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Test of mean-field equations for two types of hard-sphere systems by a Brownian-dynamics
simulation and a molecular-dynamics simulation
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A mean-field nonlinear equation for the mean-square displacement, recently proposed by one of the present
authors@M. Tokuyama, Phys. Rev. E62, R5915~2000!; Physica A289, 57 ~2001!#, for concentrated, equilib-
rium suspensions of hard spheres is extended to describe equilibrium atomic systems of hard spheres. The
validity of two types of mean-field equations is investigated by two kinds of computer simulations; a
Brownian-dynamics simulation on suspensions of hard spheres and a molecular-dynamics simulation on
atomic systems of hard spheres. A good agreement between the mean-field equations and simulations is then
shown for different volume fractions. The two types of model systems of hard spheres are thus shown to be
identical to each other on the study of the liquid-solid transition. However, analyses suggest that a new
interaction is indispensable to understand the mechanism for the liquid-glass transition in both systems.
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There has been considerable interest in the dynamic
colloidal suspensions of hard spheres since the discover
the colloidal glass transition@1–3#. However, our under-
standing of the mechanism for the glass transition in col
dal systems as well as in atomic systems is still incompl
In this Brief Report, we propose two types of mean-fie
equations, the first type for colloidal suspensions of h
spheres and the second type for atomic systems of
spheres. Then, we investigate their validity by perform
two kinds of computer simulations, a Brownian-dynam
~BD! simulation on the suspensions and a molecu
dynamics~MD! simulation on the atomic systems. Thus, w
show that the mean-field results are in good agreement
simulation results for different volume fractions. Hence,
expect that both the equations could be useful tools to
scribe the dynamical behavior of hard spheres near the g
transition.

Recently, Tokuyama@4,5# has proposed the following
nonlinear equation for the particle mean-square displacem
M2(t), to describe the equilibrium suspensions of colloid
hard spheres near the colloidal glass transition:

d

dt
M2~ t !52dDS

L~f!12d@DS
S~f!2DS

L~f!#e2lM2(t)

~1!

with the long-time self-diffusion coefficient

DS
L~f!5

DS
S~f!~129f/32!

11~fDS
S/fg

TOD0!~12f/fg
TO!22

, ~2!

wheref is the particle volume fraction of hard spheres,d the
spatial dimensionality, andDS

S(f) the short-time self-
diffusion coefficient given by Eq.~11! of Ref. @6#. Here
l(f) is a free parameter to be determined, wherel2d/2 is
related to the free volume of a particle andfg

TO represents a
theoretical colloidal glass transition volume fraction giv
by fg

TO5(4/3)3/(7 ln 328 ln 212).0.571 84 . . . @6,7#. D0
1063-651X/2003/67~6!/062403~4!/$20.00 67 0624
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(5kBT/6pha) is the free diffusion coefficient of the spher
where h is a viscosity of the fluid. We note here that th
singular term in Eq.~2! results from the many-body correla
tion effects due to the long-range hydrodynamic interactio
between spheres, and factor 9f/32 indicates the coupling
effects between the direct interactions and the short-ra
hydrodynamic interactions@6,7#.

Equation~1! can be solved to give a formal solution

M2~ t !5
1

l
lnF11

tb

tC
$et/tb21%G , ~3!

wheretb51/(2dlDS
L) denotes theb-relaxation time, around

which the many-body interactions between particles
comes important, andtC51/(2dlDS

S) is the short time for a
colloid to diffuse over a distance of orderl21/2. This solu-
tion suggests three different time scales;tC , tb , and a long
time tL(5a2/DS

L), where tC!tb!tL and a is the average
particle radius. In fact, one can find the following asympto
forms:

M2~ t !.H 2dDS
St for t!tC!tb

2dDS
Lt for tb!tL<t.

~4!

Thus, Eq.~1! describes the dynamics of a crossover from
short-time self-diffusion process characterized byDS

S to the
long-time self-diffusion process characterized byDS

L . Equa-
tion ~3! has been used to analyze the recent experime
data for equilibrium colloidal suspensions near the colloi
glass transition and has been shown to describe those
very well for a wide range of volume fractions from a liqu
state to a glass state by adjustingl ~see Fig. 1! @4,5#. Thus,
parameterl has been found to approximately obey@5#

l~f!a25
d0f

fg
TO~fg

TO2f!
2d1f1d2f2, ~5!
©2003 The American Physical Society03-1
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for 0.4<f,fg
TO , where d050.032, d1557.514, andd2

5194.574. In order to describe the equilibrium atomic s
tems of hard spheres, we also propose the following non
ear equation forM2(t):

d

dt
M2~ t !52dDS

L~f!12dFv0
2

d
t2DS

L~f!Ge2lM2(t), ~6!

where DS
L is the long-time self-diffusion coefficient fo

atomic systems to be determined. Herev05AdkBT/m de-
notes the average velocity of an atom, whereT andm are the
temperature and the average particle mass, respectivel
Eq. ~6!, the short-time self-diffusion coefficientDS

S is re-
placed by term (v0

2/d)t. This is reasonable because in atom
systems the short-time process is governed by the ball
motion, leading toM2(t).(v0t)2, while in suspensions it is
governed by the short-time diffusion process. Equation~6!
can be solved to give

M2~ t !5
1

l
lnF112S tb

tA
D 2

$et/tb2~11t/tb!%G , ~7!

wheretA51/(v0l1/2) is the short time for an atom to mov
over a distance of orderl21/2. Similar to the colloidal sus-
pensions, there are three different time scalestA , tb , andtL ,
where tA!tb!tL . In fact, one can find the following
asymptotic forms:

M2~ t !.H ~v0t !2 for t!tA!tb,

2dDS
Lt for tb!tL<t.

~8!

Thus, Eq.~6! describes the dynamics of a crossover from
ballistic motion characterized byv0 to the long-time self-
diffusion process characterized byDS

L . In order to test the

FIG. 1. A log-log plot of the mean-square displacementM2(t)
vs time. The solid line indicates the theoretical results from Ref.@5#.
The symbols indicate the experimental data from Ref.@8#: n for a
liquid state,d for a supercooled state, ands for a glass state.
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two types of mean-field equations given by Eqs.~1! and~6!,
we perform two kinds of computer simulations, BD and M
In both simulations we considerN different hard spheres
with radiusai and massmi ( i 51, . . . ,N) in a cubic box of
lengthL at a constant temperatureT, whereN is chosen to be
10 976 here. We also simulate two cases separately, a m
disperse case where spheres are all identical, that is,ai5a
andmi5m, and a polydisperse case where the distribution
radii obeys a Gaussian distribution with standard deviatios
divided bya, and massmi proportional toai

3 . The volume
fraction f is then given byf5(4pa3N/3L3)(113s2). In
the suspensions, the spheres are suspended in an equilib
fluid. For simplicity, however, we neglect the hydrodynam
interactions between spheres, leading toDS

S5D0. Hence
there are two interactions, the direct interactions betw
spheres leading to binary collisions, and the interactions
tween spheres and fluid particles leading to a Brownian m
tion. On a time scale of ordertD , the position vectorXi(t) of
i th sphere then obeys the Langevin-like equation

d

dt
Xi~ t !5

1

g i
(
j Þ i

F i j ~ t !1Ri~ t !, ~9!

whereF i j indicates the force between spheresi and j, and
g i(56phai) is the friction coefficient. We assume elast
binary collisions between particles. HereRi(t) is the reduced
Gaussian random force with zero mean, and satis
^Ri(t)Rj (t8)&52D0id(t2t8)d i , j1, where the brackets de
note the average over an equilibrium ensemble andD0i
5kBT/g i . We then employ the forward Euler differenc
scheme to integrate Eq.~9! with time step 1023tD under
periodic boundary and appropriate initial conditions. On t
other hand, in the atomic systems, the spheres obey the N
ton equations with forcesF i j (t). We then solve them unde
periodic boundary and appropriate initial conditions, toget
with the momentum and the energy conservation laws.
BD, space is scaled with the particle average radiusa, time is
scaled with the structural relaxation time given bytD

5a2/D0, and diffusion coefficientsDS
S andDS

L are scaled by
D0. In MD, space is scaled with the particle average rad
a, time is scaled with timea/v0, and the diffusion coefficient
DS

L is scaled byd0(5av0). The mean-square displaceme
M2(t) is given by

M2~ t !5
1

N (
i 51

N

^@Xi~ t !2Xi~0!#2&. ~10!

In both simulations, we start from a random configurati
obtained by using the Jodrey-Tory algorithm@9# and wait for
a long enough time to reach a final state where the me
square displacement grows linearly in time and the rad
distribution function does not change. Then, we use this fi
state as an initial state and repeat the same simulation
cedures to obtain the numerical results in an equilibrium
uid state. Thus, the mean-square displacements obtaine
both simulations are compared with the mean-field res
given by Eqs.~3! and ~7! which are calculated by using th
3-2
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simulation data for scaled diffusion coefficients and by a
justing l to fit with the simulation results.

Depending on the values of the volume fraction, there
three phase regions; a fluid region for 0,f,f f(s), a meta-
stable region forf f(s)<f,fm(s), and a crystal region
for fm(s)<f, wheref f(s) and fm(s) are the so-called
freezing and melting volume fractions, respectively. O
simulations show thatf f(0.0).0.51, f f(0.06).0.53,
fm(0.0).0.54, andfm(0.06).0.57. We note here that thi
kind of a first-order fluid-solid transition and the existence
a metastable branch in the hard-sphere systems are the
as those discussed already by a number of computer sim
tions @10–17# since the pioneering work of Alder an
Wainwright @18#. Both in an equilibrium fluid state and in
a metastable fluid state, the long-time self-diffusi
coefficient DS

L(p) can be obtained asDS
L(p)(f)/dp

5 lim
t→`

M2(t)/(2dt), wherep5A for the atomic systems

p5C for the suspensions,dA5d0, anddC5D0. In Fig. 2 we
plot the coefficientsDS

L(p)(f)/dp versusf. For comparison,
the theoretical resultsDS

L given by Eq.~2! andDS
S given by

Eq. ~11! of Ref. @6#, are also shown. As discussed in t
previous paper@19#, the coefficientsDS

L(p) are well described
by the following functions:

DS
L(C)~f!/D05@DS

L(A)~f!/d0#/@DS
S~f!/D0#, ~11!

DS
L(A)~f!

d0
5

DS
S~f!/D0

11@fDS
S~f!/fcD0#@12f/fc~s!#22

,

~12!

FIG. 2. A log plot of the long-time self-diffusion coefficientDS
L

vs f. The open symbols indicate the simulation results in a mo
disperse case: the squares forDS

L(C) and the circles forDS
L(A) . The

filled symbols indicate the simulation results for a polydispe
case. The solid and dot-dashed lines are the theoretical result
DS

L and forDS
S , respectively. The dashed and dotted lines indic

diffusion coefficientsDS
L(C) andDS

L(A) given by Eqs.~11! and~12!,
respectively. The dot–long-dashed and the long-dashed lines de
fm(0) andfm(0.06), respectively.
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where the singular pointfc(s) is given by fc(0.06)
.0.586 andDS

S(f) is given by Eq.~11! of Ref. @6#. For
higher volume fractions, both coefficients become singu
as DS

L(p)(f)/dp.(12f/fc)
2. Both coefficients show the

same singular behavior as that of Eq.~2!, except that the
singular pointfg

TO is now replaced byfc . This is because
the long-time behavior is considered not to depend on
details of interactions@19#, where the singular terms of Eqs
~11! and ~12! result from the long-time correlations due
the many-body collision interactions, while the singular te
of Eq. ~2! results from the long-time correlations due to t
long-range hydrodynamic interactions. We note here that
diffusion coefficients for a polydisperse case are sligh
larger than those for a monodisperse case at higher vol
fractions.

In Fig. 3 we show a log-log plot ofM2(t) in the suspen-
sions, together with the mean-field results obtained by
~3!, for different volume fractions. In Fig. 4 we also show
log-log plot of M2(t) in the atomic systems, together wit
the mean-field results obtained by Eq.~7!, for different vol-
ume fractions. In both cases, parameterl(f) is obtained by
fitting the theoretical values given by Eqs.~3! and~7! to the
simulation results and is found to be approximated by
same equation as Eq.~5!, except that the singular point i
now replaced byfc . In any fluid state, the mean-field resul
are thus shown to agree with the simulation results well. I
also shown that the long-time behavior of the equilibriu
physical quantities, in both the hard-sphere systems, suc
the mean-square displacement, the diffusion coefficient,
the radial distribution function, is exactly identical to ea
other, although their short-time behavior is different.

-

e
for
e

ote

FIG. 3. A log-log plot of the mean-square displacementM2(t)
for BD vs time, for different volume fractions~from left to right!
0.45, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, and 0.56. The solid
indicates the mean-field results obtained by Eq.~3!. The symbols
indicate the BD results: the open square is for a monodisperse e
librium fluid state, the cross is for a monodisperse metastable fl
state, and the open circle is for a polydisperse metastable fluid s
3-3
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In this paper we have tested the validity of two types
mean-field equations through comparison with two kinds
computer simulations. One is the mean-field equation~1! for
colloidal suspensions tested by BD and the other is
mean-field equation~6! for atomic systems tested by MD

FIG. 4. A log-log plot of the mean-square displacementM2(t)
for MD vs time, for different volume fractions~from left to right!
0.45, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, and 0.56. The solid
indicates the mean-field results obtained by Eq.~6!. The details are
the same as in Fig. 3.
A.
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We have performed those simulations for different volum
fractions in two cases, a monodisperse case and a poly
perse case. Thus, we have shown that the mean-field re
agree with the simulation results very well, where the fr
parameterl obeys the same equation as Eq.~5!, except that
fg

TO is now replaced byfc . Since Eq.~1! has been success
fully used to analyze the recent experiments near the g
transition@5#, therefore, Eq.~6! may also be expected to be
useful tool to analyze the experiments in glass-forming m
terials near the glass transition. Finally, we should refer
model systems to study the liquid-glass transition. If t
short-time hydrodynamic interactions are considered s
consistent, the colloidal suspensions of hard spheres
serve as valuable models for the study of the atomic syst
of hard spheres on the liquid-solid transition@see Eq.~11!#.
Both simulations show that there exists a liquid-solid tran
tion but not a liquid-glass transition even for a polydispe
case. Hence both systems may still lack an important in
action to understand the mechanism for the liquid-glass tr
sition. In the suspensions, it is considered to be a long-t
hydrodynamic interaction between particles as discusse
Refs. @6,7#. In the atomic systems a new interaction is al
considered to be indispensable to undergo the glass tra
tion. This will be discussed elsewhere.
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