligament [43].  They isolated 

and characterized a population of MSCs from the periodontal 

ligament which expressed a variety of stromal cell markers. Shi 

et al. [44], demonstrated that generation of cementum-like 

structures associated with PDL-like connective tissue after 

transplanting PDLSCs with hydroxyapatite/tricalcium 

phosphate particles to immunocompromised mice. These cells 

got several clinical applications, mainly because even after 

isolation from cryopreserved periodontal ligaments they 

maintained its stem cell properties. Which were the expression 

of MSC surface markers, multipotential differentiation, single-

colonystrain generation and cementum/periodontal-ligament-

like tissue regeneration.  These properties made them an instant 

source for MSCs [45]. By using a minipig model, autologous 

SCAP and PDLSCs were loaded onto hydroxyapatite/tricalcium 

phosphate and gelfoam scaffolds. Then they were implanted on 

sockets of the lower jaw, there they formed a bioroot encircled 

with periodontal ligament tissue in a natural relationship with 

the surrounding bone [46]. Trubiani et al. observed the 

regenerative property of PDLSCs when they were cultivated on 

a threedimensional biocompatible scaffold. This property was 

useful in making of graft biomaterials, for bone tissue 

engineering in regenerative dentistry. [47]  Li et al.  Observed that, 

PDLSCs when seeded on bioengineering produced cementum 

and periodontal ligament-like tissue formation.  [48] 
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Stem cells culturing 

The growth and maintenance of cells in a controlled 

environment outside an organism was referred as cell culture. 

Ideal goals of stem cell culture are to keep the cells healthy, 

dividing, and unspecialized. 

Dental pulp stem cells were mainly cultured by two methods; 

the first method is enzyme-digestion method [10,11,13,49].  In this, 

using sterile conditions pulp tissue was collected. Then it was 

digested with suitable enzymes. The formed cell suspensions 

were cultured on dishes with a special medium. They were 

provided with necessary additives and properly incubated. The 

resulting colonies were sub cultured before confluence and then 

cells were stimulated for differentiation. 

The explants outgrowth method was the second method of 

isolation of dental pulp stem cells [50-53]. In this method, initially 

the extruded pulp tissues were cut into 2-mm3 cubes. Then they 

were anchored via microcarriers onto a suitable substrate, and 

they were directly incubated in culture dishes which contain the 

essential medium with supplements. It takes around 2weeks of 

time for sufficient number of cells to grow and come out of the 

tissues. Haung et al. compared both these methods and 

concluded that, cells isolated by enzyme-digestion has high 

proliferation rate than isolated by outgrowth method. [54] 

Stem cells differentiation 

Cell differentiation is the process in which specialized cells were 

generated from unspecialized stem cells. It is mainly triggered 

by signals from both inside and outside of the cells. The internal 

signals were controlled by the genes of cells. The genetic 

information will be carried across DNA, leading generation of 

coded instructions for the structural maintenance and 

functioning of a cell. Whereas the external signals for cell 

differentiation may include several factors. Which were 

chemicals secreted by neighboring cells, physical contact with 

other cells and presence of certain molecules in the 

microenvironment. Depending upon the contents of media 

cultured dental pulp stem cells can be stimulated to differentiate 

to more than one cell type. Osteo/dentinogenic medium mainly 

contains dexamethasone, glycerophosphate, ascorbate 

phosphate and 1,25 dihydroxy vitamin D with other basic 

elements [10].  Adipogenic medium contains dexamethasone, 

insulin and isobutyl methylxanthine [55]. For neurogenic 

induction of cells they were cultured in the presence of B27 

supplement, basic fibroblast growth factor and epidermal 

growth factor. [11] 

Cell lines 

The first step involved in making cell lines is to cultivate the 

stem cells. For research and development purpose genetically 

identical cells should be collected and cultivated. After attaining 

a stable stem cell line, it can be stimulated to differentiate into 

specialized cell types. Generally odontoblasts cannot be induced 

for further differentiation, because they were postmitotic 

terminally differentiated cells. Odontoblast after their full 

differentiation produces various proteins. One is type I collagen, 

it forms the scaffold for mineral deposition and provides 

strength for mineralizing dentin. The two other major 

noncollagenous proteins (NCPs) had mineralization-regulatory 

capacities [56]. These proteins are dentin phosphophoryn (DPP; 

or DMP-2) and dentin sialoprotein (DSP)[57]. These two proteins 

were encoded by a single gene. The phenotypic characteristics 

of dentin were explained by DSPP or DMP-3[58-61]. One more 

important non collagenous protein is dentin matrix protein-1 

(DMP-1).  It was found primarily in dentin and bone.  It mainly 

helps for regulating mineralization [62-64]. While DPSCs 

differentiation DMP-1 acts as a growth factor [65, 66]. 

Odontoblast cell line is useful to explore the pulp wound-healing 

mechanism and also to develop therapeutic strategy for pulp 

regeneration.  odontogenic differnentiation was not fully 

understood mainly because of two limitations.  

The first is the paucity of differentiation markers, it is now 

overcome by the characterization of odontoblastspecific 

markers (DMP-1, DMP-2, and DMP-3) that can indicate the 

presence of a true odontoblastic cell line [61, 67 & 68]. The second 

limitation is the limited life span of the primary cells [69]. It’s 

been addressed by several methodological trials including cell 

cloning and immortalization [61, 70-74]. 
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Growth factors 

Morphogenesis or organogenisis is mainly mediated by signals 

produced by growth factors. The specialization or division of 

stem cells to the required cell type was mainly regulated stem 

cells.  They mediate several key cellular events during tissue 

regeneration, which includes cell proliferation, chemotaxis, 

differentiation, and matrix synthesis [75]. Growth factors are of 

two types, one type is quite versatile, and it stimulates cellular 

division in numerous cell types, while the other one is more cell-

specific. Growth factors are used for various purposes. 1) 

Certain growth factors were mainly used to increase stem cell 

numbers. Likewise platelet-derived growth factor (PDGF), 

fibroblast growth factor (FGF) [76], insulin-like growth factor 

(IGF), colony-stimulating factor (CSF) and epidermal growth 

factor (EGF). 2) While few growth factors modifies the humoral 

and cellular immunity (interleukins 1- 13). 3) Whereas few 

growth factors regulate angiogenesis, e.g. vascular endothelial 

growth factor (VEGF) [77, 78]. Another e.g. for growth factor, 

transforming growth factor is helpful in wound healing and 

tissue regeneration/ engineering [75, 79, & 80]. 4) Growth factor such 

as bone morphogenic proteins (BMPs) was helpful in tooth 

development [81, 82] and regeneration [3].  

Bone morphogenetic proteins (BMPs) 

 These are multi-functional growth factors, they belongs to the 

family of transforming growth factor [83]. The BMPs were first 

identified by their ability to form ectopic bone formation, while 

implanted under the skin of rodents [84]. Till now, around 20 

BMP family members have been identified and characterized. 

They have unique biological activities in vivo, it’s mainly 

because of their differences in profiles of expression, affinities 

for receptors binding [85]. BMPs play a major role in teeth 

formation. Their dictation leads to initiation, morphogenesis, 

cytodifferentiation, and matrix secretion will occur. BMP family 

of growth factors is important in forming the enamel knot of 

teeth. Without these BMPs there won’t be teeth formation [86]. 

BMPs [87-90] and growth factors [91] together were used directly in 

capping pulp. This phenomenon of adding of growth factors to 

stem cells was helpful in tissue engineering and to replace the 

diseased tooth tissues. 

BMPs are used for two types of therapies for dentin 

regeneration. The first is the in vivo therapy, in which BMPs or 

BMP genes are directly applied to the exposed or amputated 

pulp. The second is ex vivo therapy, first DPSCs was isolated. 

Further they will be differentiated to odontoblasts with 

recombinant BMPs or BMP genes. Last step is their autogenous 

transplantation to regenerate dentin [86].  BMP-2 plays a crucial 

role in dentin regeneration [92]. Recombinant human BMP-2 

increases the odontoblast like stem cells by promoting the 

differentiation of adult pulp stem cells in culture [53, 93 & 94]. It 

promotes the expression of dentin sialophosphoprotein (DPSP) 

gene in vitro mainly by promoting their alkaline phosphatase 

activity. [53] It also increases the hard tissue formation in vivo [95]. 

Dentin formation can be promoted by autogenous 

transplantation of BMP-2-treated pellet culture onto amputated 

pulp [96]. Even BMP-7 also showed same findings.  It also known 

as osteogenic protein-1.  It promoted the reparative 

dentinogenesis and pulp mineralization in several animal 

models [97-103].  Lin et al. [104] generated a BMP-7-expressing 

adenoviral vector that induced the expression of BMP-7 in 

primarily cultured human dental pulp cells. This expression led 

to a significant increase of alkaline phosphatase activity and 

induced the expression of DSPP, suggesting that BMP-7 can 

promote the differentiation of human pulp cells into 

odontoblast-like cells and promote mineralization in vitro. 

However, a novel role has been suggested for BMP-4, which is 

secreted by mesenchymal cells, in the regulation of Hertwig’s 

epithelial root sheath (HERS) during root development by 

preventing elongation and maintaining cellular proliferation. 

Therefore it has been utilized as an agent for regulating root 

formation in a variety of tissue engineering applications [105]. 

Scaffolds 

 Scaffolds are used to provide a physicochemical and biological 

three-dimensional microenvironment or tissue construct for cell 

growth and differentiation. It can be implanted singly or in 

combination with growth factors and stem cells. [66,106 – 108] 

Ideal requirements of a scaffold [66,109 -112] 

(a) Should be porous to allow placement of cells and growth 

factors. 
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(b) Should allow effective transport of nutrients, oxygen, and 

waste. 

(c) Should be biodegradable, leaving no toxic byproducts. 

(d) Should be replaced by regenerative tissue while retaining the 

shape and form of the final tissue structure. 

(e) Should be biocompatible. 

(f) Should have adequate physical and mechanical strength. 

Types of scaffold 

a) Biological/natural scaffolds 

These consist of natural polymers such as collagen and 

glycosaminoglycan. It offers good biocompatibility and 

bioactivity. The tensile strength of tissues is mainly increased by 

collagen. Collagen is present mainly on extracellular matrix. As 

a scaffold, collagen allows easy placement of cells and growth 

factors and allows replacement with natural tissues after 

undergoing degradation [113-115]. It is observed that pulp cells in 

collagen matrices undergo marked contraction, this might affect 

the pulp tissue regeneration [54,116]. 

b) Artificial scaffolds 

These are synthetic polymers.  They have controlled 

physicochemical features such as degradation rate, 

microstructure, and mechanical strength [112], for example: 

• Polylactic acid (PLA), polyglycolic acid (PGA), 

and their copolymers, poly lactic-co-glycolic acid 

(PLGA). 

• Synthetic hydrogels include polyethylene glycol 

(PEG)- based polymers. 

• Scaffolds modified with cell surface adhesion 

peptides, such as arginine, glycine, and aspartic acid 

(RGD) to improve cell adhesion and matrix 

synthesis within the three-dimensional network 

[117]. 

• Scaffolds containing inorganic compounds such as 

hydroxyapatite (HA), tricalcium phosphate (TCP) 

and calcium polyphosphate (CPP), which are used 

to enhance bone conductivity [118], and have proved 

to be very effective for tissue engineering of DPSCs 

[119,120]. 

• Micro-cavity-filled scaffolds to enhance cell 

adhesion [121,122]. 

Scaffolds for tissue engineering 

Various researchers have showed that pulp cells can be isolated, 

multiplied in culture, and can be seeded onto a matrix scaffold. 

The new tissue formed by cultured cells was similar to that of 

the native pulp. [10, 22, 41, 66, 111, 123-127] These results were helpful to 

generate pulp and dentin in pulpless canals. Blood flow is 

necessary for vitality of the implanted cells. While implanting 

cells into root canals, vascularization should be increased. 

Because, they will have blood only from apical end. To promote 

the action, growth factors such as VEGF and/or platelet-derived 

growth factor or endothelial cells can be added. [46]  

Tissue engineering concept: Clinical applications 

 Several clinical studies showed that teeth apexification can be 

treated with apexogenisis [128-137]. We can also use biological 

based treatment, it promotes dentin of the root as well root tip 

formation [138].  Iwaya et al. [137] and Banchs and Trope [135] used 

the term ‘revascularization’ to describe this phenomenon, there 

is physiological tissue formation and regeneration. It is also 

possible that the radiographic presentation of increased dentinal 

wall thickness might be due to in growth of cementum, bone, or 

a dentin-like material [38,139-145]. There diversity in cellular 

response depending on growth factors or media to where it is 

cultured. For e.g. DPSCs can develop odontogenic/osteogenic, 

chondrogenic, or adipogenic phenotypes, depending on their 

exposure to growth factors and morphogens [146]. 

CONCLUSION 

The clinical success rates of endodontic treatments can exceed 

80%-90%.  However, many teeth are not given the opportunity 

to be saved by endodontic treatment and instead they are 

extracted, with placement of an artificial prosthesis, such as an 

implant. Regenerative endodontic methods have the potential 

for regenerating both pulp and dentin tissues and therefore may 
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offer an alternative method to save teeth that may have 

compromised structural integrity 
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