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Slow dynamics of structure and fluctuations in supercooled colloidal fluids
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The importance of the dynamic singularity of the self-diffusion coefficientDS;@12F(x,t)/fg#2 in the
coupled diffusion equations recently proposed, the nonlinear deterministic diffusion equation for the average
local volume fractionF(x,t) and the linear stochastic diffusion equation for the density fluctuationsdn(x,t),
is emphasized for understanding the slow dynamical behavior of concentrated hard-sphere suspensions, where
fg5(4/3)3/(7 ln328 ln212) is the colloidal glass transition volume fraction. It is shown that there exists a
crossover volume fractionfb , over whichF(x,t) describes the formation of long-lived, irregularly shaped
domains withF(x,t)>fg , anddn(x,t) describes two-step relaxations with time scales,tb;(12f/fg)21,
and ta;(12f/fg)22, wheref is the volume fraction of spheres. Thus the slow dynamics of a supercooled
hard-sphere colloidal fluid (fb<f,fg) is explored from a unified viewpoint.@S1063-651X~97!15208-4#

PACS number~s!: 82.70.Dd, 05.40.1j, 51.10.1y
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There has been growing interest in the dynamics of c
loidal suspensions over the past two decades@1#. Especially,
of great interest is the experimental discovery of a liqu
glass transition in concentrated hard-sphere suspens
@1–3#, similar to that in supercooled liquids. Mode couplin
theory ~MCT! @4,5# has been applied to understand the d
namics of suspensions approaching the glass transition
has stimulated much of the recent theoretical, numerical,
experimental work on concentrated suspensions. Recent
theoretical approach different from MCT has been propo
by Tokuyama@6# and has been investigated asymptotica
@6#, analytically @7#, and numerically@8#. Results similar to
those obtained by MCT have been found, although the b
standpoints in the two theories are quite different@8#. Our
previous work has focused mainly on the dynamical beh
ior of the density fluctuations, such as two-step slow rel
ations. In this paper, we discuss not only the slow dynam
of the density fluctuations, but also the clusterlike format
of a glassy phase withF(x,t)>fg in the supercooled hard
sphere fluid from a unified viewpoint.

The present paper deals with two kinds of diffusion eq
tions; the nonlinear deterministic diffusion equation for t
average number densityn(x,t) @9# and the linear stochasti
diffusion equation for the density fluctuationsdn(x,t)
around the causal motionn(x,t) @6#. Instead ofn(x,t), it is
convenient to introduce the average local volume fraction
F(x,t)54pa0

3n(x,t)/3, wherea0 is a particle radius. On the
other hand, the dynamics of density fluctuations can be m
sured by dynamic light scattering through the se
intermediate scattering functionFS(k,t) @8,10#, which is
given by the Fourier transform of the autocorrelation fun
tion of the density fluctuationsdn(x,t), whereFS(k,0)51.
Hence we here start with the coupled diffusion equations
F(x,t) andFS(k,t) @7,8#:

]

]t
F~x,t !5“•@DS„F~x,t !…“F~x,t !#, ~1!
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FS~k,t !52k2(

q
DS~k2q,t !FS~q,t !, ~2!

with the Fourier transformDS(k,t) of the self-diffusion co-
efficient

DS„F~x,t !…5
DS

S~f!@129F~x,t !/32#

11@F~x,t !DS
S~f!/fgD0#@12F~x,t !/fg#22

~3!

and the conservation law (1/V)* dx F(x,t)5f, wereD0 is
the single-particle diffusion coefficient,DS

S(f) the short-
time self-diffusion coefficient~see Ref.@6# for details!, andV
the total volume of the system. Here the factor~9/32! in the
numerator of Eq.~3! results from the coupling between th
direct and short-range hydrodynamic interactions among
ticles, while the second term in the denominator origina
from the many-body correlations of long-range hydrod
namic interactions@9#. The most important feature of th
above coupled equations is that the self-diffusion coeffici
DS„F(x,t)… becomes zero asDS(F);@12F(x,t)/fg#2

near the transition pointfg . As was shown in Refs.@6–8#,
this singular behavior plays an important role in the dyna
ics of supercooled colloidal fluids for intermediate time
leading to two-step relaxations.

In order to solve the coupled diffusion equations~1! and
~2! self-consistently, we first fix the values of the followin
two parameters as the initial conditions: the particle volu
fraction f and the initial local volume fractionF~x,0!. To
integrate those equations, we employ the forward Euler
ference scheme with time step 0.01a0

2/D0 and lattice spacing
0.2a0 in the volume (128a0)3 of a three-dimensional simu
lation system with periodic boundary conditions. In order
2302 © 1997 The American Physical Society
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distinguish the initial states from each other qualitatively,
introduce a state parameterz0 by @8#

z0512~1/V!E dxu12F~x,0!/fu, ~4!

where 0<z0<1 and z051 in equilibrium. This measure
how close the initial state of the system is to the equilibriu
state. The initial valueF~x,0! is chosen at each positionx
from a random number with a Gaussian distribution, wh
is characterized by a mean value 1 and a standard devia
s, wheres is adjusted so as to satisfy Eq.~4! for a given
valuez0 .

As was shown in Refs.@6–8#, there are three kinds o
characteristic times: the short timetg52p/@k2DS

S#, the
crossover timetb'2p/@k2(DS

SDS
L)1/2# @11#, and the long

time ta52p/@k2DS
L#, where DS

L5DS(f) is the long-time
self-diffusion coefficient andtg!tb!ta . For short timestB
!t<tg , the self-diffusion coefficientDS(F) reduces to the
short-time self-diffusion coefficientDS

S(f) since the direct
interactions and correlations are negligible, wheretB is the
Brownian relaxation time. For long timest>ta , on the other
hand,DS(F) reduces to the long-time self-diffusion coeffi
cient DS

L(f) sinceF(x,t) reaches the equilibrium valuef,
following the nonlinear diffusion equation~1!. Thus there are
in general three characteristic stages for the colloidal fl
(0,f,fg). The first is an early stage (E) for tB!t<tg ,
where the spatial inhomogeneities are described byF(x,t)
.exp(2tDS

S¹2)F(x,0), and the relaxation of the density flu
tuations obeys the short-time exponential decayFS

S(k,t)
5exp(2k2DS

St). The second is an intermediate stage (I ) for
tg!t!ta , where the dynamical behavior is complicated b
cause of the singularity ofDS(F). The last is a late stag
(L) for t>ta , where F(x,t).f, and FS(k,t) obeys the
long-time exponential decayFS

L(k,t)5exp(2k2DS
Lt).

In order to investigate the dynamical behavior in sta
(I ), we next calculate the logarithmic derivatives given
w5] lnufk

c2FS(k,t)u/] lnt andw85]w/] lnt, wheref k
c is the

plateau height given byf k
c(z0)5 lim l→`FS(k,t;f5fg)

FIG. 1. Schematic phase diagram in thez0-f plane for hard-
sphere suspensions. The solid circles indicate the crossover vo
fraction fb and the dotted line the glass transition volume fract
fg .
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@6–8#. Then w850 gives two time rootstb0
and tb , which

reveal two fairly flat regions w5b0(f,z0 ,k) at t
5tb0

(f,z0 ,k) where tg!tb0
!tb and w5b(f,z0 ,k) at t

5tb(f,z0 ,k) where tb!tb!ta . HenceFS(k,t) obeys two
kinds of power-law decays with exponentsb0 andb around
tb @6–8#. Thus the intermediate stage further separates
two stages: a formation stage (F) for tg!t!tb and a shrink-
age stage~Sh! for tb!t!ta . However, this separation oc
curs only for the rangefb<f,fg , where the crossove
volume fractionfb(z0 ,k) is determined by the equal roo
tb0

(fb ,z0 ,k)5tb(fb ,z0 ,k) or b0(fb ,z0 ,k)5b(fb ,z0 ,k),

at fixed values ofz0 andk @12#. A schematic phase diagram
of nonequilibrium hard-sphere suspensions is shown in F
1, wherefb(z0 ,k) is numerically calculated atka052.8 for
different values ofz0 . With increasing volume fraction at a
fixed z0 , therefore, we observe a progression from colloid
fluid (0,f,fb) to supercooled colloidal fluid (fb<f
,fg) to glass (f>fg). We expect that in equilibrium (z0
51) the crossover volume fractionfb may coincide with
the melting volume fractionfm ~;0.545! of hard spheres,
while in nonequilibrium (z050) it reduces tofg . In Fig. 2
we show the time evolution ofFS(k,t) at z050.5 and 0.8 for
f50.543, fb(z0 ,ka0), and 0.571, wherefb(0.5,2.8)
50.565 andfb(0.8,2.8)50.559. Belowfb , the scattering
functionFS(k,t) decays quickly to zero, while abovefb the
shape ofFS(k,t) becomes very sensitive to the value off,
forming a shoulder, which becomes a plateau with the he
f k

c(z0) at fg . Thus the dynamical behavior of the supe
cooled region (fb<f,fg) in stage (I ) is quite different
from that of the normal region (0,f,fb). We discuss this
next.

In stage~F! the glassy regions where the local volum
fraction F(x,t) is larger thanfg form finite-sized, long-
lived, irregularly shaped domains~see Fig. 3!. Because of
these domains, the smoothing process of the spatial inho
geneities to the uniform state is slowing down, leading to
structural arrest. Thus the density fluctuations underg
slow relaxation and obey the power-law decay

FS
F~k,t !5 f k

c~z0!2Ak~z0!~ t/tb!b0, ~5!

where Ak5@ f k
c2FS(k,tb0

)#(tb /tb0
)b0. This power-law de-

cay continues up to the crossover timetb . For t>tb , the
shrinkage stage~Sh! starts. As is seen in Fig. 3, the glass
domains start to shrink, disappearing very slowly. Beca
of the glassy domains, the relaxation of the density fluct
tions still becomes slow and obeys the so-called v
Schweidler decay

FS
Sh~k,t !5 f k

c~z0!2Bk~z0!~ t/ta!b, ~6!

where Bk5@ f k
c2FS(k,tb)#(ta /tb)b. The shrinkage and

power-law decay continue up to the long timeta , over
which the glassy domains disappear. On the other hand
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stage (I ) of the normal region there is neither a formation
domains nor a power-law decay~see Figs. 2 and 4!. Hence
the spatial inhomogeneities become smooth monotonica
obeying Eq.~1!, while the relaxation gradually changes fro
the short-time exponential decayFS

S(k,t) to the long-time
exponential decayFS

L(k,t).
Figure 5 shows schematically the dynamic behavior

phases in the supercooled region atz050.8 andka052.8.
With increasing time, the system thus undergoes the f
characteristic stages: the early stage (E) where the system is

FIG. 2. Self-intermediate scattering functionFS(k,t) versus di-
mensionless timeD0t/a0

2 for different volume fractions~from left to
right!: 0.543,fb and 0.571 atz050.8 ~solid lines! and 0.5~dotted
lines!, wherefb50.559 (z050.8) and 0.565~0.5!, andka052.8.
The symbols indicate the time scales:tg ~l!, tb ~s!, andta ~L!.

FIG. 3. Typical configurations, projected onto a plane,
pattern-evolution processes atf50.571 in the supercooled regio
fb<f,fg for dimensionless times~a! 1, ~b! 6.35(tg), ~c! 102, ~d!
103, ~e! 1279(tb), ~f! 104, ~g! 105, ~h! 4.43105(ta), and ~i! 106,
wherez050.8. The system size is (128a0)2, and the glassy region
are colored black.
y,

f

ur

occupied by the colloidal fluid withDS
S , the formation stage

(F), the shrinkage stage~Sh!, and the late stage (L) where
the system is occupied by the colloidal fluid withDS

L .
In conclusion, we have shown that there exists a crosso

volume fractionfb(z0 ,k), over which the fluid and glass
phases coexist on the time scale of ordertb(f,k). Finally, in
order to test our results, we encourage experimentalist
measure the self-intermediate scattering functionFS(k,t) for
different values of the separation parameters and also its
plateau heightf k

c . Then, one can calculate the state para

f

FIG. 4. Typical configurations, projected onto a plane,
pattern-evolution processes atf50.543 in the normal region 0
<f,fb for dimensionless times~a! 1, ~b! 4.87(tg), ~c! 10, ~d! 20,
~e! 42, ~f! 102, ~g! 200, ~h! 359(ta), and ~i! 103, wherez050.8.
The system size is (128a0)2, and the glassy regions are colore
black.

FIG. 5. Characteristic stages in the supercooled regionfb<f
,fg at z050.8 andka052.8. The dot-dashed line indicates th
characteristic timetg , the solid linetb , and the dotted lineta .
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eter z0 by fitting the theoretical plateau heightf k
c(z0) with

experimental ones at a given value ofk. Hence one can
guess how much in nonequilibrium the experimental sys
is initially. Once the value ofz0 is found, one can thus ana
n
st
m

lyze experimental results in terms of the present theory. T
will be discussed elsewhere.
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