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We consider �� ! �� oscillations in the context of the mass varying neutrino (MaVaN) model, where
the neutrino mass can vary depending on the electron density along the flight path of the neutrino. Our
analysis assumes a mechanism with dependence only upon the electron density, hence ordinary matter
density, of the medium through which the neutrino travels. Fully-contained, partially-contained and
upward-going muon atmospheric neutrino data from the Super-Kamiokande detector, taken from the
entire SK-I period of 1489 live days, are compared to MaVaN model predictions. We find that, for the case
of 2-flavor oscillations, and for the specific models tested, oscillation independent of electron density is
favored over density dependence. Assuming maximal mixing, the best-fit case and the density-
independent case do not differ significantly.

DOI: 10.1103/PhysRevD.77.052001 PACS numbers: 14.60.Pq, 14.60.St, 96.50.sf

I. INTRODUCTION

Neutrino oscillations result when at least one neutrino
has mass different from the others, so that neutrinos mass
eigenstates are distinct from the flavor eigenstates. For
atmospheric neutrinos, �� ! �� oscillations [1] are
strongly favored over �� ! �s oscillations [2] and other
exotic mechanisms for neutrino disappearance [3].
Neutrino oscillation without the introduction of sterile
flavors has also been sufficient to resolve the solar neutrino
problem [4,5].

Super-Kamiokande previously reported best-fit parame-
ters for atmospheric two-flavor �� ! �� oscillations, pro-
viding an explanation of the atmospheric neutrino anomaly
[6]. In Super-Kamiokande, where previous analyses al-
ways considered only geometric path length independent
of medium, neutrino disappearance effects are strikingly
evident for upward-going neutrinos, which have passed
through many km of rock, in comparison with
downward-going neutrinos, which travel mainly through
air. We note that other experiments that observed neutrino
oscillations, such as KAMLAND [7], K2K [8], and
MINOS [9], detected neutrinos whose path was almost
entirely through rock.

Here we consider a possible consequence of the mass
varying neutrino (MaVaN) model [10]. In this model, the
neutrino mass can vary depending on the matter density
along the path of the neutrino. MaVaNs could provide a
source for the dark energy [11]. Here we will assume that
the mass variation of the neutrinos depends only upon the
electron density of the environment, a possible side effect
from radiative couplings of active neutrinos and electrons
[10]. (In ordinary matter comprising the Earth’s atmo-
sphere and interior, overall matter density and baryon
density, considered in other MaVaN scenarios, are essen-
tially proportional to electron density.) If this hypothesis is
accurate, it may be possible to probe the mass dependence
with Super-Kamiokande data.

We used atmospheric neutrino data from the Super-
Kamiokande-I running period (1996–2001) to test whether
�� ! �� oscillations have an apparent dependence on the

electron density of the material the neutrino passes
through. For this analysis, we assumed that the mass
squared difference is proportional to some power of the
electron density, �m2

eff � �
n. We also assumed that the

mixing angle is constant for all media.

II. DATA ANALYSIS

Super-Kamiokande is a water Cherenkov experiment
located within Mt. Ikeno-yama in central Japan, under
2700 meters water equivalent rock overburden. It has a
cylindrical design, holds 50 kilotons of water, and is di-
vided into two optically separated sections by a structural
framework that supports the photomultiplier tubes (PMTs).
During the SK-I running period from which the data ana-
lyzed here came, the detector had an inner detector (ID)
equipped with 11 146 50 cm PMTs aimed inward, and an
outer detector (OD) volume instrumented with 1885 20 cm
PMTs, aimed outward and equipped with wavelength-
shifting plastic plates. The OD functions primarily as a
veto counter, tagging charged particles that enter or exit the
ID. Within the ID we define a central 22.5 kt fiducial
volume, within which detector response is expected to be
uniform. Fully-contained (FC) neutrino events are those
where interaction products are observed in the ID, with no
significant correlated activity in the OD, while partially-
contained (PC) events are those where some interaction
products exit the ID. Upward-going muon events are those
where a penetrating particle travelling in the upward di-
rection enters and either stops or passes through the detec-
tor, and are attributed to muons produced by neutrino
interactions in the surrounding rock. In general terms,
FC, PC, and upward muon events represent successively
higher energy samples of neutrino interactions, ranging
from 200 MeV for the lowest energy FC events to above
1 TeV for the highest energy upward-going muons. Further
details regarding the Super-Kamiokande detector design,
operation, calibrations, and data reduction can be found in
[6,12].

Super-Kamiokande-I (SK-I) data taking for physics
analysis began on May 17, 1996 and lasted until a planned
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shutdown for refurbishing on July 16, 2001, including a
total of 1489.2 days of effective live time (92 kt-years) for
FC and PC events, and 1645.9 days for upward-going
muon events. The full Monte Carlo (MC) event sample
generated for comparison is equivalent to a 100 live-year
period. The SK-I database used in the analyses presented
here has the following statistics: for FC events, 12 180 data
and 13 676.7 MC events in a livetime-scaled sample, for
PC events, 911 data and 1129.6 MC events. The upward-
going muon statistics are: for stopping muon tracks (those
that enter but do not exit the detector), 417.7 data and 713.5
MC events, and for through-going muon tracks, 1841.6
data and 1669.5 MC events, after background subtraction
for near-horizontal downward-going muons as described in
Ref. [6].

Two different analyses are considered here. The first
analysis does not take into account path length in air for
neutrino oscillations. Instead, it assumes MaVan-type os-
cillations only occur in high-density matter, taking into
account surface, crust, mantle, and Earth core densities. In
other words, the neutrino flight path length is in effect
taken to be only that portion of the geometric path that
lies in high density matter. Because the path length system-
atic error is not relevant in this test, it is removed from the
list of 39 systematic errors that was used in previous Super-
Kamiokande analyses. The second analysis also takes into
account path length in air and its density in considering
neutrino oscillations effects in the context of the MaVaN
model.

A detailed description of the SK-I atmospheric neutrino
chi-squared zenith angle analysis using the ‘‘pull’’ method
[13] can be found in [6], and the same methods are applied
here. A profile of the mountain surrounding Super-
Kamiokande was taken from topological maps to deter-
mine the downward neutrino path length in rock. The maps
used are the United States Geological Survey agency’s
digital elevation maps [14], with data points at 7.5 min
(about 30 meters) spacing.

In the conventional 2-flavor �� ! �� oscillation frame-
work, the oscillation probability can be written as

 P��� ! ��� � sin22�sin2

�
1:27�m2L

E�

GeV

km � eV2

�
;

where L is the distance travelled by the neutrino between
production and detection, and E� is the neutrino energy,
while the oscillation parameters are the mixing angle �,
and the mass difference squared, �m2 � jm2

2 �m
2
3j in the

usual nomenclature. To test for density dependence, we
replaced �m2 in the equation above with an effective mass
difference that is proportional to the electron density of the
medium, �m2 ! �m2 � ��e�o

�n, where �e is the electron
density of the matter in neutrino trajectory, and n parame-
trizes the density dependence. For neutrinos passing
through layers of matter with different density, the path
length in each layer is taken into account. �0 is set at
6:02� 1023 e=cm3. Several different values of n are tested
here, as described below. To approximate the mass density
of the Earth for upward traveling neutrinos, the preliminary
reference Earth model (PREM) [15] is used. The electron
density is taken to be the mass density multiplied by the
charge-to-mass ratio [16].

Atmospheric neutrinos are produced at altitudes around
15 km above sea level. A neutrino travelling nearly verti-
cally downward thus passes through about 15 km of air
(low-density matter) followed by 1–2 km of rock (high
density matter) before interacting within the detector,
while a nearly-horizontal downward-going neutrino travels
through over 200 km of air and about 10 km of rock. Thus,
a downward neutrino has 8–20 times as much path length
in air as in rock. If oscillation only occurs in high density
matter, the effective path length will be shorter than the
geometric path length travelled by the neutrino from point
of production to detection. In that case, the standard oscil-
lation model, which uses the full geometric path length,
assumes more oscillation cycles occur for a given �m2,
and oscillation effects are more significant for neutrinos at
low energies. Analyses both including, and neglecting, the
air path length are considered here.

TABLE I. Comparisons of �2 values for different models without air path. There are a total of
178 degrees of freedom in the �2 (see Ref. [6]). Note that n � 0 is not equivalent to oscillations
independent of medium, because here we do not allow for any oscillations in air.

Model Physical Region Unphysical Region
�m2 � ��=�o�

n �2
min �m2 (eV2) sin2�2�� �� �2

min �m2 (eV2) sin2�2��

n � 2 203.4 4:84� 10�4 1.00 5.3 203.1 4:67� 10�4 1.02
n � 1 194.7 1:12� 10�3 1.00 4.4 194.1 1:19� 10�3 1.04
n � 2

3 192.5 1:46� 10�3 1.00 4.2 191.7 1:46� 10�3 1.04
n � 1

3 190.5 1:60� 10�3 1.00 3.9 189.5 1:60� 10�3 1.04
n � 0 189.8 2:66� 10�3 1.00 3.8 188.9 2:66� 10�3 1.04
n � � 1

3 188.5 3:16� 10�3 1.00 3.7 187.5 2:92� 10�3 1.04
n � � 2

3 187.9 3:12� 10�3 1.00 3.6 187.0 3:12� 10�3 1.04
n � �1 188.5 3:80� 10�3 1.00 3.7 187.6 3:80� 10�3 1.04
n � �2 190.1 4:73� 10�3 1.00 3.9 188.7 4:73� 10�3 1.05
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A. Analysis neglecting air path length

Density dependent oscillation models were first tested
neglecting the air path length and using specified values of
n suggested by theorists [17]. The results are shown in
Table I for two cases: fits constrained to lie in the physical
region, where maximal mixing is assumed for all densities,
and with this constraint relaxed, where mixing angle is
allowed to vary. All models tested are ruled out, with

confidence level better than 99.9%, when compared to
fits assuming oscillations independent of density of the
medium (including air).

Next, we treat the density dependence as a free parame-
ter, and find the best fit electron density dependence ex-
ponent n for the case of matter-dependent oscillations
assuming maximal mixing (sin2�2�� � 1) in all densities
(except air). This analysis uses both n and �m2 as the

TABLE II. Comparisons of �2 values for different models including air path. Note that here, n � 0 is equivalent to oscillations
independent of medium.

Model Physical Region Unphysical Region
�m2 � ��=�o�

n �2
min �m2 (eV2) sin2�2�� �� �2

min �m2 (eV2) sin2�2��

Equal medium oscillations (n � 0) 175.0 2:11� 10�3 1.00 — 174.7 2:11� 10�3 1.02
n � 2 203.4 4:84� 10�4 1.02 5.3 203.1 4:67� 10�4 1.00
n � 1 194.7 1:12� 10�3 1.00 4.4 194.1 1:12� 10�3 1.04
n � 2

3 192.4 1:46� 10�3 1.00 4.2 191.7 1:46� 10�3 1.04
n � 1

3 189.6 1:60� 10�3 1.00 3.8 188.7 1:60� 10�3 1.04
n � � 1

3 228.5 7:50� 10�4 0.91 7.9 228.5 7:50� 10�4 0.91
n � � 2

3 392.1 1:50� 10�4 0.63 14.7 392.1 1:50� 10�4 0.70
n � �1 447.8 3:63� 10�2 0.60 16.5 447.8 3:63� 10�2 0.60
n � �2 447.9 3:73� 10�3 0.60 16.5 447.9 3:73� 10�3 0.60
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FIG. 1 (color online). �m2 ! �m2 � ��e�o
�n (including air path length). Upper plot shows relative-�2 confidence level contours on

the �m2 versus n plane, obtained when taking into account both high and low density matter path lengths. The lower plots display the
�2 � �2

min contours, with confidence levels shown, at the best-fit parameter values.
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varied parameters. �m2 values from 10�4 to 100 eV2 were
used over 81 bins, and density dependence powers from
n � �3 to �3 were considered, over 61 bins. The results
produce a �2

min � 187:3=178 d.o.f. for �n;�m2� �
��0:30; 3:16� 10�3 eV2�. Thus, the model in which air
path length is neglected, i.e., oscillations occur only in
rock, is disfavored at about the 3:5� level relative to
standard oscillations.

B. Analysis including air path length

We repeated the analysis, this time taking into account
the path length in air. Now the n � 0 case, where there is
no dependence on the electron density, corresponds to the
conventional oscillations model, since the full geometric
path length is used.

The air mass density depends greatly on the altitude of
the air above sea level. For simplicity, a constant value of
10�3 g=cm3 (corresponding to actual air density at moun-
tain altitude) was used for the mass density.

The same set of fixed n values are tested again, to check
various density dependences, this time including the air
path length. The results are listed in Table II. All models
tested are excluded by 	 3:8� when compared to the
density-independent case.

Finally, we again treat density dependence n as a free
parameter, this time taking air path length into account,
once more assuming maximal mixing. The results are
shown in Fig. 1. A minimum �2 � 174:3=178 d.o.f. is
found at �n;�m2� � ��0:04; 1:95� 10�3 eV2�. This re-
sult and the standard 2-flavor oscillation result (i.e. with
n 
 0) do not differ significantly.

III. SUMMARY AND CONCLUSIONS

We used data from Super-Kamiokande-I to test mass-
varying neutrino models, by considering oscillation effects
where the effective mass of a neutrino is dependent on the
matter environment of the neutrino flight path. Our analy-
sis assumed varying neutrino mass was due entirely to the
electron density of the material in a neutrino’s path, a
possible consequence of the MaVaN theory. Assuming a
constant mixing angle in all environments, we substituted
�m2 with �m2

��
�e
�o
�n (where �o � 6:02� 1023 e=cm3) for

specific values of n suggested by theorists, as well as with
n as a fitted parameter. Two different models were consid-
ered. In the first analysis, we neglected the portion of the
neutrino flight path in low density matter (air), and as-
sumed mass-varying effects occur only in high density
matter (rock). For the second analysis, we allowed oscil-

lation effects in all portions of the neutrino path, but (in
contrast to the conventional oscillation analysis, where
only the geometric path length is considered) took into
account mass densities. The primary difference in the two
hypothesis lies in the effective path lengths for near-
horizontal downward-going neutrinos.

In the pull fitting procedure used, some of the systematic
errors are allowed to vary in the fit. When fitted systematics
are forced significantly outside a reasonable range of val-
ues, it is an indication that the model used is disfavored by
the data. For the high-density-only oscillation model, some
of the systematics, particularly the ��=�e ratio for energies
below 5 GeV, adjusted to values beyond a reasonable
deviation from the expected value. This does not happen
when fitting to the conventional oscillation model, and
results in a larger chi-squared value for the mass-dependent
models. Based on relative chi-squared values in our results,
the hypothesis that neutrinos oscillate only in high density
matter is disfavored relative to conventional oscillations by
at least 3:5�, without requiring additional effects.

For the second analysis, where oscillations in low den-
sity matter were included, a mass difference with electron
density dependence is disfavored at more than the 3:8-�
level when compared with neutrino oscillations with a
fixed mass difference, for all fixed values of n tested. In
addition, a freely varying density dependence analysis was
performed, assuming maximal mixing. It produced a mini-
mum chi-squared value of �2

min � 174:3=178 d.o.f. at (n �
�0:04, �m2 � 1:95� 10�3 eV2), consistent (within
1:4�) with the n � 0 (no density dependence) case.

The results of our analyses show no evidence that the
environmental electron density influences the effective
�m2 determined using Super-Kamiokande atmospheric
neutrino data. We have not explicitly considered models
where the mixing angle is not constant in all densities, or
which assume 3 flavor oscillations, nor do we exclude all
variations of MaVaN models. We find that conventional
density independent �� ! �� oscillations are sufficient to
explain the atmospheric neutrino data.

ACKNOWLEDGMENTS

We gratefully acknowledge the cooperation of the
Kamioka Mining and Smelting Company. The Super-
Kamiokande experiment was built and has been operated
with funding from the Japanese Ministry of Education,
Science, Sports and Culture, and the United States
Department of Energy. We gratefully acknowledge indi-
vidual support by the National Science Foundation, and the
Polish Committee for Scientific Research.

SEARCH FOR MATTER-DEPENDENT ATMOSPHERIC . . . PHYSICAL REVIEW D 77, 052001 (2008)

052001-5



[1] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81,
1562 (1998).

[2] S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 85,
3999 (2000).

[3] Y. Ashie et al. (Super-Kamiokande), Phys. Rev. Lett. 93,
101801 (2004).

[4] S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 86,
5656 (2001).

[5] Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 89, 011301
(2002).

[6] Y. Ashie et al. (Super-Kamiokande), Phys. Rev. D 71,
112005 (2005).

[7] T. Araki et al. (KamLAND), Phys. Rev. Lett. 94, 081801
(2005).

[8] M. H. Ahn et al. (K2K), Phys. Rev. D 74, 072003 (2006).

[9] D. G. Michael et al. (MINOS), Phys. Rev. Lett. 97, 191801
(2006).

[10] D. B. Kaplan, A. E. Nelson, and N. Weiner, Phys. Rev.
Lett. 93, 091801 (2004).

[11] K. M. Zurek, J. High Energy Phys. 10 (2004) 058.
[12] Y. Fukuda et al., Nucl. Instrum. Methods Phys. Res., Sect.

A 501, 418 (2003).
[13] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, and A.

Palazzo, Phys. Rev. D 66, 053010 (2002).
[14] Downloaded April 2006 from http://seamless.usgs.gov.
[15] A. M. Dziewonski and D. L. Anderson, Phys. Earth Planet.

Inter. 25, 297 (1981).
[16] J. N. Bahcall and P. I. Krastev, Phys. Rev. C 56, 2839

(1997).
[17] A. E. Nelson and N. Weiner (private communication).

K. ABE et al. PHYSICAL REVIEW D 77, 052001 (2008)

052001-6


