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Many-body effects in reaction rates depend on the ratio E of a rate coefficient to the product of 
a diffusion coefficient and a radius, and on the reduced volume fraction ~o of one or more 
reactants. We present a statistical-mechanical theory ofthe macroscopic kinetics 
(deterministic rates) of reactions in solutions, and fluctuations therefrom, for arbitrary E and 
~o, by deriving expressions for effective forward and reverse rate coefficients and their 
dependence on E, ~o to lowest order. We use an enzyme-catalyzed reaction as an example. 
There are two corrections to rate coefficients (for E = 0, ~o = 0) at a given E, ~o=l=O, and both 
are proportional to ~6/2 (the square root of the total enzyme density in the example). The first 
is an uncorrelated screening term described by the single enzyme distribution function, which 
increases the rate; and the second a term described by correlations among enzymes, which 
decreases the rate. In the limit of very fast reactions the correlation term is negligible, and the 
screening term reduces to that previously obtained for diffusion controlled reactions. For other 
cases both terms contribute: for example, in the range ~0-to-2 to to-I and E-l-to the 
corrections vary from a few percent to 30%, as obtained from numerical solutions of the 
corrections for the enzyme example. We discuss a quasistationary state of the example and 
derive a generalization of the Michaelis-Menten equation for all E, ~o. Fluctuations from the 
deterministic motion are shown to be small for three-dimensional systems. 

I. INTRODUCTION 

The principal purposes of the present paper are the for­
mulation of a statistical-mechanical theory for obtaining ex­
pressions for deterministic reaction rates in chemical sys­
tems in which there are density-dependent interactions 
among some species due to reaction, and for considering the 
effect of fluctuations on those interactions. Direct ·interac­
tions, such as Coulomb forces on reacting ions, affect the 
rate of a reaction, and a simple model of a reaction fits ex­
periments quite well (Bronsted-Bjerrum theory I of primary 
and secondary salt effect). Direct interactions in the gas 
phase have been considered by means of a cluster theory.2 In 
this article we discuss indirect interactions, due to chemical 
reaction and diffusion. Consider, as an example, an enzyme 
reaction: let the density of enzymes be in a dilute range but 
sufficiently large that the reaction of a substrate with an en­
zyme molecule affects the substrate concentration field at a 
neighboring enzyme. The enzyme-substrate reaction obeys 
Michaelis-Menten kinetics3 and the reaction scheme is tak­
en to be 

k, k']. 

E + S~ES-+E + PR, (1.1 ) 
k_. 

where E denotes the enzymes, S the substrates, ES the com­
plexes, and PR the products, and k l , k_I' k2 are steps as 
shown in Eq. (1.1). We define the reduced quantities 

E = k I /411"aD, 

~o = 411"a3 EoI3, 
( 1.2) 

where ~o is the total enzyme volume fraction, D the diffusion 
coefficient of the substrate S, a the radius of reaction of the 

a) On leave of absence from General Education, Faculty of Engineering, 
Tohwa University, Fukuoka 815, Japan. 

enzyme, and Eo the total density of enzyme (complexed or 
not). 

The Michaelis-Menten expression for an enzyme reac­
tion, and the common formulation of macroscopic kinetics, 
hold for the conditions E = 0, ~o = 0, that is ideal solutions, 
well stirred (homogeneous). The corrections. to ideal rate 
coefficients for very fast reactions E -+ 00, have been dis­
cussed by many authors for ~o = 04-10 and also for 
~o=l=O. 11-17 The bimolecular reaction rates for arbitrary E 

have been analyzed by a few authors,18-21 but only in regard 
to the screening correction. 

In this article we propose a statistical-mechanical theo­
ry of reaction rates for arbitrary E and ~o. To do so we must 
treat the many-body problem consistently and investigate 
the role of fluctuations. The analysis shows the presence of 
an intermediate time scale, on which both screening and cor­
relation interactions are important, and a late time scale, on 
which the correlation interactions vanish. We outline here 
briefly our approach. 

Consider a three-dimensional classical isothermal en­
zyme reaction consisting of substrate S, enzymes E, and 
complexes ES. The enzymes and complexes are much larger 
than the substrate; they are assumed to be spheres with a 
radius a, and the distribution of their positions are assumed 
to be stationary. The substrate moves by diffusion with the 
diffusion coefficient D. We suppose that reaction may occur 
when a substrate approaches within a radius a of an enzyme 
and that the reactions obey Michaelis-Menten kinetics. Let 
e(r,t) denote the macroscopic local number density of sub­
strate, E(r,t) that of the enzyme, and Es(r,t) that of com­
plex, all of which are coarse grained in space and time, 

u(r,t) = Lk f dw Uk (w)exp(ik'r + ;wt) (1.3 ) 
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with approximately Ik I < lire and approximately Iwl < life' 
where u = C,E,Es, and (re,fe) are minimum values for the 
characteristic wavelength and time scales of the reaction­
diffusion process. The length cutoff re and the time cutoff fe 
in Eq. (1.3) must be chosen to be much larger than the mi­
croscopic (molecular) length and time scales, respectively. 

For a sufficiently dilute enzyme reaction, the rate equa­
tions for the averaged functions (u ( r, f) ) are given, on a mac­
roscopic space and time scale, by 

(%J(C(r,t) =DVZ(C) -k\(E)(C) +k_,(Es ), 

( 1.4a) 

(%J(E(r,f» = - kj(E)(C) + (k_, + kz)(Es ) 

(l.4b) 

with the conservation law (E(r,f» + (Es(r,f» = Eo, 
where Eo = N IV is the total enzyme density, N the total 
number of enzymes, and V the total volume of the system. 
Here the average is taken over the initial enzyme distribution 
function. 

From Eqs. (1.4), a characteristic length I R and time r R 

of the macroscopic processes concerned are defined by 

lR = (41TaR(E»-'/z, r R =nID= lIk,(E), 
( 1.5a) 

where lR represents a screening length ofreactive-diffusive 
interactions among enzymes, and aR = Ea = k,/41TD is an 
effective radius of an enzyme. For typical values of various 
lengths, see Table I. We assume that the total enzyme vol­
ume fraction ifJo is small. As is shown in Sec. III C, the rate 
equations ( 1.4) hold on the length scale of order I R and time 
scale of order r R when E ~ 1. Therefore, we have 

aRIIR=(3ifJR)'/z~l, rb/TR=3ifJR~I, (1.5b) 

where ifJR (t) represents the effective enzyme volume frac­
tion and is given by ifJR(t) = 41Ta1(E(t»/3 
= ~ifJo{(E(t»IEo} and rb = a~/D is a microscopic time 

related to a R' Then, there are two different choices of the 
cutoff re , depending on the process of interest. Equation 
( 1.5b) suggests that there exist two characteristic macro­
scopic stages. The first is an intermediate stage where the 
space-time cutoffs are set as 

( 1.6) 

TABLE I. Macroscopic length and time scales calculated for ¢Jo = 10-4, 
k2 = k_I' and k l (C)/(k2 + L I) = 1.0 at different valuesofE = 0.01,1.0, 
and 100.0. 

Symbols Definition E= 0.01 1.0 100.0 

IRla Eqs. (1.5) 815 74 6 

TRITo 8152 742 62 

Iia Eqs. (1.10) 818 94 58 
Th'o 8182 942 582 

IDla Eq. (1.1Ia) 58 58 58 

TDITo 582 582 582 

Lla Eq. (1.12) 22 22 . 22 

At some initial time substrate gradients are set up among 
enzymes by the reactions betwee enzymes and substrate, and 
by concentration fluctuations of substrate. Thus, a reaction­
diffusion process with the characteristic length I R and the 
characteristic time r R becomes dominant and this interme­
diate stage is described by Eqs. (1.4). In the late stage, the 
density of substrate has decreased substantially. The reac­
tion process is slow compared to diffusion, and' spatial in­
homogeneity in the system is negligible. The macroscopic 
variables (u(r,t) become homogeneous in space, which 
leads to (u (r,f» = (u (t) ). Therefore, this second stage is 
characterized by the inequalities 

re,>IR ,>aR, fe,>rR ,>rb, 

and the rate equations 

(:J(C(t» = - k\(E)(C) + k_,(Es ), 

( 1.7) 

( 1.8a) 

(:J(E(t» = - k,(E)(C) + (k_, + kz)(Es ) 

(1.8b) 

with the conservation law (E(t» + (Es(t» = Eo. 
The rate equations (1.4) and (1.8) are valid only when 

the effective enzyme volume fraction given by ifJR (t) is suffi­
ciently small. If this condition is not satisfied, reaction-dif­
fusion interactions among enzymes become important and 
modify the rate equations and the rate coefficients. Because 
of the long range of these interactions, the macroscopic pro­
cesses of interest are complicatedly coupled to the micro­
scopic processes, which are associated with the enzyme 
sphere configurations. In order to find the analogs of Eqs. 
( 1.4) and ( 1. 8) for the case of nonzero enzyme volume frac­
tion (ifJo i= 0) with arbitrary values of E beginning with a mi­
croscopic point of view, therefore, we must set up appropri­
ate microscopic equations and then must eliminate the 
microscopic process by suitable averagings. In the present 
paper, this is done by the following two types of coarse­
graining procedures. The first is the reduction of variables by 
averaging over the enzyme sphere configurations. This is 
accomplished in Sec. II, where we start with molecular equa­
tions and derive linear Langevin-type equations for u(r,f); 

(%JC(r,f) = DVzC + [(r,f), (l.9a) 

(1.9b) 

with the conservation law E(r,t) + Es(r,f) = Eo, and the 
reaction term 

[(r,f) = f dr' f df' [ - rp(r,r',f - t ')C(r',f') 

+1ft(r,r',t-f')Es(r',f')] +R(r,f), (1.9c) 

where rp and 1ft are memory functions, and R (r,t) is a fluctu­
ating force which satisfies (R (r,f» = O. In order to calcu­
late the memory functions rp and 1ft, we also introduce the 
enzyme number density N(p,r,t), where p denotes an occu­
pation number such that p = 1 is associated with a position r 
occupied by an enzyme, while p = 0 is associated with a posi­
tion r occupied by a complex [cf. Eq. (2.17b)]. Then, the 
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effective number density of complexes E 8 (r,t) in Eq. 
(1.9c) is given by E 8 (r,t) = f~ (1 - p)bN(p,r,t)dp, where 
b = (1 + Ep)-I [cf. Eq. (2.16)]. 

Equations (1.9) held for any arbitrary value of E, and 
thus the characteristic length 1 R and time T R can be general­
ized so as to treat any case for arbitrary E. We may define a 
new screening length 1 and its related time T by 

1= (417a*(E»-1/2, T=[2ID= lIkl (E'), (1.lOa) 

and also introduce a new effective radius of an enzyme a* 
anditsrelatedtime7"c!bya* = Ea(E')/(E) and7"c! = a*2ID, 
which satisfy 

a*11 = [3tP(t) j1/2..( 1, 7"c!h = 3tP(t)..( 1, (1.10b) 

where tP(t) represents the effective volume fraction and is 
given by tP(t)=417a*3(E(t»/3 = tPo(~(E')3/(E)2Eo). 
Here the effective number density of enzymes (E') is given 
by (E'(t» = f~ pb (N(p,r,t) )dp. Then, there are also two 
characteristic stages as discussed before, where (1 R' T R ) and 
(aR ,T~) are now replaced by (/,T) and (a*,7"c!), respectively. 

Depending on the value of E, we have the following two 
further extreme cases. The first is the fast reaction case [A], 
where E> 1, and 

1 = ID = (417aEo) -1/2>a* = a, 

( l.l1a) 

Here ID represents the screening length in case [AJ, and 
TD = nlD = 1I417aDEo· In this case, Eq. (1.9a) reduces 
exactly to that obtained in Ref. 15, referred to as Te, on the 
study of diffusion-controlled reactions. Hence this is the so­
called diffusion-controlled limit. The second is the slow re­
action case [BJ, where E..( 1, and 

(1.11b) 

As the volume fraction tPo decreases, the screening 
length I becomes much larger than the interenzyme distance 
given by 

( 1.12) 

Therefore, the number of enzymes in the volume I \EoI3, is 
very large even in the low density limit Eo -+ O. The definition 
of the macroscopic lengths and times and their order of mag­
nitude are given in Table I. 

The second coarse-graining procedure is a reduction of 
processes, that is the extraction of the macroscopic process 
characterized by (/,T) from Eqs. (1.9) by suppression of the 
microscopic process characterized by (a*, 7"c! ). This is done 
by the scaling expansion method22 with the following central 
results: In the intermediate stage, we have the scaling 

r-+Sr, t-+S 2t, I .... SI, T-+S 2T, tP .... S-2tP,(1.13a) 

(u(r,t) .... S -2(u(r,t», c5u(r,t) .... S - (d+ 2) /2c5u(r,t) 
(1.13b) 

with S> 1, and approximately Irl>re and approximately 
t>te' wherec5u(r,t) = u(r,t) - (u(r,t» denotes the fluctu­
ations around the deterministic motion (u (r,t) ), and the 
molecular quantities such as D and kl are all kept constant. 
Then, by applying the scaling (1.13) to Eqs. (1. 9) and ex­
panding them in powers of S -I, we can carry out three ex­
pansions all consistent with each other. The first is the ex-

pansion in the small parameter tP1/2, Eq. (1.10b). The 
second is the expansion in the spatial gradients V, which 
permits us to write Eqs. (1.9) in a spatially local form such 
as in Eqs. (1.4). The third is the expansion in the slowness 
parameter a 1 at, which leads to a Markov equation such as 
Eqs. (1.4). Thus, the scaling method carries out the space­
time coarse graining in a manner consistent with the expan­
sion in the small parameter tP1/2. From Eq. (1.13b), we have 
lc5ul(u) 1 = tP(d-2)/2. Therefore, the scaling method also en­
abIes us to evaluate the magnitude of the fluctuations rela­
tive to the deterministic motion. 

In Sec. III, we discuss the intermediate stage for arbi­
trary E and show that reactive-diffusive long-range interac­
tions among enzymes separated by a distance of order 
I( >L) cause two kinds of first-order corrections; an uncor­
related term v(r,t), which is described by a deterministic 
part of a single-enzyme distribution function, 
f(p,r;t) = (N(p,r,t», and a correlated term w(r,t) which is 
described by a fluctuating part of the single-enzyme distribu­
tion function, c5N(p,r;t) = N(p,r;t) - f(p,r;t) , and that in 
tum by an enzyme pair correlation function. Thus, we obtain 
for arbitrary values of E, to order S - I, 

(I(r,t) = - kl(E')(C) + k_ I (E 8) 

+ [3tP(t)] 1/2[v(r,t) - w(r,t)], (1.14 ) 

where v and ware averaged functionals of E ' and (C). We see 
from Eq. (1.14) that the first-order correction term is pro­
portional to the square root of the enzyme volume fraction tP, 
i.e., the enzyme density (E). In case [AJ where E> 1, the 
correction results only from the uncorrelated term v, since 
the uncorrelated term w is of order E- I . This is due to the fact 
that since the time scale of the reaction process is much 
shorter than that ofthe diffusion process, on the time scale of 
order T D the reactions are already completed and the fluctu­
ations are averaged out. Then, Eq. (1. 14) reduces to 

(I(r,t» = - (417aD)Eo 

X[1 + (3tPo) 1/2] (C(r,t) +O(E- I ). (1.15) 

This is identical to that obtained previously for diffusion­
controlled reactions. II

-
17 In all other cases the correction 

term results from both uncorrelated and correlated terms, 
both of which may play important roles. Estimates ofmagni­
tudes of the correction terms from screening and correlation 
terms are obtained for ranges of E and tP for an enzyme reac­
tion by numerical solution of the derived corrections. 

In Sec. IV, we study the late stage characterized by the 
space-time cutoffs (re,te) which are prescribed by the condi­
tion re > 1 and te > T. It is shown that the reaction process is 
described by the following nonlinear Fokker-Planck equa­
tion for the single-enzyme distribution functionf(p,r;t): 

(:Jf(p,r;t) = (~ )[ - y(p,z) + [3tP(z) jl/2Y(Z)pb 

+ ( ; Jb ] J, ( 1.16) 

whereyis a drift term and is given by Eq. (4.7), and y(z) is a 
coefficient given by Eq. (4.5a). Here z is a scaled substrate 
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density given by z(t) = kl(C(t»/(k_ 1 + k2). Thus, we 
find the deterministic rate equations 

(d) - -dt (C) = - kl(z)(E)(C) + k_t(z)(Es ), ( 1.17a) 

(:t)(E(t» = - kt(z)(E)(C) + [k_t(z) + k2](Es ) 

(1.17b) 

with the renormalized rate coefficients 

kl(z) = k l{1 + [3tP(z)j1/2[A I(z) 

+A_I(z)]}(E')/(E), (1.18a) 
- In k_l(z) =k_ l [1 + (3tP(z) A_I(z)](E;)/(E.), 

(1.18b) 

where the coefficients A I and A _ I are averaged functionals 
of E and E', and depend only on the scaled parameters z, E, 

and K = k_tl(k_1 + k2). The rate coefficients kl and k_1 
are renormalized by the reactive-diffusive long-range inter­
actions differently, and their deviations from the infinitely 
dilute limit go as the square root of the enzyme density Eo. 
When k2 i= 0 (i.e., irreversible reactions) the density (C ) ap­
proaches the value zero in the long time limit t ... 00. Hence 
kl and k_1 reduce to 

kl = [kl/(l +E)]{l + (3KotPo)1/2[EI(l +E)p/2}, 
( 1.19a) 

k_1 = [k_tl(l + E)]{l + (3KotPo)ln[E/(l + E)]3/2}, 
(1.19b) 

respectively, where Ko = k2(l + E)/[k_ 1 + k2(l + E)]. 
When E = 0, therefore, there is no correction to the rate coef­
ficients. In the low density limit Eo"'O, these coefficients 
reduce to those obtained for irreversible reactions by other 
authors.4-6·18-21 On the other hand, when k2 = 0 (i.e., rever­
sible reactions), the scaled density z( t) approaches the equi­
librium valuez( 00) = (Es( 00) )/(E( 00» in the t .... 00 lim­
it. Hence we obtain 

kl =kl[l +z(oo)]/[l +z(oo) +E], 

k_1 = k_1 [1 + z( 00 )]/[ 1 + z( 00) + E]. 

( 1.20a) 

(1.20b) 

Therefore, there is no correction to the rate coefficients for 
reversible reactions. These coefficients do not agree with 
those obtained in the low concentration limit z( 00) .... 0 by 
previous authors. 18-21 

Under the quasistationary state approximation, 
d (E(t) )Idt = d (Es(t) )Idt = 0, we also obtain 

(:t)(C(t» = -k(z)Eo(C(t» (1.21) 

with the effective rate coefficient 

( 1.22) 

This is a generalization of the Michaelis-Menten equation 
(where E = 0, kl = kl and k_1 = k_ 1 ) to first order in the 
small parameter tPI/2 given by Eq. (1.10b). Equations 
(1.16), (1.17), and (1.21) are the most important results in 
the present paper. 

The outline of this paper is as follows. In Sec. II, we first 
transform the molecular equations into linear Langevin-type 
equations (1.9) and obtain microscopic expressions for the 

memory functions and fluctuating forceby employing a sim­
ilar formalism to that previously introduced by TCl5 to 
study diffusion-controlled reactions. In order to calculate 
the memory functions, we then define probability distribu­
tion functions of finding enzymes at given positions and de­
rive a hierarchy of equations for them. In Sec. III, the inter­
mediate stage is studied. The scaling method is first 
introduced to order all terms in the scaling parameter S -I. 
By employing a similar approach to that introduced in Ref. 
23, referred to as TK, on the study of particle growth, we 
derive kinetic equations for single-enzyme distribution func­
tionf(p,r;t) and the variance (6N(p,r;t)6N(p',r';t» system­
aticallyto order tP I/2 in the expansion inS -I. It is shown that 
although the fluctuations 6N(p,r;t) are small as compared to 
the deterministic part f(p,r;t) when d> 2, they are impor­
tant since they cause an appreciable correction to the rate 
coefficients to order tPln. The deterministic rate equations 
(1.9) with Eq. (1.14) are derived to order tPtn. The fourth 
section focuses on the late stage. A nonlinear Fokker-Planck 
equation ( 1.16) is derived for the single-enzyme distribution 
functionf(p,r;t). The new rate equations (1.17) are found. 
The quasistationary state is further discussed and Eq. (1.21) 
is derived. The quasistationary distribution function and the 
renormalized rate coefficients are calculated numerically. 
The effects of the uncorrelated and correlated terms on the 
deterministic reaction rate are discussed. The theoretical 
values of the normalized rate coefficients kl (z)lk l and 
k (z) kl are calculated, based on the experimental data for the 
catalase-hydrogen peroxide reaction by Strother and Acker­
man24 for a range of the parameters E, tPo. The volume frac­
tion (tPo) dependence of the rate coefficients is stressed. Sec­
tion IV is devoted to a short summary and some remarks. 

II. BASIC EQUATIONS 

Let Pi (t) denote an occupation number such that Pi (t) 
= 1 is associated with a position Xi occupied by an enzyme, 

while Pi (t) = 0 is associated with a position Xi occupied by 
a complex (enzyme and substrate). We assume that Pi (t) is 
a smooth function of t which takes any value between zero 
and one. Then, the number density of enzymes is defined by 

E(r,t) = (l/41T) itl J dOi Pi (t)6(r - ri ), (2.1) 

where 0i is the orientation of the vector ni = ri - Xi from 
the center of the ith sphere Xi to a point on its surface riO 
Similarly, the number density of complexes is defined by 

Es(r,t) = (l/41T)itl J dOi Qi(t)6(r- ri)' (2.2) 

where Qi (t) = 1 when a position Xi is occupied by a com­
plex, and Qi (t) = 0 when occupied by an enzyme. Then, the 
reaction--diffusion processes at the molecular level are de­
scribed by 

(:JC(r,t) = DV2C(r,t) + f(r,t), (2.3a) 

(:JE(r,t) = f(r,t) + k2Es (r,t) (2.3b) 

with the reaction term 
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I(r,t) = - kIE(r,t)C(r,t) + k_1Es(r,t), (2.4) 

where C(r,t) is the instantaneous number density of sub­
strates and Es (r,t) satisfies the conservation law 

E(r,t) + Es(r,t) = Eo. (2.5) 

A. Reduced equations of motion for err,I) and Err,I) 

Equations (2.3) are starting equations for studying in­
teractive effects among enzymes due to the reaction of sub­
strates with enzymes. The average of the reaction term 1 
contains the correlation function (EC); since the total en­
zyme density Eo is not dilute, this term cannot simply be 
decoupled. Therefore, we need to derive an equation for 
(EC) which also contains the higher correlation terms such 
as (E 2C), and we have to deal with a hierarchy of equations 
for the correlation functions. 

Rather than solve such equations directly, we first re­
write the reaction term (2.4) as 

I(r,t) = j~1 I dO j {j(r- rj)O'j(Oj,t) (2.6) 

with 

41TO'j(Oj,t) = - kIPj(t)C(rjtt) + k_1Qj(t), (2.7) 

where the density O'j denotes the time-dependent source of 
reaction between the substrates and the ith enzyme at point 
OJ on its surface. In the following, we then solve the reac­
tion-diffusion equation (2.3a) with Eq. (2.6) for O'j(Ojtt) 
and express O'j in terms of C(rj,t). We combine that result 
with Eq. (2.7) to obtain C(rj,t) in terms of Pj(t). Thus, we 
write the reaction term 1 (r,t) in terms of Pj (t). Finally we 
separate 1 into a deterministic part and a fluctuating part by 
means of a coarse graining procedure and thus transform Eq. 
(2.3a) into the form of linear Langevin-type equations. The 
following porcedure is mostly the same as that introduced by 
TC. 15 

The formal solution ofEq. (2.3a) with Eq. (2.6) is giv­
en by 

C(r,t) = Co(r,t) + j~1 f dt' I dO; go(r - r;,t - t') 

XO'j(O;,t') (2.8) 

with the free propagator 

go(r,t) = (l/41TD)(21Ti) -I (21T)-3 

xI dz I dkexp(ik'r+zt)/[k 2 + (zID)], 

(2.9) 
I 

C(Xj,t) = [1 + EPj(t)] -I[ Co(Xj,t) + (k_ 1/41TaD)Qj(t) 

where Co(r,t) is the free concentration field in the absence of 
enzymes. In order to solve Eq. (2.8) for O'j (OJ,t), it is con­
venient to introduce the inverse propagator K j (OjtO;,t,t') 

ofthe free propagator go(rj - r;,t - t') = go(OjtO;;t - t') 
by 

f dt" I dO;' Kj(OjtO;';t,t" )go(O;',O;;t" - t') 

= {j(Oj - O;){j(t - t'). (2.10) 

As is shown in Appendix A, use of Eqs. (2.8) and (2.10) 
then leads to 

O'j(Oj,t) 

= f dt' I dO; Kj(Oj,O;;t,t') [C(r;,t') - Co(r;,t') 

-f' dt" I dr" go(r; - r",t' - t") 

XO(lr" -Xjl-a)/(r",t")]. (2,11) 

Here the step function O(x) ofEq. (2.11), O(x) = lfor x> 0 
and O(x) = 0 for x..;O, comes from the fact that the spheres 
are supposed to be nonoverlapping and nontouching. 

We now solve Eqs. (2,7) and (2.11) for C( ritt). As is 
shown later, only the long-range interaction over a distance 
of order I is important. Therefore, the free propagator go in 
Eq. (2.11) is a slowly varying function in space and time [cf. 
Eq.(3, 19)], On the other hand, as is seen from Eq, (2.10), 
K j (0it0;;t,t') is related to a short-range interaction over a 
distance of order a through the free propagator 
Go(Oj,O;;t,t '), which has a time scale of order 'To. Hence 
this is a rapidly varying function with the characteristic time 
'To' On the time scale of order 'T, therefore, we can make a 
Markov approximation in Eq. (2.11) in which the time t' is 
replaced by t. This corresponds to an expansion in the slow­
ness parameter (alat); C(r;,t') =C(r;,t)+O[(t 
- t') (a lat)], where (t - t') (a lat) is of order 'Tof'T. Simi-

larly, on the length scale of order I, we can replace the posi­
tion vector r; by X j in Eq. (2.11). This corresponds to an 
expansion in the spatial gradient V; C(r;,t') = C(Xitt') 
+ O(Rj'Vj ), where Rj'V j is of order all. Since the error 

introduced by these expansions is of order cp, they have no 
effect on the first-order correction. However, these expan­
sions must be verified self-consistently by means of the 
space-time coarse-graining procedure discussed in Sec. 
III A. As is shown in Appendix B, use of Eqs. (2.7), (2.10), 
and (2.11) thus leads to 

+ f dt' f dr'go(Xj - r',t - t ')8( Ir' - X j I - a)I(r',t') ] (2.12) 

where Eis given by Eq. (1.5). Inserting Eq. (2.12) into Eq. (2.7) and using Eq. (2.6), we can write the reaction termI(r,t) as 

I(r,t) = - kl f dt' f dr' T(r,t;r',t')Co(r',t') + k_IE~(r,t) - kl f dt' f dr' M(r,t;r',t')I(r',t') (2.13) 

with 
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T(r,f;r',f') = f dp Tp (r,f;r'f') 

= o(r - r' )o(t - f ')E' (r,f), (2.14 ) 

M(r,f;r',f') = f dp Mp (r,f;r'f') 

= E'(r,t)go(r - r',f - f ')O( Ir - r'1 - a), 
(2.15 ) 

E~(r,f) = f dpE~p(r,f) = f dpqbN(p,r;f), (2.16) 

where q = 1 - p. Here E ' (r,f) is given by 

E' (r,t) = f dp pbN(p,r;t) 

with the enzyme number density 
N 

(2.17a) 

N(p,r;f) = L o[p-Pi(t)]o[r-Xi(O)], (2.17b) 
;=1 

where 

b = (1 + €p) -t. (2.17c) 

For notational convenience, we introduce a coordinate-time 
matrix representation 1= [I(r,f)], T= [T(r,f;r',f')], 
M = [M(r,f;r',f')] and A' = [A '(r,f)], etc. Then, Eq. 
(2.13) yields 

1= -ktH·Co+k_tB, 

where 

H= [1 +ktM]-I·T, 

B= [1 +ktM]-I·A'. 

(2.18 ) 

(2.19) 

(2.20) 

Thus the reaction term I is written in terms of Pi (f), that is, 
in terms of N(p,r;f). 

We now separate I{r,t) into a deterministic part and a 
fluctuating part by eliminating the microscopic processes 
associated with the enzyme sphere configurations. This is 
done by averaging over the initial enzyme distribution func­
tionpo{ [Pi (O),Xi (0) ]}. Asis shown in Appendix C, we can 
write the reaction term I as 

1= -fP·C+r/rE~ +R (2.21) 

with the memory functions 

fP = kl [1 - kl(H) ·go] -I. (H), (2.22) 

t/."(E~) = k_ I [1- kt(H)·go]-I·(B) (2.23) 

and the fluctuating force 

R = [1- kl(H)go]-I[ - kl(H - (H» ·Co 

+ k_I(B - (B»] - r/r(E~ - (E~», (2.24) 

where (R ) = 0, and Co is configuration independent. The 
angular brackets denote the average over the initial distribu­
tion function Po{ [PI (O),Xi (O)]}. 

Thus, use of Eqs. (2.3a) and (2.21) leads to a linear 
Langevin-like equation for C(r,t). In the limit offast reac­
tion, € -- 00, this equation reduces exactly to Eq. (2.13) of 
Ref. 15 obtained by TC for diffusion-controlled reactions, 
since €pb-- 1 and b--O as €-- 00 [cf. Eq. (2.17c)]. 

B. Decomposition into a deterministic and a fluctuating 
motion 

We wish to decompose the time evolution of C( r,f) into 
a deterministic part (C(r,f» and a fluctuating part oC(r,f); 

C(r,t) = (C(r,f» + oC(r,f). (2.25) 

This decomposition is essential since the ¢ dependence 
of the fluctuations differs from that of the deterministic mo­
tion.2t In the next section we show that the relative magni­
tude of the fluctuations compared to the deterministic part is 
of order ¢t/2 when d = 3. From Eqs. (2.3a) and (2.21), we 
then obtain 

with 

(:J(C(r,f» =DV2(C) + (I(r,f», 

(:JoC(r,f) = DV20C + Ol(r,f) 

Ol = 1- (1) = - fP·oC + l/roE ~ + R, 

(2.26a) 

(2.26b) 

(2.27) 

where oE ~ = E ~ - (E ~ ). Similarly to Eqs. (2.26), from 
Eqs. (2.3b) and (2.5), we also have 

(:J(E(r,t) = (I(r,f» + k2 (Es(r,f», (2.28a) 

(:JoE(r,f) = Ol(r,f) + k2oEs(r,f) 

with the conservation laws 

(E(r,f» + (Es (r,f» = Eo, 

oE(r,t) + oEs(r,f) = 0, 

(2.28b) 

(2.29a) 

(2.29b) 

where oE(r,f) = E(r,f) - (E(r,t) and oEs (r,f) 
= Es(r,f) - (Es(r,f». 

Thus, our study of the reaction-diffusion process re­
duces to two analyses: one of the memory functions fP and 1/1, 
and the other of the correlation function (R(r,f)R(r',f'» 
which determines the stochastic properties of the fluctu­
ations. 

c. Kinetic equations for distribution functions 

The correlation functions are the averaged functionals 
of the product of the enzyme number density N(p,r;t) given 
by Eq. (2.17b). In order to calculate such functions, there­
fore, we finally need to discuss the time evolution of N(p,r;f). 

We first derive an equation for the occupation number 
of the ith enzyme Pi (t). The total flux density of the sub­
strates across a sphere of radius a around the ith enzyme is 
given by 

(2.30) 

We assume that reaction may occur when a substrate ap­
proaches within a radius a of the center of an enzyme. Then, 
P;(t) obeys 

(:Jp;(t) =j;(t) + k2Q;(t), (2.31) 

where Q; (t) = 1 - Pi (t) from the definition of Pi (t). We 
note from Eq. (2.30) that the rate coefficients kl and k_ t 
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appear in the flUXji (t) through the solution C(r,1) of Eq. 
(2.3a). 

Next let us introduce the m-enzyme distribution func­
tion by 

m 

/m (1, ... ,m;t) = II O( Irij I - 2a) 
i#j 

x (N( 1,t)· .. N(m,t» (2.32a) 

with 

.t;(1,2) =/(1)/(2) + G2(1,2), 

f d(1)/I(1) = N, f d(m + l)/m+ I (1, ... ,m + 1) 

= N/m (l, ... ,m), (2.32b) 

whererij = ri - rj , andm = (Pm,'Y'm) represents the specif­
ic value of the occupation number and position of the mth 
enzyme. Similarly to Eq. (2.25), we decompose N(i;t) as 
N(i;t) =/1 (i;t) +8N(i;t); the t/J dependence of the fluctu­
ations 8N will tum out to differ from that of the determinis­
tic parth' Therefore, it is convenient further to introduce the 
correlation functions Gm (1, ... ,m;t) through the Ursell­
Mayer procedure 

J;(1,2,3) =/(1)/(2)/(3) + (1 + e12 + e13 )/(1)G2(2,3) + G3(1,2,3), 

~(1,2,3,4) = /(1 )/(2)/(3 )/( 4) + (1 + e23 + e24 )G2(1,2)G2(3,4) + (1 + e13 + el4 + e23 + e24 + e13e24 ) 

X/(1)/(2)G2(3,4) + (1 + el 2 + e13 + e I4 )/(1)G3(2,3,4) + G4(1,2,3,4), (2.33) 

and so on, where/(i) =/1 (i), and eij is the exchange opera­
tor between i andj. Then, we have 

(E(r,t» = f dp p/(p,r;t), (2.34a) 

(8E(r l ,t)8E(r2,t» = f dpi f dp2PIP2X( 1,2;t) 

(2.34b) 

with the variance 

x( 1,2;t) = (8N( 1;t)8N(2;t» 

= 8(1 - 2)/(1;t) + G2(1,2;t). (2.35 ) 

Thus, the time evolution of E(r,t) is described by land x. 
By taking the time derivative of Eq. (2.32a) and then 

using Eqs. (2.31), (2.33), and (2.35), we obtain 

(.£. \'( 1) = - (~) [Jt (1) + k2qtf(1)], (2.36a) 
at)" apt 

( .£.)G2( 1,2) = - (1 + e12)(~)[J2(2,1) 
at ap2 

-/(1)Jt (2) +k2Q2G2(1,2»), (2.36b) 

(:JX(1,2) = - (1 + eI2 )[8(1 - 2)J1 (2) 

+J2 (2,1) -/(1)Jt (2) k 2Q2X], (2.37) 

and so on, with 
m 

Jm (2,1, ... ,m) = II O(lrijl- 2a)(Ip(r2;t) 
Ni 

XN( 1,t)·· 'N(m,t», (2.38 ) 

where 
N 

Ip (r;t) = L jj (t)8[p - Pi (t»8[ r - Xi (0». (2.39) 
i=1 

From Eqs. (2.3b) and (2.31) we have f Ip (r,t)dp = I(r,l). 
As is shown in Appendix D, we can write Ip as 

Ip= -kIH p·(l+go·tp)·(C) 

+ k_ t [Bp + ktHp' (1 + go'tp) 'go' (B)] (2.40) 

with 

Hp = Tp - kt'Mp'H, 

Bp = Esp - ktMp ·B. 

From Eq. (2.37), we then obtain 

J1(p) = -tpp'(C)+'I'p, 

where 

(2.41a) 

(2.41b) 

(2.42) 

tpp =kl (Hp)'(1 +go'tp), (2.43a) 

'l'p =,pp'(Es ) =k_I[(Bp) +tpp·go·(B)]. (2.43b) 

Here f tpp dp = tp and f ,pp dp = ,p. 
Equations (2.36) and (2.37) give the system of kinetic 

equations which describe not only the deterministic motion 
in the reaction-diffusion processes but also the fluctuations 
around it, since the averaged reaction term (I) is determined 
by J t (p,r,t) = (Ip (r,t) ), and the fluctuations are described 
by X through Eq. (2.34b). 

III. MACROSCOPIC RATE EQUATIONS FOR 
REACTION-DIFFUSION PROCESSES 

In the present section we derive the system of macro­
scopic rate equations in the intermediate stage which de­
scribe the reaction-diffusion processes characterized by the 
space cutoff rc as prescribed by the condition l>rc >a*, Eq. 
( 1.10b). 

A. Scaling method 

We first discuss a scaling method21 which can be used 
systematically to extract the reaction-diffusion processes 
described by the length and time scale (l,T), given by Eq. 
( 1.1 Oa), from the microscopic processes characterized by 
(a*,~). Since l>a* and T>~, we introduce a scale trans­
formation 
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/ .... S/ 7" .... S87", ¢>1/2 = (a*I/) .... S-I¢>1/2 (3.1) 

with S> 1, where (a*,~) and all molecular quantities such 
as D, k l , and E are fixed. Here the time exponent 0 is given by 
o = 2 since 7" = /21 D. Then, the space-time coarse graining is 
given by the scaling 

(3.2) 

for approximately Irl>re and approximately t>7"e' Use of 
Eqs. (1.10a), (3.1), and (3.2) thus leads to 

(E') .... S-2(E'), k_ I .... S-2k_ l , k2 .... S- 2k2 (3.3a) 

which is combined with Eqs. (2.17a), (2.32b), and (2.34a) 
to give 

(E) .... S-2(E), f .... S-2J, EO .... S-2Eo, 

N .... SN, V .... Sdv. (3.3b) 

The enzyme density Eo approaches zero in the scaling limit 
S .... 00. The number of enzymes in a volume r: ,Eor:, how­
ever, increases in proportion to ¢>(2 - d)/2 when d> 2. This 
suggests that the fluctuations 6C, 6E, and X may be charac­
terized by a Gaussian process but not by a Poisson process 
even in the low-density limit Eo"" 0.22 

Since the (I) term in Eq. (2.26a) must balance the left­
hand side ofEq. (2.26a) and that ofEq. (2.28a), respective­
ly, we find 

(1) .... S-4(1), (C) .... S-2(C). (3.4) 

From Eqs. (2.29a) and (3.3b), we also obtain 
(ES) .... S-2(Es) and (E's) .... S-2(E's). Then, the macro­
scopic scale invariance under the scaling (3.1) and (3.2) 
leads to the following scaled forms: 

(u(r,t» = ¢>u(rl/,t /7"), (3.5) 

f(p,r;t) = ¢>j(p,rl/;t /7"). (3.6) 

where u andjare scale invariants. Here (E') and (E 's) have 
the same scaled form as Eq. (3.5). 

The ¢> dependence of the fluctuations will tum out to 
differ from that of the deterministic motion, and hence we 
also define a scaling exponent /3 by 

6u(r,t) = ¢f1126u(rll,t IT), (3.7) 

where 6C, 6E, and 6A have the same exponent /3 from Eqs. 
(2.26b), (2.28b), and (2.29b). 

We next discuss the correlation function G m' There are 

two types of correlation functions which originate from dif­
ferent interactions. One is the spatial correlation due to the 
short-range interactions over a distance of order a, which 
gives a higher-order contribution in ¢>. The other correlation 
comes from the long-range interactions over a distance of 
order I, due to reaction; this has the invariant form 

Gm (I, ... ,m;t) = ¢l'm126m (PI, ... ,Pm;rll 

l,r21 /1, ... ,r ml II;t IT). (3.8a) 

Here the exponent Pm can be obtained by integrating Gm 
with respect to rl ... r m over the volume I d. Since G m is non­
vanishing only for relative distances shorter than I, we have 
Jd(1)"·Jd(m)Gm zEold. This is combined with Eq. 
(3.8a) to obtain Pm = 2 + (m - l)d. From Eq. (2.34b) 
and (3.7), therefore, we find /3 = (d + 2) 12, and 

X(PI,rl,P2,r2;t) = ¢f1i:(PI,P2,rl/l,r21 /1;t 17"). (3.8b) 

Thus, we have 

16C I(C)I2z IG2/j21 z IG3/ftT21 Z¢>(d-2)/2. (3.9) 

Therefore, if d> 2, then the higher-order correlations be­
come less important and the hierarchy ofEqs. (2.36) can be 
truncated. Thus, the fluctuations 6u are negligible compared 
to their average values (u); nonetheless, they are important 
since they affect the rate coefficients kl and k_. to order ¢>112 
[seeEq. (3.25b)]. 

We apply the scaling (3.1) and (3.2) to the determinis­
tic equations (2.26a) and (2.36a), and obtain 

(:J(c(r,t» = DV2(C(r,t» + YS(r,t), (3.lOa) 

(:Jf(p,r;t) = - (~)[S4Jf(p,sr,S2t) 

+ k2Qf(p,r;t)] 

with the scaled reaction term 

YS(r,t) = S4 f dp Jf (p,Sr,S2t ). 

(3.lOb) 

(3.11 ) 

Here J f means that J i also depends on S through ¢> included 
in it. Similarly, we scale the stochastic equations (2.26b), 
(2.36), and (2.37) with a scaling exponent 1] 

R(r,t) = ¢>'T//2R(rll,t IT). (3.12) 

Then, we find 

(3.13a) 

(!..)G2(1,2;t) = - (1 + e12)(~){Sd+4[ Jf (P2,Sr2,PI,Srl;S2t) 
at ap2 

- S -2f(1 )Jf (P2,Sr2.S
2t)] + k2Q2G2}' (3.13b) 

(!..)X(I,2;t) = - (1 + e(2)(~){Sd+4[S -d6(1- 2)Jf (p,Sr2;S 2t) 
at ap2 

+ Jf (P2,PI,Sr2,Sr.;S2t ) - S -2f( l)Jf (p,Sr2;S2t)] + k2Q2X} (3.13c) 

with 
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8ys(r,t) = Sd+4 f dt' f dr'[ - ((JS(Sr,S2t;Sr',S2t ')8C(r',t') 

+ t/f(Sr,S2t;Sr',S2t ')8E ~ (r',t')] + sP+ 2 - TlR(r,t), (3.14) 

where, in order to derive Eq. (3.14), we have changed the 
integration variables r' and t' to Sr' and S2t " respectively. 

B. Expansion of scaled functions In powers of S-1 

We first discuss the expansion of the scaled function J f 
in Eq. (3.lOb) in powers of S -I. Since J I has a complicated 
form, it is convenient to expand J I formally in powers offree 
propagators and then investigate each term by applying the 
scaling (3.1) and (3.2). The following procedure is mostly 
the same as that introduced by TK23 for problems of particle 
growth at nonzero volume fraction. 

From Eq. (2.42), we have 

00 00 

JI(p) = L Jlm(p) = L (_kl)m[ -kl<l>m(P) 
m=O m=O 

'(C) +k_I\IIm(P)], (3.15) 

I 

where <I> m and \II m contain m free propagators. The first few 
terms of <I> m are given by 

<1>0 = (Tp), <I> I = (Mp T) - <l>o8'o({Jo, 

<1>2 = (MpMT) - <l>lgoCfJo - <l>o8'oCfJl - <1>0 (gorPo) 2, 

<1>3 = (MpM2T) - <l>zgoCfJo - <l>o8'oCfJ2 - <l>lgoCfJl 

- <1>1 (go({Jo) 2 - <l>o8'oCfJlgoCfJo 

(3.16) 

where ({Jm is given by ({Jm = f <l>m (p)dp and has the same 
expansion forms as Eq. (3.16), except that Tp and Mp are 
now replaced by T and M, respectively. Here 
\IIo(p) = (E ~p), and \11m (p) (m> 1) has the same expansion 
form as <I> m (p) . (C), except that T' (C ) is now replaced by 
E ~ in \II m' The expansion in powers of go is merely formal 
since the higher order terms are not necessarily small com­
pared to the lower order terms. By using Eqs. (2.14) and 
(2.15), we can write (MpMm-IT) as 

X it dtl it'dt2··· i tm -2 dtm _ I goer - rl,t - tl )go(rl - r2,tl - t2)· .. 

xgo(rm _ 1 - r',tm_ 1 - t')Fm+ I (p,r,t;l,t l;2,t2, .. ·,m - l,tm_ l ;p',r',t'), (3.17) 

where m > 1, and 
m-I 

Fm(1,t l; .. ·;m,tm) = II O(lr;+1 -r;I-2a)N(1,tl )"·N(m,tm»· (3.18 ) 
;=1 

Here let us make a simple approximation in Eq. (3.17) that all times t; and t ' in F m + I may be replaced by t. In fact, as will 
be shown later, ({Jm (m> 1) are the correction terms to ({Jo and become important on a longer time scale r' = rl). than r. Since 
only the long-range interaction over a distance of order I is important in Eq. (3.17), the free propagator go is scaled as 

go(r,t) = rP3
/
2go(rli,t h). (3.19) 

On the time scale of order r', therefore, we can replace the times t; and t' in F m + I by t. Since the error introduced by this 
expansion in a 1 at is of order r 1 r' = rPI/2 and ({J m (m > 0) are at least of order rPl/2, it has no effect on the first-order correction. 

The function Fm is in general different from/m [cf. Eqs. (2.32) and (3.18)]. However, Fm can be written in terms of/; 
(2';;;i,m). A few explicit forms of Fm are 

F2(1,2) =.1;(1,2), 

F3 (1,2,3) =J;(1,2,3) + 8(1 - 3).1;(1,2), 

F4(1,2,3,4) =-"'(1,2,3,4) + 8(1 - 3)J;(1,2,4) + 8(1 - 4)/3(1,2,3) 

+ 8(2 - 4 )J;( 1,2,3) + 8( 1 - 3 )8(2 - 4 ).1;( 1,2) 

and so on. Using Eqs. (2.33), (3.17), and (3.20), we can write JIm (p), to order S -I, as 

S4JIO(p,Sr,S2t) = h(p,r,t)/(p,r;t), 

S4JII (p,Sr,S2t) = - S-lkIPb f dt' f drJ dp' goer - r',t - t') 

x G2 (p,r,p'r';t)h (p',r',t '), 
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+ /j(r - r')/j(p - p')j(p,r;t) ]h(p',r',t '), 

S4J13 (p,Sr,S2t ) =S-Iqpb L dt ' J dr' J dp' J d(1)P lbl J d(2)P2b2 

X it dtl it' dt2 goer - rl,t - tl)go(rl - r2,tl - t2)gO(r2 - r',t2 - t') 

xj(1;t)j(2;t) [G2(p,r,pl,r';t) + /j(r - r')/j(p - p')j(p,r;t) ]h(p',r',t ' ) 

with 

h(p,r,t) = - klPb (C(r,t» + k_lqb, 

(3.21c) 

(3.21d) 

(3.22) 

where we have used Eqs. (3.9) and (3.19) and changed the integration variables r; and t; toSr; and S2t;, respectively. Thus, 
the first-order correction of interactive effects due to reaction is of order S -I and consists of two kinds of terms. One is a 
correlated term such as Eq. (3.21 b) which contains the correlation function G2, and the other is an uncorrelated term such as 
the last term ofEq. (3.21c), which has the product of the single distribution functions. 

The expansion as ordered in Eqs. (3.21) then suggests the introduction of a renormalized propagator g defined through 

g(r - r/,t - t ') = goer - r',t - t') - kl L dtl J d(1 )Plblgo(r - rl,t - tl)g(rl - r',tl - t ')j(1;t). (3.23) 

Then, S4Jf can be written, to order S -I, as 

S4Jf (PI,Srl,S2t ) = h(1,t)j(1;t) + S -I [V(1,t) - W(1,t)] 

with the uncorrelated term 

V(p,r,t) = kipbj(p,r;t) L dt ' L dt l J drlgo(r- rl,t- tl)g(rl - r,tl - tl)h(p,r,t')J(E'(rl,t» 

and the correlated term 

W(p,r,t) = klpb L dt ' J dr' J dp' g(r- r',t - t I)G2(p,r,p',r';t)h(p',r',t '). 

From Eq. (3.11), we thus find 

YS(rI,t) = f dpl{h(1,t) +S-I[V(1,t) - W(1,t)]}. 

(3.24) 

(3.25a) 

(3.25b) 

(3.26) 

Here {V( 1,t) - W( 1,t)} represents the first-order correction of reactive-diffusive long-range interactions between enzymes 
separated by a distance of order 1. There could also be a short-range interaction between enzymes separated by a distance of or­
der a. As is easily shown, however, such an effect is of order ¢. We also note that an interaction between two touching enzymes 
does not occur since we assume that the centers of the enzymes are fixed. 

Since the correlated term is determined by the correlation G2, we next discuss the asymptotic equation for G2• In order to 
analyze the scaled functions J ~, we first expand the Ip term given by Eq. (2.40) in powers of the bare propagator go, similarly 
to Eqs. (3.15). Inserting the expanded Ip into Eq. (2.38), using Eqs. (2.33) and (3.20), and applying the scaling (3.1) and 
(3.2), we then find the similar expansion forms as in Eqs. (3.21). Up to order S -I, we thus obtain 

Sd+ 4[ J~ - S -2jJf] = m 22 (t)G2(1,2;t) - k) P2b2 L dt3 g(rwt - t3)h(1,t3)j(1;t)j(2;t), (3.27) 

where the screening operator is given by 

mijU) =h(i,t) -kIP;b; Ldtn J d(n)g(r;n,t-tn)h(n,t)enj'(n). (3.28) 

We have used Eq. (3.9) to obtain Eq. (3.27) and retained only the terms up to order SO since the correlated terms inS 4J I and 
yS are already of order S -I. In the scaling limitS .... 00, use ofEqs. (3.13b) and (3.27) thus leads to the asymptotic equation 

(:JG2 (l,2;t) = - (1 + el2)(a~J{ [m 22 U) + k2q2]G2(1,2;t) - kl L dt' g(r21 ,t- t ' )h(1,t ' )P2b2j(1)j(2)} (3.29a) 

which is integrated to give a formal solution 
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where exp+ denotes the time-ordered exponential. 
There are two kinds of contributions due to the correla­

tion function G2 to the reaction-diffusion processes to order 
S - I. One is a contribution to the deterministic motion 
through the correlated term [cf. Eq. (3.25)]. The other is a 
contribution to the fluctuations through the variance X [cf. 
Eq. (2.35)]. 

c. Derivation of deterministic rate equations 

Before we derive the deterministic rate equations with 
the corrections due to reaction, we first discuss under what 
conditions Eqs. (1.4) hold. In the scaling limit S --> 00 , or in 
the dilute limit tPo-->O, useofEqs. (3.10), (3.24), and (3.26) 
leads to 

(:J(C(r,t» = DV2(C) - kl(E') (C) + k_I(E s), 

(3.30a) 

(:J(E(r,t» = - kl(E')(C) + k_ll$s) + k 2(Es ), 

(3.30b) 

(:J/'(P,r,t) = - (~ ) [h(p,r,t) + k 2Q]f(p,r,t). 

(3.30c) 

These are the kinetic equations which hold for all E on the 
length scale of order /( > L) and the time scale of order 7. 
The interactive effects due to reaction are negligible on this 
space-time scale. When E = 0, Eqs. (3.30a) and (3.30b) ex­
actly reduce to Eqs. (1.4). Therefore, Eqs. (1.4) hold for 
tPoo( 1 and Eo( 1. 

The contribution due to the spatial correlation G2 to the 
deterministic equations is of order tPl/2 [cf. Eqs. (3.10) and 
(3.26) ]. If tP is not sufficiently small, however, this contribu­
tion becomes important on the time scale 7' = 7/tPI/210nger 
than 7. Balancing (a / at) (C) and the next dominant term of 
Eq. (3.lOa) leads to the time exponent (J= 3. Hence there 
are two macroscopic time scales. One is the time scale 7 on 
which the effect of neighboring enzymes is negligible. The 
other is 7' on which the interactive effects due to reaction 
become important. On the time scale of order 7', therefore, 
the densities (u) and the single distribution function/con­
sist ofa double-time process and Eqs. (3.5) and (3.6) can be 
generalized to 

(u(r,t) = tPu(rll;To,TI), 

/(p,r,t) = tPf(p,rll;To,TI), 

(3.3Ia) 

(3.3Ib) 

where u = C,E,Es , and E s, and Tn (n = 0,1) are scale in­
variants defined by Tn = tPn12(t IT). Then, the time deriva­
tive ofEq. (3.31a) leads to 

(3.29b) 

I 

(:t)(u(r,t» = (1h)[ (a~~ + tPI/\a~)] (u(r,To,TI»· 

(3.32) 

The first term of Eq. (3.32) balances the first term of Eq. 
(3.26), respectively, and the second term balances its second 
term. Thus, the double-time scaling leads, in the scaling limit 
S--> 00, to 

(:J(C(r,t» =DV2(C) - kl(E')(C) 

+ k_I(E s ) + v(r,t) - w(r,t), 
(3.33a) 

(:J(E(r,t» = - kl(E')(C) + k_I(E s ) 

+ k 2(Es ) + v(r,t) - w(r,t), (3.33b) 

(!.-)/( l;t) = - (~){[h(1,t) + k 2QI]f(1;t) 
at api 

+ v( I,t) - w( 1,t)} 

with the uncorrelated term 

v( l,t) = k iPlblh( l,t)/( l;t) 

X J dr2g0 (r12)g(r21 ) (E'(r2,t) 

and the correlated term 

w(1,t) = k iPlbl [ 0(1,t) (a~1 flb l 

+ 0'( l,t)h(1,t) ]f(1;t), 

(3.33c) 

(3.34) 

(3.35a) 

where", v(r,Q. = f v(p,r,t)dp and w(r,t) = f w(p,r,t)dp. 
Here 0 and 0' are operators given by 

'" J '" 0(1,t) = d(2)h(2,t)g(r12 )r 12 (t)g(r12 ) 

Xh(2,t)/(2;t), 

X(~ \n 2b2/(2;t), ap2Y' 

(3.35b) 

(3.35c) 

where g(r) is a time-independent renormalized propagator 
given by 

g(r) = Loo 

dt g(r,~), (3.36) 

and r 12 (t) is an operator given by 
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i\2(t) = Loo ds exp{ - s(1 + e12 ) 

xC~)[m(1,t) + k2qd} (3.37a) 

with 

m( 1,t) = h( 1,t) - k} P1bd( 1) 

X f d(3)g(r13 )h(3,t)e31 · (3.37b) 

We have neglected the initial correlation of Eq. (3.29b) in 
the long time limit t - 00, since it represents the correlation 
of the two enzymes separated far apart initially before the 
diffusive interaction due to reaction. 

The deterministic rate equations (3.33) are generaliza­
tions of Eqs. (3.30) to order ¢1/2 and hold for all E on the 
length scale of order 1 and the time scale of order 7'. We see 
from Eqs. ( 3.34) and ( 3.35 ) that the correlated term 
w(p,r,t) is quite different from the uncorrelated term 
v(p,r,t). First, the correlated term decreases the rate, while 
the uncorrelated term increases it. This is shown numerical­
ly in Sec IV B. Second, the correlated term contains the 
square of the operator (a lap I) through the operator 
(3.37a). Therefore, it leads to a kinetic equation forj(p,r;t) 
with higher derivatives than the second order, while the un­
correlated term leads to a kinetic equation for j(p,r;t) with 
only the first-order derivative. Thus, the correlated term 
makes the distribution functionj(p,r;t) broader than the un­
correlated term. 

D. Macroscopic rate equations in diffusion-controlled 
case [A] 

In order to compare the present results with those pre­
viously obtained for diffusion-controlled reactions, we dis­
cuss the asymptotic forms ofEqs. (3.33) in case [A], given 
by Eq. (Ula). In this case we havepb=E- 1, from Eq. 
(2.17c). The macroscopic space-time scales are then given 
by (lD,7D), where lD = (41TaEo)-1/2 (>a), and 7D 

= !tID (>70), SincelD/iR =.J€~ 1, on the length scale of 
order 1 D and the time scale of order 7 D' therefore, the density 
(E(r,t» and the distribution functionj(p,r;t) are already at 
equilibrium. In fact, in Eq. (3.33c), h(p,t)j(p,r;t) is negligi­
ble compared to k 2Qj(p,r;t) since 
h = - 41TaD (C) «k2-kl(C). From Eqs. (3.33b) and 
(3.33c), therefore, we find the stationary solutions 
(E(r,t» = Eo and j(p,r,t) = Eolj(p - 1). Use of Eqs. 
(3.23) and (3.36a) then leads to the renormalized propaga­
tor 

(3.38 ) 

From Eq. (3.34), therefore, we obtain v(1,t) = - ~3¢0 
X (41TaD)(C)j(p,r;t). Since k2~41TaD(C), from Eq. 
(3.29a), we also find G2-0(¢~/2/E), which leads to the cor­
related term w-O(¢612IE). Hence the correlated term w is 
negligible compared to the uncorrelated term v, which is of 
order ¢612. On the length scale of order 1 D and the time scale 
of order 7~ = 7DI#o, from Eq. (3.33a), we thus obtain 

(:J(c(r,t» =DV2(C) - (41TaD)Eo(1 +~3(0)(C). 
(3.39) 

Equation (3.39) is identical, to order ¢612, to that obtained in 
several prior articles for diffusion-controlled reactions. 11-17 
This is reasonable since the starting linear Langevin equa­
tion for C(r,t) given by Eq. (2.3a) with Eq. (2.21) reduces 
exactly to that obtained by TC. In fact, repeating the same 
procedure as that employed by TC to order ¢o, we also find 
the second-order correction term to Eq. (3.39) as 

(3¢0) {(2/3 )DV2(C) - 41TaDEo[(3/2) + In(3/2) HC) 

- (41T)3aD4Eof B( 1r'1 - 2a)g(r')3(C(r - r',t) )dr'}. 

(3.40) 

The term in square brackets in expression (3.40) is different 
from that obtained by TC because a series of nondivergent­
type diagrams is missing in their calculation. Hence their 
result must be corrected as shown in Eq. (3.40). 

E. Fluctuations 

We turn to an investigation of the properties of the fluc­
tuations around the deterministic motion discussed in the 
previous section. In order to determine the exponent1] de­
fined in Eq. (3.12), we first consider the correlation function 
ofthe fluctuating force R(r,t) given by Eq. (2.24). By using 
Eq. (2.24) and applying the scaling (3.1) and (3.2), we find, 
to lowest order in S - I, 

(R s(Sr,S2t)R s(Sr',S2t) 

=S2('1-P-2)ki f dpi f dp2P1bl P2b2 

XX( 1,2;t) Co(rl,t) CO(r2,t), (3.41 ) 

which leads to 1] = {3 + 2 = (d + 6)/2 in the scaling limit 
S- 00. Similarly to Eqs. (3.30), in the scaling limit S- 00, 

use of Eqs. (3.13) thus leads to 

(:J0C(r,t) = DV28c - kl (E ')OC 

+ k_1oE ~ (r,t) + R (r,t), (3.42a) 

(~)X(1,2;t) = - (1 + e12)(~) 
at ap2 

X [m22 (t) + k2Q2]X' (3.42b) 

Equations (3.42) hold on the length scale of order 1 arid the 
time scale of order 7. From Eq. (3.19), we have «OC)2)1 
(C)2::::;lxlj21 ::::;¢1/2«1 when d = 3. Therefore, the fluctu­
ations are negligible compared to the averaged values. How­
ever, they are important since they affect the rate coefficients 
through the fluctuation-dissipation relation, to order ¢1/2, 
and their effect is the same order as that of the uncorrelated 
term. They are also important since they might be observed 
by light scattering experiments. 

Equations (3.42b) for the variance does not have a 
source term. On the time scale of order 7, therefore, the fluc­
tuations X( 1,2;t) are generated only by an initial random­
ness related to X( 1,2;t = 0), which originates from thermal 
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fluctuations. Similarly to Eq. (3.33), on the time scale of 
order r' = rlt/J1/2, we can generalize Eqs. (3.42) to order 
t/J1/2 by including the next-dominant terms of order t/J1/2 such 
as v ( 1,t) and w ( 1 ,t). Then, the equation for the variance has 
a source term which is related to the correlated term w( 1,t). 
On the time scale of order r', therefore, the fluctuations are 
generated not only by the initial randomness but also by the 
long-range interactions due to reaction. This situation is ex­
actly the same as that discussed by TK on the particle 
growth problem.23

,25 In the present paper, however, we do 
not go further into this problem. 

IV. DETERMINISTIC RATE EQUATIONS IN THE LATE 
STAGE 

In the present section, we discuss a spatially homoge­
neous reaction process in the late stage which is character­
ized by the space-time cutoffs prescribed by rc ~ I and tc ~ r. 
Similarly to the intermediate stage, we may also apply the 
scaling method to the starting equations (2.26a) and 
(2.36a) to obtain new deterministic nonlinear rate equations 
for arbitrary values of E, which hold on the length scale of 
order I and on the time scale of order r'. In the present sec­
tion, however, we show that we can derive the same equa­
tions as those from Eqs. (3.33) by just neglecting the spatial 
inhomogeneities in the number densities (u(r,t» and the 
single distribution function/(p,r;t). 

Since the spatial gradients are negligible relative to the 
reaction process, we can put (u(r,t» = (u(t» and 
/(p,r;t) =/(p,t). Then, useofEqs. (3.23) and (3.36a) leads 
to 

with the screening length l(t) = l/~411"a*(E(t». From 
Eqs. (3.34) and (3.35), therefore, we have 

v(l,t) = ~3t/J(t)Plbl «E )/(E') )h(l,t)/(Pl,t), (4.2a) 

w( 1,t) = ~3t/J(t)Plbl [O(Pl,t)(a~l}lbl 

+ o'(Pl,t)h( 1,t) V(Pl,t) (4.2b) 

with the operators 

O(Pl,t) = (411"/(E'» f d(2)h(2,t)g12r12(t) 

Xg12h(2,t)/(P2,t), (4.3a) 

O'(Pl,t) = (411"/(E'» f d(2)h(2,t)g12r12(t) 

Xg2l(a~2}2b2/(P2,t), (4.3b) 

where the propagator g12 is given by g12 = exp( - Ird)1 
411"lrd· 

A. Renormalized rate equations 

As is shown in Appendix E, we can transform Eq. 
( 4.2b) into the following simple form: 

w(p,r,t) = (k-l + k2)~[ (1 - v)pbh + 1Jh 

+ y(z)pb ( ~ }b V(P,t) (4.4) 

with 
y(z) = (v - v') [(h 2)[ - zvv'(h)[ ]/(z + K)(E'), 

(4.5a) 
h(p,z) = «E )/(E') )h(p,z)/(k_ l + k2) 

= [- (z+K)pb+Kb](E)/(E'), (4.5b) 
where 

v(z) = ~1 - ~(z), 1J(z) = (v - v')[ 1 + E(l - K)p]/ 

[z + 1 + E(l - KPlC 1 + ~), v'(z) =~1 - 2;(t), 

~(z) = (z + K)/2[z + 1 + E( 1 - K)p], 
and 

p(z) = (E(t»IEo' 

The angular brackets ( ... ) [ denotes the average over the 
distribution function/(p,r;t). Here we have introduced the 
dimensionless variables K = k_l/(k_ l + k2), and z(t) 
= kl(C(t»/(k_ l + k2). Use of Eqs. (3.33c), (4.2), and 
( 4.4) then leads to a nonlinear Fokker-Planck equation 

(:J/(P,t) = (k_l +k2)(~)[ -y(p,z) 

+~Y(Z)Pb(~}b V(P,t) (4.6) 

with the drift term 

y(p,z) = [K- (z+K)p]b+~[vpb-1J]h(p,z) 

+ (l-K)q, (4.7) 

where /(p,t) satisfies the boundary condition sb dp/(p,t) 
= Eo. Equation (4.6) is a new kinetic equation which de­
scribes the reaction process in the late stage to order t/J1/2. It 
is interesting to note that Eq. (4.6) is equivalent to the fol­
lowing multiplicative nonlinear stochastic equation, 

(:JP(t) = (k_l + k2){Y[P(t),z] + P(t)b(t)s(t)} 

(4.8a) 
with the Gaussian white noise s(t) which satisfies 

(s(t» = 0, 

(s(t)s(t'» = 2[ ~y(z)/(k_l + k2) ]8(t - t'), 
(4.8b) 

where bet) = [1 + EP(t)] -1, and the noise is generated by 
the reactive-diffusive long-range interactions among en­
zymes. The average enzyme density (E) is then given by 
(E) = (P(t) ) Eo· 

By using Eqs. (3.33) and (4.6), we thus obtain the de­
terministic rate equations 

(:J(C(t» = kl(z)(C)(E) + k_l(z)(Es ), (4.9a) 

(:t)(E(t» = - kl(z)(C)(E) + [k_l(z) + k2](Es) 

(4.9b) 

with the renormalized rate coefficients 

kl(z) =kl{l +~[Al(Z) +A_l(z)]}(E')/(E), 
(4.10a) 
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k_ ,(z)=k_ , [1 +NA_,(z)](E~/(Es), (4.lOb) 

where we have used Eq. (4.5) to obtain Eqs. (4.9), and 

A,(z) = [vl(v- v' )(1 + Ep) - (n 13/n ll )]ylz, (4.l1a) 

A_,(z) = {v[K(n 12/n ll ) - zvv'l(l + Ep) ]I(z + K) 

-1]}(E)/(E ' ) (4.l1b) 

with nij(z) = (/bj)jIEo. Equations (4.9) hold on the 
length scale longer than I and on the time scale of order 
7 ' = Tlt/J I

/
2 for arbitrary values of E and small t/J. We see that 

long-range interactive effects due to reaction renormalize 
the rate coefficients k, and k_, differently, while they do not 
change the rate coefficient k 2• In the long time limit t -+ 00 , 

Eqs. (4.10) reduce to Eqs. (1.19), respectively, since z and 
ylz go to zero [cf. Eq. (4.5)]. The effect of the uncorrelated 
and correlated terms on the deterministic reaction rate is 
investigated numerically in Sec. IV B. 

B. Quasistationary state 

Next let us discuss the asymptotic behavior of the distri­
bution/ and the densities (C) and (E ). We asume that the 
substrate density (C) is much larger than the enzyme den­
sity (E). Then, the time scale [k , (C)] -I of the enzyme den­
sity (E) is much shorter than the time scale [k , (E) ] -I of 
the substrate density (C). Therefore, for long time t the 
change in the density (E ) and the distribution/(p,t) as func­
tions of t are assumed to be equal to zero. Making the quasi­
stationary state approximation, (a lat) /(p,t) = 0, from Eq. 
(4.6), we thus find 

/(p,t) = EoF(p), (4.12a) 

F(p) = (E+p-l)p-a(Z)e-(:J(P;Zll 

I' (E + p-')p-a(Zle-(:J(P;Zldp 

with 

a(z) = {z+ I-A [KV+ (Z+K)1]] 

- E[2 - K - AK1]]}/Ny, 

f3(p;z) = {[1-AK1]]p-' +AV(Z+K)p 

(4.12b) 

(4.13a) 

+ (1 - K)C(l - p)2/2 + Ep[ (1 - A1])(Z + K) 

+2(1-K)]}/Ny, (4.13b) 

where A = (3t/J) 1/2(E )/(E '). The normalized distribution 
function F(p) depends on the time through z(t). 

Similarly to Eqs. (4.12), making the quasistationary 
state approximation, (d Idt) (E(t» = 0, from Eqs. (4.9b), 
we also find 

(Es(t» = z(t)(E(t»/a(z) (4.14 ) 

which is combined with the conservation law 
(E) + (Es) = Eo to obtain 

(E(t» = a(z)Eo/[z(t) + a(z)], (4.15) 

where 

a(z) =k,[k_,(z) +k2]lk, (z)(k,-, +k2). (4.16) 

By using Eqs. (4.9a), (4.14), and (4.15), we thus obtain the 
rate equation 

- V= (~J(C(t» = - k2(Es (t» = - k(z)Eo(C(t) 

(4.17) 

with the effective rate coefficient 

k(z) = k, (1 - K)/[z + a(z)] 

= k ,k2/(k ,(C) + k_, + k2). ( 4.18) 

This is a generalization of the Michaelis-Menten equation 
for which E = ° and a(z) = 1, to order t/J112. 

Equation (4.12) has no adjustable parameters but con­
tains the moment nij' In order to calculate the distribution 
F(p) , therefore, we must determine such moments self-con­
sistently. To do this, we first choose the values obtained by 
the uncorrelated term v only for the moments n i' as the initial 
values. By taking into account the uncorrelated term (4.2a) 
only, similarly to Eqs. (4.12), we obtain the quasistationary 
distribution function F(p) = 8(p - Pu), where the most 
probable value of p is determined by the solution of the fol­
lowing equation 

c(1 - K)p~ + [(z + K)(A + E) + E(2 - E)( 1 - K) ]p~ 

+ [z+ 1 +E(K-2) -KA ]Pu -1 =0, (4.19) 

where A ~ (3t/J)1/2(E)/(E ' ). Then we have nij =p~1 
(1 + EPu)i. Thus, we calculate F(p) from Eq. (4.12) and 
determine new values for the moments nij' We iterate this 
procedure, which converges rapidly, to obtain the accurate 
self-consistent values. 

In Fig. 1 the quasistationary distribution function F(p) 
vs p is shown for typical values of the scaled substrate density 
z = k,(C)lk_ , + k2). At high substrate density, such that 
z~ 1, all corrections of order t/J I

/
2 disappear and the distribu­

tion function F(p) approaches the quasistationary solution 
of a 8-function type, F(p) = 8 (p) (see also Fig. 3). This is 
due to the fact that the enzyme is saturated with substrate for 
large substrate density and the reactive-diffusive long-range 
interactions are negligible. At low density, such that z< 1, 
the correction due to the correlated term, Eq. (4.4), disap­
pears and the distribution F(p) approaches the solution of a 
8-function type, F(p) = 8 (p - 1) (see also Fig. 3). This fol­
lows from the reaction being fast and the fluctuations being 
averaged out for small z. Since the substrate density (C) 

8.0 

6.0 
(L 

LL 

•. 0 

2.0 

p 

FIG. I. The normalized distribution function F(p), Eq. (4.12), vs p at the 
volume fraction <Po = 0.1, E = 10.0, and k2 = 99k_, for typical values of 
Z= k,(C)/(L, + k2). 
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decreases as time t increases [cf. Eq. (4.5)], Fig. I thus de­
scribes the relaxation of the enzyme distribution function 
from the quasistationary state to the equilibrium state. 

In Figs. 2 (A) and 2 (B) the normalized ratios of rate 
coefficients kllkl' Eq. (4.lOa), and klkl' Eq. (4.18), are 
plotted against lI€, respectively. We see that as the volume 
fraction </lo increases, both ratios of rate coefficients increase. 
We also see that as €-+o, both corrected rate coefficients 
become independent of diffusion and reduce to the Michae­
lis-Men ten result, where all corrections disappear, while as 
€ -+ 00, they become independent of z, and reduce to the re­
sult obtained for diffusion-controlled reactions, where the 
correction due to the correlated term disappears. When 
</lo = 0, from Eq. (4.6), we have the quasistationary distribu­
tion function f(p,t) = Eo8(p - Po), where the most-prob­
able value of p is given by 

Po = 2/{z + I - €( I - K) 

+~[z+ 1-€(1-K)]2+4€(1-K)}. (4.20) 

From Eqs. (4.10) and (4.16), we then obtain 
fl. = fl.o = I + €( I - K)Po, and 

kl (z) = kl/( I + €Po) 

k(z) = kl (I-K)/(z + fl.o)' 

(4.2Ia) 

(4.2Ib) 

In the long time limit t- 00, therefore, we have kl = kJ 

(Al 

O.0t--------------::::;;;;;;;=_----j 

-2.0 

-2.0 -1. 0 0.0 1.0 

LOG (1IE) 

(Bl 

0.01 _______ ~~======j 
..-< 

-'<: ....... 
/-'<: 
--1.0 

~ 
o 
--1 

-2.0 

-2.0 -1.0 0.0 1.0 

LOG (1/El 
FIG. 2. Log-log plot of the normalized ratios of rate coefficients (A) k ,I k" 
Eq. (4. lOa), and (B) klk" Eq. (4.18) vs E. In each plot the upper solid 
curve indicates the result for (rPo,k2Ik_,) = (0.1,99) at z = 0.5, and the 
lower one for (0.0,99) at z = 0.5. The upper dot-dashed curve indicates the 
result for (0.1, 99) at equilibrium z = 0.0, and the lower one for (0.0,99) at 
z=O.O. 

0.8 (M-M) 

E 0.6 

::> ....... 
::> 

0.4 

Z 

FIG. 3. A plot of the scaled reaction rate V IVm , Eq. (4.17) vs the scaled 

substrate density z = k, ( C > I (k _, + k 2 ) for the parameter values rPo = 0.1, 
E = 10.0, and k2 = 99k_,. The dot-dashed curve indicates the result with 
the uncorrelated term only, the solid curve with both correlated and uncor­
related terms, and the dashed curve without both terms. (M-M) indicates 
the Michaelis-Menten result. 

(I + €) and k = kl (I - K)/[ I + €( I - K)] since z-+o and 
P--+ 1. Even in the low volume fraction limit </lo-O, the rate 
coefficients are noticeably affected by diffusion when € is of 
order I. This kind of diffusion effect on the rate has been 
studied by several authors.4-6.18-21 

In Fig. 3 the scaled reaction rate V IV m is plotted 
against the scaled substrate density z for the parameter val­
ues ifJo = 0.1, € = 10.0, and K = 0_01, where the maximum 
reaction rate V m is given by V m = k2Eo. The scaled reaction 
rate due to the uncorrelated term v and that obtained in the 
dilute volume fraction limit are also shown in Fig. 3 for com­
parison. We see that the correction due to the uncorrelated 
term v increases the rate, while that due to the correlated 
term w decreases it (see also Fig. 4). 

In order to see a deviation of Eq. (4.17) from the infi­
nitely dilute volume fraction limit </lo-+O clearly, it is conven­
ient to introduce a correction to the rate by 

E(z) = lOO[z(z + fl.) -I - z(z + fl.o) -I ]lz(z + fl.O)-I, 

= 100 [fl.o - fl.]I(z + fl.). (4.22) 

In Fig. 4 the correction is plotted against z for different pa-

80 . 

(~) 

60. I 
40. (b) 

20. (e) (c) 

z 
FIG. 4. The correction, Eq. (4.22) vszfor the parameter values (a) (¢Jo, E, 

k2/L,) = (0.1, 100.0,99.0), (b) (0.1, 10.0,99.0), (c) (O.oJ, 10.0,99.0), 
(d) (0.1,1.0,99.0), and (e) (0.1,10.0,0.01). 
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rameter values of tPo, E, and K2/K_I' We see that the correc­
tion becomes noticeable, depending not only on the value of 
the volume fraction tPo but also on the values of the param­
etersz, E, andK2/K_ I. 

The theoretical values (UC) ofthe normalized rate co­
efficients kl/k l and k /kl are listed in Table II. They were 
calculated from Eqs. (4.lOa) and (4.18), respectively, based 
on the experimental data for the bacterial catalase-hydrogen 
peroxide reaction by Strother and Ackerman.23 The results 
(U) due to the uncorrelated term v and those (0) obtained in 
the low volume fraction limit tPo -+ 0 are also listed in Table II 
for comparison. The equilibrium values of the rate coeffi­
cients are also calculated from Eqs. (1.19). The experimen­
tal data are as follows. The catalase concentration is 
Eo = l.2X 10-7 M, and the hydrogen peroxide concentra­
tion (C) = 1.3 X 10-6 M, and the radius of the catalase 
a = 52.2 X 10-8 cm. Since the formation of the enzyme-sub­
strate complex is diffusion independent for values of the vis­
cosity ,." of the hydrogen peroxide up to about 6 cP, 24 we have 
kl = l.OX 107M- I S-I, k_1 = O.OS-I, andk2 = 208.0s- l , 

which lead to z = 0.625, K = 0, and tPo = 4.3 X 10-5. At 
,." = 63 cP, we also have kl = 0.19X 107 M- 1 S-I. 

From Eq. (4.21), the value of E is then estimated as 
E = 4.766, leading to kD = 0.21 X 107 M- I S-I. The values 
of the volume fraction tPo = 4.3 X 10-4

, 4.3 X 10-2
, and 

l.OX 10- 1 correspond to the values of the catalase concen­
tration Eo = l.2x 10-6

, 1.2 X 10-4
, and 2.8X 10-4 M, re­

spectively. The higher values of the volume fraction tPo, or 
total enzyme density Eo, correspond to estimates of in vivo 
enzyme concentrations (see Ref. 26). The theoretical values 
of the rate coefficients at E = 0.4766 (kD = 2.1 X 107 

M - I S - I) are also listed in Table II for comparison. We see 
that if E is larger, the correction is not negligible even for a 

TABLE II. Theoretical values of k,lk,. Eq. (4. lOa) and klk,. Eq. (4.18) 
for the bacterial catalase-hydrogen peroxide reaction. (Ue) indicates the 
result with both correlated and uncorrelated terms (U) .with the uncorrelat-
ed term only. and (0) without both terms. The numbers in the brackets 
denote the equilibrium values. 

k,lk, klk, 

¢>" (ue) (U) (0) (ue) (U) (0) 

€= 4.766 
4.3X 10-" 0.196 0.196 0.190 0.174 0.174 0.170 

(0.178) (0.178) (0.173) (0.178) (0.178) (0.173) 
4.3X 10-3 0.207 0.207 0.190 0.183 0.184 0.170 

(0.188) (0.188) (0.173 ) (0.188) (0.188) (0.173 ) 
4.3xlO- 2 0.242 0.245 0.190 0.210 0.213 0.170 

(0.220) (0.220) (0.173) (0.220) (0.220) (0.173) 
1.0xlO-' 0.270 0.275 0.190 0.230 0.235 0.170 

(0.245) (0.245) (0.173) (0.245) (0.245) (0.173) 

€= 0.4766 
4.3x 10-" 0.758 0.759 0.755 0.514 0.515 0.513 

(0.682) (0.682) (0.677) (0.682) (0.682) (0.677) 
4.3x 10-3 0.763 0.767 0.755 0.517 0.518 0.513 

(0.691) (0.691) (0.677) (0.691) (0.691) (0.677) 
4.3X 10- 2 0.779 0.791 0.775 0.524 0.529 0.513 

(0.722) (0.722) (0.677) (0.722) (0.722) (0.677) 
1.0xlO-' 0.791 0.809 0.755 0.529 0.537 0.513 

(0.745) (0.745) (0.677) (0.745) (0.745) (0.677) 

smaller value of tPo and the effect of the correlated term w 
becomes important., The correction to kl is 27.3% (UC) and 
28.9% (U) for tPo = 4.3 X 10-2 and E = 4.766 at z = 0.625, 
and 27.2% (UC) and 27.2% (U) at equilibrium (z = 0.0). 
If the volume fraction tPo is large enough, the correction is 
also not negligible even for a small value of E. The correction 
is 4.7% (UC) and 7.2% (U) for tPo = l.OX 10-1 and 
E = 0.4766 atz = 0.625, and 10.0% (UC) and 10.0% (U) at 
equilibrium. In the long time limit t -+ CI:), kl decreases to its 
eqUilibrium value, while k increases to the same value (see 
also Fig. 2). 

v. SUMMARY AND REMARKS 

We have presented a statistical-mechanical derivation 
of expression for deterministic reaction rates of chemical re­
actions in solution for any value of E = k l /41TaD, Eq. (1.2) 
and finite (but small) volume fraction tPo of a reactant. As a 
typical example, we have studied the effect of neighboring 
enzymes on the rates in a nondilute enzyme system. Since the 
present formalism is general, however, its formal application 
to other chemical systems is straightforward. 

There are two important features in the present theory. 
First, to complete the separation of the macroscopic and 
microscopic processes, the space-time coarse graining is car­
ried out in a manner consistent with the expansion in the 
small parameter tP1/2. This gives a systematic expansion for 
finding first-order correction. 15.21 Second, the dynamics of 
fluctuations around the deterministic motion is explored ex­
plicitly. This is indispensable since the derivation and valid­
ity of deterministic rate equations is closely related to the 
asymptotic behavior of fluctuations. Although the fluctu­
ations are small compared to the deterministic motion when 
d > 2, they are important since they can cause an appreciable 
effect on the reaction rate through the fluctuation-dissipa­
tion relation of the second kind.27 On the time scale of order 
r' (see Table I) fluctuations have two origins: an initial ran-
domness and a reactive-diffusive long-range interaction 
among enzymes. 

In the late stage where the spatial inhomogeneities are 
negligible, we derive the renormalized deterministic rate 
equations ( 4.9) and obtained explicit expressions for the vol-
ume-f~action _dependent forward and reverse rate coeffi-
cients kl and k_I' Eqs. (4.10). Employing the quasistation-
ary state approximation, we also derive the deterministic 
rate equation (4.17), which is a generalization of the Mi-
chaelis-Menten equation when E = 0, to order tP 1/2, and ob-
tain the overall rate coefficient k, Eq. (4.18). The normal-
ized rate coefficients kl/kl' k_/k_I' and k/kl depend on 
the scaled parameters tPo, E,Z = k 1< C) / (k _ I + k2) and 
K = k_/(k_1 + k2 ) only. 

The reactive-diffusive long-range interactions among 
enzymes cause two kinds of first-order corrections to the rate 
coefficients, both of which are proportional to the square 
root of the enzyme density; the uncorrelated term (3.34) 
and the correlated term (3.35a) with quite different proper-
ties for each. The correlated term leads to a Fokker-Planck 
equation for j(p,r;t) while the uncorrelated term leads to a 
kinetic equation for j(p,r;t) with a first derivative only. The 
correlated term decreases the rate coefficients while the un-
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correlated term increases them (see Fig. 3). Many-body ef­
fect becomes noticeable, depending not only on the magni­
tude of the volume fraction ifJo and E, but also on the 
smallness of z and K (see Fig. 4). 

We have calculated the theoretical values of the normal­
ized rate coefficients kl (z)lk l, Eq. (4.1Oa) and k(z)lk l, Eq. 
( 4.18), based on the experimental data for the bacterial cata­
lase-hydrogen peroxide reaction. The many-body effects are 
noticeable even for a small value of E when the volume frac­
tion ifJo is at least of order 10-2

, and also noticeable even for a 
small value of ifJo when E is at least of order 1 (Table II). In 
both cases the effect of the correlated term on the rate is also 
important. In order to obtain still larger many-body effect on 
the rate, therefore, enzyme-substrate reactions are needed 
with a larger value of E( = k1lkD ), a smaller value of K (i.e., 

k2 ~ k _ 1 ), a smaller value of the substrate concentration 
z[ = kl (C )/(k_ 1 + k2)], and a larger value of the enzyme 
concentration ifJo ( = 41Ta3 EoI3 ). 
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APPENDIX A: DERIVATION OF EQ. (2.11) 

ByusingEq. (2.10), we first invert Eqs. (2.8) to 

O";(O;.t) = I'dt' I dO;K;(O;,O;;t,t')[c(r;,t') -Co(r;,t') 

- L (dt" I dO;' go(r; - r}"t' - t ")O"j(Oj,t II)] 
j#1 Jo 

(Al) 

Since the enzymes are assumed to be nonoverlapping and nontouching spheres, we can write the last term of Eq. (A 1) as 

L I dO}' go(r; - r;',t' - t" )O"j (O;',t") 
j#; 

= j~1 e(lr}, -X;I- a) I dO}' go(r; - r;',t' - t")O"j(O;',t") (A2) 

= I dr" goer; - r" ,t' - t" )e( Ir" - x; I - a) .L I dO}' 8(r' - rj')O"j (O;',t"). 
J= 1 

Then, use ofEqs. (2.7) and (A2) yields Eq. (2.11). 

APPENDIX B: DERIVATION OF EQ. (2.12) 

As was shown in Appendix C of Ref. 15, K; is a rapidly 
varying function in time. On the other hand, C and go are the 
slowly varying functions in space and time. Therefore, on the 
length scale of order I and the time scale of order T, we can 
replace the position r; and the time t ' in Eq. (2.11) by X; and 
t, respectively. Then, we can write Eq. (2.11) as 

O";(O;,t) = I' dt' IdO; K;(O;.O;;t,t') 

X [C(X;.t)- Co(X;.t) 

-I' dt" I dr" go(Xr - r" ,t - t ") 

xe(lr" -X;I-a)I(r",t")]. (B1 ) 

As was shown in Appendix C of Ref. 15, we also have, on the 
time scale of order T, 

I' dt' I dO; dO;K;(O;.O;;t,t') = 41TaD. (B2) 

Integrating Eq. (Bl) and using Eqs. (2.7) and (B2) thus 
lead to Eq. (2.12). 

APPENDIX C: DERIVATION OF EQ. (2.26) 

From Eqs. (2.6) and (2.10), we have the formal solu­
tion 

C = Co + go· I. (C 1 ) 

Use ofEqs. (2.20) and (2.23) then leads to 

C= [1 - k1go·H] ·Co + k_1go·B, (C2) 

= [1 +go·q:J ]-1. [Co+go·""E~ +go·R], (C3) 

respectively. Comparing the average of Eq. (C2) with that 
ofEq. (C3), we thus find Eqs. (2.24) and (2.25). Similarly, 
comparingEq. (C2) withEq. (C3) also leads to Eq. (2.26). 

APPENDIX D: DERIVATION OF EQ. (2.39) 

Since go(r; - r;,t - t') is of order ifJ2 while 
goer; - rj,t- t') (j=/=i) is of order ifJ3/2, use of Eqs. (2.8) 
and (2.10) leads, to lowest order in ifJl/2, to 

(Dl) 

By using Eqs. (2.12), (2.13), and (2.14), we then obtain 
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ji(t) = - klPi (t)bi (t)Co(r;.t) + k_IQi(t)b;(t) 

- klPi (t)b; (t) f dt' J dr' go(ri - r,t - t') 

XO(lr' -Xil-a)IV,t'). (02) 

Inserting Eq. (02) into Eq. (2.39) thus leads to 

Ip= -kITp·Co+k_IE'sp-kIMp·J. (03) 

From the average ofEq. (C2), we have 

Co= (1 +go'<p)'«C) - k_lgo'(B», (04) 

where we have used the fact that 1 + go'<p 
= [1 - klgo' (H) ] -I. Therefore, use of Eqs. (03) and 
(D4) leads to Eq. (2.39). 

APPENDIX E: DERIVATION OF EQ. (4.4) 

Using the Fourier-Laplace transformation, we can 
write Eq. (4.2b) as 

w(p,t) = lim ~[417/(E') (217)3] 
6-0 

x J dk(k 2 + 1) -2Xk (p,8) , 

Xdpl>8) =Plbl J dp2 h(p2)[8+L I -MI(k) 

+ L2 - M 2(k)] -I X [h (P2)/(P2) U I 

(El ) 

+ u2h(PI)/(PI)] (E2) 

with the operators 

LI = (.!...)[h(PI) + k2Qd, (E3) 
apl 

MI(k) = [u l/(E')(k 2+ I)]J dp3 h(P3)e 13, (E4) 

where U I = a[Plbd(PI) ]lapl' By using the operatoridenti­
ty 

[a8+L I -Md- 1 = [8+Ld- 1 + [8+L I ]-1 

XMI [8 +LI -Md- I, (ES) 

we can write Eq. (E2) as 

X k (PI,Tj) = 2a; (E'){P lbl/(8 + a + {3 + L I ) 

+ [k_1 + k2(1 + €p)]/(8 + {3 + L I ) 

X (8 + a + {3 + L I ) (1 + €p)2}h(PI)/(PI) 

+Plbl('!"')[(1 +€p)(k 2+ 1) 
apl 

X (h 2)fl(k 2 + 1- 2;) - (2; la)klk2 

X(C)(h)f(k 2+ 1)/(k 2+ 1_2;)2 

- k lk2(C)(h )f(k 2 + 1)1 

X (k 2 + 1 - 2;)( 8 + a + L I) ]( 1 + €p) - I 

X (8 + a + {3 + LI)-lplbd(PI)' (E6) 

where {3= a(k2 + 1 - 2;)/(k 2 + 1) and a = [kl(C) 
+ k_1 + k2 ( 1 + €p)]. In order to derive Eq. (E6), we have 

used the following relations: 

h(PI) [8 + LI]-I 

= [8 + a + Ld -lh(PI) - k lk2(C)1 

(8 + Ld (8 + a + L I )(1 + €p), (E7a) 

Plbd8+Ld- 1 

= [8 + a + Ld -Iplbl + [k_1 + k2(1 + €p)]I 

(8 + L I )(8 + aLI )( 1+ €p), (E7b) 

where we have replaced bl by (1 + €p) -I to obtain the sec­
ond terms of Eqs. (E7), since the error introduced by this 
simplification is less than one percent for long times. 

Equation (E6) still contains the operator L I • However, 
such an operator can be omitted under the Markov approxi­
mation discussed in Sec. III. In fact, from Eq. (3.30c), we 
have e-SLl/(PI,t) =/(PI,t-S) =/(PI,t) +O(t,b1/2), on 
the time scale of order 7". By neglecting all operator LI in Eq. 
(E6) and inserting Eq. (E6) into Eq. (EI), we thus obtain 
Eq. (4.4). 
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