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Glass Transition and Re-entrant Melting
in a Polydisperse Hard-Sphere Fluid

Michio Tokuyama∗ and Yayoi Terada∗

∗Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan

Abstract. Extensive molecular dynamics simulations are performed for a hard-sphere fluid at 6% polydispersity. The
simulation results are then analyzed based on the mean-field theory proposed recently by Tokuyama (Physica A 364, 23-62
(2006)). The phase diagram and the dynamic behavior are investigated fully in each phase. It is then found that as the volume
fraction is increased, a supercooled liquid phase appears at the supercooled point (' 0.5524) and a transition from
supercooled liquid to crystal then occurs at the melting volume fraction (1)

m (' 0.5625). As is further increased, a transition
from crystal to supercooled liquid (re-entrant melting) is also observed at the second melting volume fraction (2)

m (' 0.5770)
within a waiting time tw = 7× 104t0, where t0 is a time for a particle to move over a distance of a particle radius with an
average velocity. The glass transition is thus predicted to occur at the glass transition volume fraction g(' 0.6005). The
various aspects obtained in our study is quite similar to those in the experiment for the suspension of hard spheres, including
the logarithmic growth of the mean-square displacement in fast- stage, the non-singular behavior of the long-time self-
diffusion coefficient, and the non divergence of any characteristic times, such as the - and -relaxation times.
Keywords: Glass transition, Hard spheres, Re-entrant Melting, Solid-liquid transition, Supercooled liquid
PACS: 64.70.Pf, 64.70.Dv, 61.20.Gy, 83.10.Mj

INTRODUCTION

The suspension of hard-sphere colloids is experimentally
known to cause the glass transition at 6% size polydisper-
sity [1]. This transition is considered to be mainly due to
the long-range hydrodynamic interactions between col-
loids. In fact, we have recently shown by performing
the Brownian-dynamics simulation [2] that there exists
no glass transition in the suspension with 6% polydis-
persity if the hydrodynamic interactions are completely
neglected but there occurs only a first-order phase tran-
sition from liquid to crystal at the melting volume frac-
tion m. Hence it has been believed for long times that
this is also true for the hard-sphere fluid which consists
of hard spheres with the same size polydispersity. How-
ever, we point out that the equilibrium phase behavior of
the hard-sphere fluid must be different from that of the
suspension without hydrodynamic interactions in the fol-
lowing two reasons. The first reason is that the long-time
self-diffusion coefficient DLS( ) for the hard-sphere fluid
is lower than that of the suspension for all values of the
volume fraction , whose difference coincides with the
short-time self-diffusion coefficient DSS( ) obtained by
the short-time hydrodynamic interactions [2]. The sec-
ond reason is that the existence of a supercooled liquid
state is predicted for ≤ < m in the hard-sphere
fluid, where is a supercooled point over which the
supercooled state appears. Hence a transition from a su-
percooled liquid to crystal is expected at m, while in
the suspension there is no such transition but a transi-

tion from liquid to crystal at m. Thus, the 6% polydis-
persity can change the equilibrium phase behavior in the
hard-sphere fluid but not in the suspension. In fact, the
possibility of re-entrant melting (transition from crystal
to liquid) is suggested by free energy calculations [3] for
the system of hard spheres with small size polydispersity.
In this paper, therefore, we perform extensive molecular-
dynamics simulations for a hard-sphere fluid with 6%
polydispersity and investigate the equilibrium phase be-
havior for higher volume fractions by analyzing the sim-
ulation results from a unified point of view proposed re-
cently [4].
The mean-square displacement is used to distinguish

each phase together with the radial distribution function
g(r). In a liquid region it grows linearly in time for a long
time, while in a crystal region it becomes constant for
a long time. As the volume fraction is increased, we
thus observe the re-entrant melting at a higher volume
fraction. In fact, there exist five types of phases [5]. The
first is a liquid phase [L] for < (' 0.5524). The sec-
ond is a supercooled-liquid phase [SI] for ≤ < (1)

m ,
where (1)

m (' 0.5625) denotes the melting volume frac-
tion at which the first-order phase transition from super-
cooled liquid to crystal occurs. The supercooled state is
suggested by the mean-field analyses and is confirmed by
the split of the second peak of g(r). The third is a crys-
tal phase [C] for (1)

m ≤ ≤ (2)
m , where (2)

m (' 0.5770)
denotes the second melting volume fraction at which the
re-entrant melting from crystal to supercooled liquid is

26

Downloaded 03 Aug 2011 to 130.34.134.250. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

http://dx.doi.org/10.1063/1.2204460


observed. The fourth is a supercooled-liquid phase [SII]
for (2)

m < < g, where the second peak of g(r) shows a
split and g(' 0.6005) is a glass transition volume frac-
tion. The glass phase [G] is also expected to exist for
g ≤ . Although the results similar to the above have
already been reported in the previous paper [5], we here
present more precise results obtained recently for a suffi-
ciently long waiting time of order 7×104t0 than the pre-
vious one of order 5×104t0, where the first melting point

(1)
m '0.5630 and the second melting point (2)

m '0.5715
obtained in Ref. [5] are corrected as 0.5625 and 0.5770,
respectively.
We show that the dynamical behavior in the hard-

sphere fluid is very similar to that in the real system of
the suspension. In fact, the long-time self-diffusion coef-
ficient DLS( ) can be obtained by using the mean-square
displacement in a liquid region. It is thus shown that DLS
is described by exactly the same non-singular function of
as that predicted theoretically to explain a recent exper-

iment for the suspension by van Megen et al [1], if both
axis and DLS axis are adjusted properly. Hence no di-

vergence is also found for any characteristic times, such
as the -relaxation time and the -relaxation time. Thus,
we confirm from a new point of view that there exist re-
markable similarities between the hard-sphere fluid and
the suspension of hard-sphere colloids for higher volume
fractions in various aspects, except the existence of the
crystal state in the hard-sphere fluid.
We begin in Sec. II by reviewing the mean-field theory

proposed recently [4], which is used in the present paper.
In Sec. III we perform the molecular-dynamics simula-
tion for hard-sphere fluids and analyze the simulation re-
sults by using the mean-field theory. We conclude in Sec.
IV with a summary.

MEAN-FIELD EQUATIONS

In this section we briefly summarize and discuss the
mean-field equations for the mean-square displacement
in hard-sphere fluids and concepts which we use in this
paper.
We discuss the three-dimensional molecular system,

which contains N particles with mass mi and radius
ai in the total volume V at a constant temperature T ,
where the mass mi is proportional to a3i . The distribution
f (ai) of particle radius ai is assumed to obey a Gaussian
distribution given by

f (ai) =
1

(2 )1/2sa
exp[−(ai/a−1)2

2s2
] (1)

with standard deviation s over the range 1− 3s ≤ ai ≤
1+3s, where s= (a2i /a2−1)1/2. Here a= ai, where the

overbar indicates an average over f (ai). The main inter-
action of this system is only a direct interaction between
particles, where the particles are described by Newtonian
equations. The control parameter is given by the volume
fraction = (4 a3N/3V )(1+ 3s2), where s = 0 for a
monodisperse case and s 6= 0 for a polydisperse case. The
relevant variables are given by a set of the position vec-
tors of particles, {XXX1(t), ...,XXXN(t)}, where XXXi(t) denotes
a position vector of the ith particle at time t.
The mean-square displacementM2(t) is given by

M2(t) =
1
N

N

∑
i=1

< [XXXi(t)−XXXi(0)]2 >, (2)

where the brackets denote the equilibrium ensemble av-
erage. As shown in Ref. [2], for the molecular systems it
obeys the following mean-field equation:

d
dt
M2(t) = 2dDLS( )+2d

∑
v20
d
t−DLS( )

∏
e−M2(t)/`( )2 ,

(3)
where `( ) is a free length to be determined and d
the spatial dimensionality. Here v0(T )(=

√
3kBT/m) de-

notes the average velocity of a particle, where T is the
temperature and m(= mi) the average mass. The formal
solution is given by

M2(t) = `2 ln
∑
1+

1
18

°`v0
DLS

¢2©e6D
L
St/`

2−1−6DLSt/`2
™∏

.

(4)
The particles move freely by ballistic motion, up to a
time scale of order t f , where t f ( )(= `/v0) is a free time
for a particle to move over a distance of order `. Hence
the solution (4) suggests the following asymptotic forms:

M2(t)'
(
MM
0 (t) = `2 ln[1+(t/t f )2] for t ≤ t f ,

6DLSt for tL ≤ t,
(5)

where tL(= a2/DLS) is a long-diffusion time for a particle
to diffuse over a distance of order a with the diffusion
coefficient DLS . Hence we have two stages. The first is
an early stage [E] for t ø t f , where M2(t) grows as
M2(t) ' (v0t)2 and the ballistic motion dominates the
system. The second is a late stage [L] for tL ≤ t, where
M2(t) grows linearly in time as M2(t) ' 6DLSt and the
long-time diffusion dominates the system. Equation (3)
thus turns out to describe the dynamics of a crossover
from the ballistic motion characterized by v0 to the long-
time self-diffusion process characterized by DLS .
Near the glass transition point g, there exists another

time stage, the so-called -relaxation stage [ ] for t f ø
t ø tL. In fact, between two time scales, t f and tL, one
can further define two more time scales, t and t where
t ø t . As discussed in Ref. [4], in order to find them,
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FIGURE 1. A log-log plot of the mean-square displace-
ment M2(t) versus time. The solid line indicates the result for

= 0.590, where ` = 0.1 and DLS = 7.943× 10−6 and the
dot-dashed line for = 0.505, where ` = 0.246 and DLS =
0.0209. The long-dashed line indicates MM

0 (t), the dotted line
the growth by Eq. (10) with bM(0.590)' 1.0028,B1(0.590)'
1.8× 10−4, and t ' 4.65, and the long-long-dashed line by
Eq. (11) with bM(0.590) ' 1.33014, B2(0.590) ' 0.042, and
t ' 1541. The symbols indicate the time scales: t f (open
diamond), t (filled diamond), t (filled circle), and tL (open
square). The dashed line indicates the power-law growth of von
Schweidler type given by Eq. (12).

it is convenient to calculate the logarithmic derivatives
given by

M
1 (t, ) =

logt
log |M2(t)−MM

0 (t)|, (6)

M
2 (t, ) =

logt
M
1 (t). (7)

Then, M
2 (t) = 0 gives two time roots, t and t , which

reveal two fairly flat regions for > s;

M
1 =

(
bM( ) at t = t ,
bM( ) at t = t ,

(8)

where bM( ) and bM( ) are time exponents to be deter-
mined. Here the times t and t are shown to be approxi-
mately described by

t ' 1.2 `2

DLS
, t ' 1.2t0

µ t f t
t20

∂1/4
, (9)

respectively, where t0 = a/v0 and t f ø t ø t ø tL.
Here the volume fraction s denotes the point above
which the stage appears since bM = bM and t = t at

= s. Thus, we find two time stages for > s; a fast
-relaxation stage [ f ] for t f ø t ø t and a slow -
relaxation stage [ s] for t ø tø tL. Here t is identical
to the so-called -relaxation time, while t is a time scale
to describe a plateau. By expanding MM

0 (t) in powers of
ln(t/t ), in stage [ f ], we obtain the asymptotic form

M2(t) ' MM
0 (t)+B1( )(t/t )b

M

' `2
Ω
ln

°
1+

° t
t f

¢2¢

+ 2ln
° t
t

¢
+ `−2B1( )

° t
t

¢bM
æ

,

(10)

where B1( ) is a positive constant to be determined.
Since B1/`2ø 1 near g, M2(t) is mostly dominated by
the logarithmic growth given by ln(t/t ) around t . In
stage [ s], we also obtain the asymptotic form

M2(t) ' MM
0 (t)+B2( )(t/t )b

M

' `2
Ω
ln

°
1+

° t
t f

¢2¢

+ 2ln
° t
t

¢
+ `−2B2( )

° t
t

¢bM
æ

,

(11)

where B2( ) is a positive constant to be determined.
Since B2/`2 > 1 near g, M2(t) is mostly dominated by
the power-law growth given by (t/t )b

M
around t . It is

shown that as approaches to g, both exponents bM and
bM decrease and become constant beyond g as bM =
1.3301 and bM = 1.0. Especially, the exponent bM shows
an inflection point at which the slope dbM/d becomes
minimum and the exponent bM nearly reduces to 1.3301.
Hence this inflection point must be a supercooled point
over which the supercooled liquid phase appears. This

is confirmed later by analyzing the simulation results and
also by calculating the other physical quantities, such
as the radial distribution function and the self-part of
the dynamic susceptibility. For earlier times M2(t) thus
obeys a logarithmic growth in time, while for later times
it obeys a power-law growth of a super-diffusion type
with bM > 1.0. Here we note that since bM > 1.0, this
power-law growth is different from the so-called von
Schweidler type with the exponent less than 1.0. In Fig.
1, a log-log plot of M2(t) is shown for different volume
fractions, = 0.505 and 0.590. For comparison, the
following power-law growth of von Schweidler type is
also shown at = 0.590:

M2(t) = 10−0.8+0.085(t/t )0.92. (12)
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As increases, the separations between the characteris-
tic times {ti} become large and the logarithmic growth
dominates the system around t in the fast stage, while
both equations (11) and (12) well describe the system
around t in the slow stage.
Near the glass transition point g, the self-intermediate

scattering function FS(k,t) can be written as [6]

FS(k,t) = < exp[−ikkk · {XXXi(t)−XXXi(0)}] >

' exp
∑
−k2M2(t)

6
+
1
2
k4

µ
M2(t)
6

∂2
2(t)

∏

+O(k6) (13)

with the three dimensional non-Gaussian parameter

2(t) =
3
5
M4(t)
M2(t)2

−1, (14)

whereM4(t) is the mean-fourth displacement given by

M4(t) =< ([XXXi(t)−XXXi(0)]2)2 > . (15)

When 2(t) is negligibly small, the characteristic time
stages of FS(k,t) are identical to those of M2(t). This
type is mostly seen in the suspension of neutral hard
spheres [1]. When 2(t) is not negligible, however, a
new time stage, the so-called -relaxation stage [ ]
for t ø t ø tL, appears around t in the dynamics of
FS(k,t), in addition to the three time stages of M2(t),
where the -relaxation time t is determined by the
peak position of the non-Gaussian parameter 2(t) and
satisfies t ø t ø tL. This type is seen in most of the
systems.

SIMULATIONS ON HARD-SPHERE
FLUIDS

We here perform a molecular-dynamics simulation on
a hard-sphere fluid. The system consists of 10976 hard
spheres with radius ai and mass mi in a cubic box of vol-
ume V at a constant temperature T , where the standard
deviation s is given by s= 0.06.
The position vector XXXi(t) of ith particle obeys the

Newton equation

mi
d2

dt2
XXXi(t) =∑

j 6=i
FFF(XXXi j(t)), (16)

where FFF(XXXi j) denotes the force due to the elastic binary
collisions between particles i and j and XXXi j = XXXi−XXX j.
We first scale the position vector XXXi with radius a, time
t with t0(= a/v0), and DLS with av0. Then, we solve
Eq. (16) under periodic boundary and appropriate initial
conditions together with the momentum and the energy

conservation laws. The simulations start from two kinds
of nonequilibrium initial states. The first is a disordered
initial state which shows a random configuration and is
obtained by using the Jodrey and Tory’s algorithm [7].
The other is an ordered initial state which shows a face-
centered-cubic configuration. Then, we wait for a long
time enough to reach a final state in which the mean-
square displacement M2(t) grows linearly in time in a
liquid phase or becomes constant in a crystal phase. The
waiting time tw is chosen to be 7×104t0 for all volume
fractions here. The typical relaxation times tL( ) and
t are listed in Table 1. If the waiting time is much

TABLE 1. The relaxation times tL( )
and t for different volume fractions.

tL/t0 t /t0
0.500 4.30×101 3.14
0.525 7.99×101 4.79
0.540 1.43×102 7.58
0.550 2.47×102 11.85
0.560 5.10×102 20.16
0.580 2.00×104 370.17
0.582 2.50×104 415.62
0.586 7.08×104 922.15
0.600 4.57×105 3981.07

longer than tL, the final state is considered to be almost
in equilibrium. By choosing this final state as an initial
state, therefore, we repeat the simulations again. If the
whole time behavior of M2(t) coincides with a previous
one, one can then conclude that all the results are in an
equilibrium state. Here we should note from Table 1 that
the systems with the volume fractions higher than 0.580
do not reach an equilibrium state yet within our waiting
time but we repeat the same procedure as the above to
get the results near an equilibrium state.
Depending on the values of the volume fractions, there

exist five phase regions at s= 0.06 [5]; a stable liquid re-
gion for < f (s), a metastable region I for f (s)≤ <

(1)
m (s), a stable crystal region for (1)

m (s) ≤ ≤ (2)
m , a

metastable region II for (2)
m < < g, and a glass re-

gion for g ≤ , where f ,
(1)
m , (2)

m , and g are the
so-called freezing volume fraction, the melting volume
fractions, and the glass transition volume fraction, re-
spectively. We note here that a crystal to liquid first-order
phase transition is also observed at (2)

m (s) in addition to
a conventional liquid to crystal first-order phase transi-
tion at (1)

m (s). From the simulations we find f (0.06)'
0.5300, (1)

m (0.06) ' 0.5625, and (2)
m (0.06) ' 0.5770.

In a liquid region the system reaches an equilibrium liq-
uid state after a long time, even if one starts from differ-
ent initial states. In metastable regions the final equilib-
rium state depends on from which nonequilibrium initial
state one starts, a disordered state or an ordered state. In
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FIGURE 2. Pressure versus volume fraction. The open cir-
cles indicate the simulation results in a crystal state and the
filled circles in a liquid state. The solid line indicates the fitting
singular function given by Eq. (19) for the liquid branch and the
dotted line Eq. (20) for the crystal branch. The vertical dashed
line indicates the freezing point f , the vertical solid line the
supercooled point , the vertical long-dashed lines the melting
points (i)

m , and the vertical dotted line the glass transition point
g.

FIGURE 3. A log-log plot of M2(t) versus time at s = 0.06
in the liquid state for different volume fractions =0.5100,
0.5300, 0.5400, 0.5500, 0.5575, 0.5600, 0.5780, 0.5800,
0.5860, and 0.6100 (from left to right). The solid lines indicate
the mean-field results given by Eq. (9) and the open circles the
simulation results.

fact, the system reaches a metastable liquid state after a
long time if one starts from a disordered state, while it
reaches a metastable crystal state after a long time if one
starts from an ordered state. We note here that even af-
ter long computational times, the system still remains in
each metastable state. In a crystal region it reaches an
equilibrium crystal state after a long time irrespectively
of initial states. The pressure P( ) can be obtained by
using the Virial theorem as

PV
NkBT

= 1+
1

3kBT

N

∑
i=1
∑
j 6=i

< XXXiii ·FFF(XXXi j) >, (17)

= 1− 2
3NkBT

1
∑

collisions

mimj
mi+mj

VVVi j ·XXXi j,

(18)

where ∑collisions denotes the summation over all colli-
sions between particles i and j, which occur during an
arbitrary time , andVVVi j = (d/dt)XXXi j. In Fig. 2 the phase
diagram is shown in the pressure-volume fraction plane.
There exist two branches; the liquid branch and the crys-
tal branch. The liquid branch starts at a small volume
fraction and ends at the so-called random close packing
fraction RCP(s), where there is no liquid state between

(1)
m and (2)

m . The crystal branch starts at f (s) and ends
at the close packing fraction CP(s). Here RCP(0.06)'
0.64 and CP(0.06)' 0.69 [8]. The liquid branch and the
crystal branch are well described by the singular func-
tions

PV
NkBT

= 4.3
µ
1−

RCP(s)

∂−0.74
, (19)

PV
NkBT

= 2.4
µ
1−

CP(s)

∂−1.1
, (20)

respectively. The singular behavior for the liquid branch
is somewhat similar to previous numerical results [9, 10,
11] but there are some discrepancies for the singular
exponent between them.
In Fig. 3, the simulation results for M2(t) are shown

in liquid states for different volume fractions. Up to
= 0.5800, the simulation results are well described by

the mean-field equation given by Eq. (3). As mentioned
before, however, the results for volume fractions higher
than = 0.582 do not fit that equation in the fast -
relaxation stage because they do not reach an equilibrium
state yet within a waiting time 7× 104t0. In Fig. 4, the
typical equilibrium simulation results are compared with
the mean-field results at =0.5600 and 0.5780.
At the late stage for t ≥ tL both in a stable liquid

state and in a metastable liquid state the mean-square
displacementM2(t) grows linearly in time as

M2(t)' 6DLS( )t. (21)
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FIGURE 4. A log-log plot of M2(t) versus time at s = 0.06
in the equilibrium supercooled-liquid state for = 0.5600 [SI]
and 0.5780 [SII]. The details are the same as in Fig. 3.

FIGURE 5. A log plot of DLS( ) versus . The filled circles
indicate the simulation results and the open circles the theoreti-
cal prediction. The solid line the singular function given by Eq.
(22). The details are the same as in Fig. 2.

Hence one can obtain the values of DLS( ) by using
Eq. (21) and the simulation results. A log plot of DLS
versus is thus shown in Fig. 5. Here the results for the
volume fractions higher than 0.6 are predicted by using
the mean-field theory since those results do not reach a
late stage yet. As discussed in Ref. [4], the results are
approximately described by the singular function

DLS( )
av0

=
DSS( )/D0

1+ DSS( )
D0

°
c

¢°
1−

c

¢−2 , (22)

FIGURE 6. Non-singular behavior of the long-time self-
diffusion coefficient DLS( ). The solid line indicates the resul-
tant non-singular function for the hard-sphere fluid and the dot-
ted line the non-singular function for the suspension from Ref.
[13, 14]. The filled circles indicate the simulation results and
the open circles the prediction by the mean-field theory. The
filled squares indicate the experimental results for the suspen-
sion from Ref. [1] and the open squares the theoretical predic-
tion. The dashed line indicates the singular function given by
Eq.(22) and the long-dashed line Eq. (24).

where and c(0.06) ' 0.5845. Here DSS( ) denotes the
short-time self-diffusion coefficient for the hard-sphere
colloids due to the short-time hydrodynamic interactions
[12] and D0(= kBT/6 a) a diffusion coefficient of a
single colloid. Near the singular point c, DLS( ) behaves
as

DLS( )
av0

'
µ
1−

c

∂2
. (23)

As discussed in the previous paper [4], however, the sim-
ulation results deviate from the singular function beyond
c and seem to obey a non-singular function. In fact, one
can find such a non-singular function by using the non-
singular function proposed for the experimental data for
the suspension of hard spheres [4, 13], which is shown
together with the experimental results obtained by van
Megen et al [1] in Fig. 6. In order to find a non-singular
function for the simulation results from the experimen-
tal one, one can use the singular functions by which the
experimental results and the simulation results are ap-
proximately described. In fact, the experimental results
are also shown to obey the singular function given by [4]

DLS( ) =DSS( )
1−1.2

1+ DSS( )
D0

°
Sc

¢°
1− Sc

¢−2 , (24)

where S
c = 0.564. Here the factor 1.2 in the numerator

results from the coupling between the direct interactions
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FIGURE 7. A plot of `( ) versus . The filled circles in-
dicate the fitting results. The open circles indicate the experi-
mental results for the suspension from Ref. [13]. The symbols
(+) indicate the results predicted by the mean-field theory. The
dotted line indicates the free length `c given by Eq. 25. The
solid lines are guides to the eye. The details are the same as in
Fig. 5.

and the short-range hydrodynamic interactions. On the
other hand, the simulation results obey the singular func-
tion given by Eq. (22). In order to shift the non-singular
function proposed for the experimental data to the simu-
lation results, therefore, one may first transform the vol-
ume fraction into + c− S

c and then divide the non-
singular function by the factor (1−1.2 ). The resulting
non-singular function is turned out to describe the simu-
lation results very well (see Fig. 6). Thus, this suggests
that a non-singular behavior is common feature near the
glass transition [4, 14]. The glass transition is also ex-
pected to occur around g = 0.6005 for the hard-sphere
fluid since g = S

g + c− S
c , where S

g = 0.58 [1].
The free length `( ) is shown in Fig. 7. Here the fitting

value of the adjustable parameter ` is determined in such
a way that the mean-field result of M2(t) coincides with
the simulation result at t = t . The free length `c in the
crystal branch of the monodisperse hard-sphere fluid is
given by

`c =
1
√
2

µ
2
3

∂1/3
−1. (25)

In Fig. 7, it is also shown for comparison. As increases,
` decreases monotonically and changes a little bit around
f (= 0.5300). Above (' 0.5524), it starts to decrease
steeply. We note here that the dependence of ` is very
similar to that obtained experimentally for the suspen-
sion of hard spheres [4, 13]. This is more clearly seen by

FIGURE 8. A plot of Φ versus . The dotted line indicates
Φc. The details are the same as in Fig. 7.

FIGURE 9. A plot of Vf ( ) versus . The details are the
same as in Fig. 7.

introducing the free volume fraction Φ by

Φ= (1+ `/a)3. (26)

In Fig. 8, the free volume fraction Φ is shown together
with the results for the suspension. The fraction Φc(=
(1+ `c/a)3) for the crystal is also shown, where Φc =√
2 /6' 0.74048. The dependence of the simulation

results is thus shown to be very similar to the experi-
mental results. In fact, as increases, Φ increases for
small volume fractions and then starts to decrease up to
the freezing volume fraction f , at which the birth and
death of the clustering starts. After f , it increases again
and then starts to decrease drastically beyond the super-
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FIGURE 10. A plot of time exponents bM( ) and bM( )
versus . The filled circles stand for bM and the open circles
for bM. The horizontal dashed line indicates bM = 1.3301 and
the horizontal dotted line bM = 1.0. The solid lines are guides
to the eye. The details are the same as in Fig. 5.

cooled point , over which the clustering occurs every-
where. The free volume Vf must be proportional to `3,
since ` is proportional to M2(t)1/2 at time t = `2/(6DLS).
Hence the function Vf ( )(= `3) is also shown in Fig. 9.
For comparison, the results for the suspension are also
plotted. The volume fraction dependence of Vf for the
hard-sphere fluid is very similar to that obtained for the
real colloidal suspension.
In Fig. 10 the time exponents bM( ) and bM( ) are

also shown. We find s(0.06) ' 0.4580, over which the
stage appears. As increases, both exponents decrease

and become constant beyond g as bM = 1.3301 and
bM = 1.0. Especially, as is shown in Fig. 11, the exponent
bM shows a inflection point at = 0.5524 where the
slop dbM/d becomes minimum and bM nearly reduces
to 1.3301. As discussed in the previous paper [4], this
inflection point denotes a supercooled point over
which the supercooled liquid phase appears. Here we
note that the second inflection point around = 0.530
at which the slop becomes maximum is expected to be
a freezing point f . In order to check it, however, one
should wait a time longer than 5×104t0.
In Fig. 12 the non-Gaussian parameter 2(t) is shown

for different volume fractions in liquid states. The peak
height of 2(t) at t becomes larger than 1.0 for >

(2)
m , while it is smaller than 1.0 for < (1)

m . Here
we should note that the supercooled region [SI] exists
for ≤ < (1)

m , although the peak height 2(t ) is

FIGURE 11. A plot of the slope dbS( )/d versus . The
solid line indicates the mean-field result obtained by using the
fitting functions for DLS and `. The details are the same as in
Fig. 5.

FIGURE 12. Non-Gaussian parameter 2(t) versus time for
different volume fractions =0.5200, 0.5400, 0.5500, 0.5575,
0.5600, 0.5780, 0.5800, and 0.5860 (from left to right).

not larger than 1.0. The same situation as this is seen
for the real colloidal suspension of hard spheres, where
2(t) is negligible for all volume fractions [1]. In Fig. 13
the characteristic times {t f ,t ,t ,t ,tL} are then plotted
versus . The so-called -relaxation time t , which is a
peak positions of 2(t), is also shown. As is increased,
t , t , t , and tL increase steeply above , while t f
decreases. We note here that no divergence is found in
any characteristic times for higher volume fractions.
The supercooled point can be also confirmed by
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FIGURE 13. A log plot of the characteristic times {ti( )}.
The open squares stand for tL, open circles for t , filled circles
for t , the filled diamonds for t , and the open diamonds for t f .
The solid lines are guides to the eye. The details are the same
as in Fig. 5.

calculating the other physical quantities, such as a radial
distribution function g(r) and a self part of the dynamic
susceptibility ”

S(k, ). First, we discuss the radial distri-
bution function g(r) given by

g(r) =
V
N2

<
N

∑
i=1
∑
j 6=i

(rrr+XXX j−XXXi) > (27)

Figs. 14(a), (b), and (c) show the typical spatial con-
figurations in different phases; (a) the liquid phase at

= 0.5200, 0.5300, and 0.5400, (b) the supercooled liq-
uid phase at =0.5600, 0.5790, and 0.5800, and (c) the
crystal phase at =0.5675, 0.5700, and 0.5750. In the
supercooled phase the second peak of g(r) shows a split,
while it shows just a single peak in the liquid phase.
In the crystal phase the peak positions of g(r) coincide
with those of a face-centered cubic (FCC) packing up
to the fifth peak. Thus, one can find five phase regions,
starting from a nonequilibrium random configuration ini-
tially. The first is a liquid region [L] for < . The sec-
ond is a supercooled-liquid region I [SI] for ≤ <

(1)
m . The third is a crystal region [C] for (1)

m ≤ ≤
(2)
m . The fourth is a supercooled-liquid region II [SII]
for (2)

m < < g. The last is a glass region [G] for
g ≤ . Here (0.06) ' 0.5524, (1)

m (0.06) ' 0.5625,
(2)
m (0.06)' 0.5770, and g ' 0.6005. This is a first ev-
idence by simulations to show the existence of a phase
transition from a supercooled liquid to a crystal for a
hard-sphere fluid with polydispersity s= 0.06, although
this kind of transition is already known experimentally

FIGURE 14. The radial distribution function g(r) in differ-
ent phases; (a) the liquid phase at = 0.5200, 0.5300, and
0.5400 (from top to bottom), (b) the supercooled liquid phase
at =0.5600, 0.5790, and 0.5800 (from top to bottom), and (c)
the crystal phase at =0.5675, 0.5700, and 0.5750 (from top
to bottom). The vertical lines indicate the theoretical results for
a FCC crystal. The upper curves are shifted vertically for the
sake of clarity.

34

Downloaded 03 Aug 2011 to 130.34.134.250. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



for water, and also the occurrence of re-entrant melting,
a first-order phase transition from crystal to supercooled
liquid, around = 0.5770.
Next we discuss the self-part of the dynamic suscepti-

bility ”
S(k, ) given by

”
S(k, ) =

Z ∞

0
FS(k,t)cos( t)dt. (28)

Since 2(t) is much smaller than 1.0 for < (1)
m , one

can calculate ”
S(k, ) without 2(t) in the supercooled

region [SI]. Then, using Eqs. (4) and (13), one finds

FS(k,t) =
∑
1+

1
18

°`v0
DLS

¢2©e6D
L
St/`

2−1−6DLSt/`2
™∏− (k`)2

6
.

(29)

In Fig. 15 the susceptibility ”
S(k, ) is shown at the

peak position k = 3.4 of S(k) for different volume frac-
tions, where S(k) denotes the static structure factor. In
region [SI] the shoulder appears clearly around the
frequency , while in region [SII] the double peaks,
peak and peak, appear around L and , respec-

tively, where i = 2 /ti. We note here that if one cal-
culates ”

S(k, ), including 2(t), one would also expect
double peaks even in region [SI] since those are found
in the real colloidal suspension although 2(t) is small.
In fact, this would be confirmed by the fact that, as is
shown in Fig. 16, the simulation results for FS(k,t) dif-
fer from the mean-field results calculated by Eq. (29) at
the -relaxation stage around t , even though the non-
Gaussian parameter 2(t) is small in region [SI].

SUMMARY

We have studied the equilibrium phase diagram of a
hard-sphere fluid with 6% size polydispersity. This was
done not only by performing the extensive molecular-
dynamics simulations but also by analyzing the simula-
tion results by the mean-field theory from a unified point
of view. We have shown that starting from two kind of
nonequilibrium initial configurations, a random configu-
ration and a FCC configuration, the system reaches two
different final states, a liquid state and a crystal state,
within the waiting time tw = 7×104t0. Depending on the
values of the volume fraction, there exist five phase re-
gions. The first is a stable liquid region for < f , where
the system reaches the liquid state irrespectively of initial
configurations. The second is a metastable region I for
f ≤ < (1)

m . The system reaches the liquid state if one
starts from the random configuration, while it reaches the
crystal state if one starts from the FCC configuration. De-
pending on , there exists two different metastable liquid

FIGURE 15. A log-log plot of ”
S(k, ) versus frequency

at s = 0.06 and k = 3.4 for different volume fractions
=0.5000, 0.5100, 0.5200, 0.5300, 0.5400, 0.5500, 0.5524,

0.5600, 0.5860, 0.6000, and 0.6100 (from right to left). The
solid lines indicate the mean-field results given by Eq. (28) and
the dotted line for = 0.5524. The symbols indicate the char-
acteristic frequencies: (filled diamond), (filled circle),
and L (filled square).

FIGURE 16. A plot of the self-intermediate scattering func-
tion FS(k,t) versus time in the supercooled liquid region [SI]
at =0.5550 (open squares) and 0.5600 (open circles). The
dotted and solid lines indicate the mean-field results given by
Eq. (29) at = 0.5550 and 0.5600, respectively.

states. One is a liquid state for f ≤ < . The other
is a supercooled state for ≤ < (1)

m . The third is
a stable crystal region for (1)

m ≤ ≤ (2)
m , where the

system reaches the crystal state irrespectively of initial
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configurations. The fourth is a metastable region II for
(2)
m < < g. The system reaches the supercooled liq-
uid state if one starts from the random configuration,
while it reaches the crystal state if one starts from the
FCC configuration. The last is a glass region for g ≤ .
The system reaches the glass state if one starts from the
random configuration, while it reaches the crystal state
if one starts from the FCC configuration. We have thus
shown that as the volume fraction is increased, tran-
sition from supercooled liquid to crystal first occurs at
' 0.5625 and the re-entrant melting from crystal to su-

percooled liquid is then observed at ' 0.5770.
In a liquid state, we have obtained the long-time self-

diffusion coefficient DLS( ) by using the mean-square
displacementM2(t) and shown that DLS( ) obeys exactly
the same non-singular function as that proposed to ex-
plain the experimental results for the suspension of hard-
sphere colloids. We have also examined the volume frac-
tion dependence of the adjustable parameter `( ) and the
characteristic times tL( ), t ( ), t ( ), t ( ), and t f ( ).
We have thus found that there is no divergence in any
characteristic times at the glass transition. By comparing
different glass transitions through the mean-field theory
from a unified point of view, we have predicted that the
supercooled liquid phase appears at ' 0.5524 and the
glass transition occurs at ' 0.6005. Those were also
confirmed by checking the other physical quantities, such
as the radial distribution function g(r) and the self-part of
the dynamic susceptibility ”

S(k, ).
Finally, we comment on a waiting time tw. In order

to equilibrate the system, it must be sufficiently longer
than the relaxation time tL. Hence we took tw = 7×104t0
here. This is long enough to equilibrate the system for
≤ 0.582 since tw >> tL( = 0.582) ' 2.50× 104t0.

Within this time, we have thus shown that the metastable
liquid state can exist for (2)

m < . However, it is not
clear yet at the present stage whether the crystallization
occurs or not for much longer waiting times. This will
be discussed elsewhere together with the details near the
glass transition.
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