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Ab~ract. The influence of heterogeneous structure on the colloidal glass transition is studied by 
numerically solving the coupled diffusion equations recently proposed by Tokuyama for 
concentrated hard-sphere suspensions of interacting Brownian particles with both hydrodynamic 
and direct interactions. Near glass transition, the long-lived, cluster-like glassy domains are shown 
to be formedby the dynamic anomaly of the self-diffusioncoefficient with a power-law exponent y, 

where ~, =2 here. Those spatial heterogeneities are responsible for the slow relaxation of the density 

fluctuations. Thus, the serf-intermediate scattering function is shown to obey a two-step relaxation 
for intermediate times, and also to be well approximated by a Kohlrausch-Wflliams-Watts 
function with an exponent/3 around the a-relaxation time with a power-law exponent r/= ~,/ft. For 

longer times, it obeys an exponential decay with a long-time serf-diffusion coefficient. For whole 
times, the non-Gaussian effects are shown to be negligible. 

INTRODUCTION 

Recent experimental works 1-3 show that as the volume fraction ~ of the hard-sphere 

colloidal suspensions is increased beyond the melting volume fraction ~,,, the system 

also exhibits a transition at the glass transition volume fraction ~x from a fluid phase to 

a glass phase, similar to that in supercooled liquids. In recent years, many 

experimental, computational and theoretical attempts have been made to study this 

important problem, but more works still seem to be needed to obtain a deeper 

understanding o f  the dynamics o f  glass forming colloidal liquids. With the recent 

development o f  the mode-coupling theory (MCT)4, 5 for the dynamics of  supercooled 

fluids, much o f  the recent experimental studies2-3 in colloidal fluids have been designed 

around the predictions of  MCT. The most striking feature of  MCT is the prediction o f  
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two different slow relaxations of  density fluctuations, the so-called 13 and a 

relaxations, whose time scales, t~ and ta, diverge as the separation parameter 

o=  ~ / ~  - 1 approaches zero; t o ~ I ol - '  and t ,  N io l  - ,  , where 6 and r/are exponents to 

be determined. In concentrated colloidal suspensions,2-4 MCT predicts 6 = 1.66 and 

r! = 2.58. Recently, a new theory based on the coupled diffusion equations has been 

proposed by Tokuyama6 to study the dynamics of  self-diffusion processes in 

concentrated suspensions. The most important feature of this theory is that the self- 

diffusion coefficient D s ( ~ )  contained in the coupled equations becomes dynamically 

anomalous at ~g as D s ~ 11 -q x,t)l  l where y=2 here, and CP(x,t) denotes the 

local volume fraction given by c l~(x , t )=4za3n(x ,O/3 .  Here n(x , t )  is the average 

number density of  colloids. This dynamic anomaly results from the many-body 

correlations between particles due to the long-range hydrodynamic interactions7 and 
causes the formation of the long-lived, finite-sized, irregularly shaped glassy domains 
where tl~(X,/)>-~g. 8-9 Those slowly-varying glassy domains do influence the 

relaxations of the density fluctuations. A divergence of relaxation times at ~ with the 

exponents 6-- 1.0 and rl(Zo) , a two-step relaxation around the crossover time ta, 

including von Schweidler decay, and also the Kohlrausch-Williams-Watts formula 

(KWW) with the KWW exponent [3(Zo)~y/'¢l(Zo) around the a-relaxation time t o 

were found, where Zo measures how the initial state of  the system is spatially 

nonuniform and z0 = 1 in an uniform state. Although the characteristic features of the 

relaxations are in part similar to those obtained by MCT, the basic standpoints are 
quite different from those of  MCT. First, MCT has been applied to an uniform 
equilibrium initial state where n(x , t )  becomes constant n o = N / V in space and time, 

that is, ql~(x,t) ~ (~, where ~= 4 ~ n  o/3 denotes the particle volume fraction, N the 

total number of colloids, and V the total volume of the system. On the other hand, the 

present theory deals with a spatially inhomogeneous system, and starts with the 

nonlinear deterministic diffusion equation for ~(x, 0, 7 which describes the dynamics of 

spatial heterogeneities from a nonuniform initial state with ~(x,0) to a final state with 

qr~(x, oo). This is because a supercooled liquid is in a metastable equilibrium state 

below and also above ~b , and exhibits spatial heterogeneities of the dynamic state.10 

Secondly, MCT assumes that the density fluctuations 6n(x , t )  around n o obey the 

nonlinear stochastic equations. On the other hand, the present theory starts with the 

linear stochastic diffusion equation for the density fluctuations ~n(x,O around n ( x , 0 6  

This is because the density fluctuations would be small compared to the causal part 

n ( x , t )  since the glass transition seems not to be a critical phenomenon. In fact, there is 

no correlation length diverging at the glass transition point. Hence the glass transition 

16 

Downloaded 03 Aug 2011 to 130.34.134.250. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



seems to be dynamic in origin in contrast to critical phenomena. Thirdly, MCT 

predicts the critical volume fraction ¢~=0.52 ±0.01,5 while the present theory 

predicts ~b x = ( 4)3/(71n3 - 81n2 + 2)~ 0.57184 .... The light-scattering experiments1-3 

show that the hard-sphere suspensions undergo a glass transition at ¢~ which is 

between 0.56 and 0.58. Finally, MCT contains two parameters, the volume fraction q~, 

and a microscopic time scale t o which is treated as a free fit parameter. On the other 

hand, the present theory contains two parameters, ~b and the initial state parameter z o, 

both of  which can be fixed by an experiment. In this paper, we present the numerical 
solutions of  the above coupled diffusion equations near Ce 

MODEL 

The dynamics of  spatial heterogeneities of  colloidal suspensions is described by the 
local volume fraction cI~(x,t). On the other hand, the dynamics of  density fluctuations 

can be measured by dynamic light scattering through the intermediate scattering 
function11 which is given by the Fourier transform, F(k, t ) ,  of  the autocorrelation 

function of  the density fluctuations F(x,  t) = < 8n(x,t)bn(O,O) > / N ,  where the angular 

brackets denote the average over an appropriate initial ensemble. For scattering vectors 

much larger than the maximum position k,~ of  the structure factor S(k)~- F(k,O), the 

scattering function F(k,  t) reduces to the self-intermediate scattering function Fs(k , t ) ,  

where Fs(k ,O ) -- 1. Hence we start with the following coupled diffusion equations 

already described elsewhere:6 

d 
cI~(x,t) = V - [Ds (q~(x,t)) V clg(x,t) ], (1) 

"~'-[ Fs(k , t )  = - k 2 ~ Ds (k  - q , t )Fs(q, t )  (2) 
q 

with the Fourier transform, Ds(k,t) ,  of  the self-diffusion coefficient 

Ds (q~(x, t) ) _- DSs(q~ ) (1 - 9¢I~(x,t)/32) 
[1 + (qr~(x, t)DS(q>)/~bgDo)(1 - clJ(x,t)/~, )-2], (3) 

and the conservation law (llV)[c~ ~(x,t)=#, where D O is the single-particle diffusion 

coefficient, and D ~ )  the short-time self-diffusion coefficient (see Ref  7 for details). 
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Here the second singular term in the denominator of  Eq.(3) results from the many- 
body correlations between particles due to the long-range hydrodynamic interactions, 
while the numerator of  Eq.(3) results from the coupling between the direct and the 
short-range hydrodynamic interactions between particles. We note here that the short- 
time self-diffusion coefficient D[~(tit') still depends on space and time through q~(x ,t). 

This point is different from the previous calculation in Ref. 8 where D~(q~) was 

simply replaced by the constant value s Ds0P). In fact, for short times t< t , ,  D s ( @ )  

reduces to D[~(q~) - ]or] ° since the direct interactions and the correlations are negligible, 

while for long times t_> tL, it reduces to the long-time self-diffusion coefficient 

D~(~b) = D s (q~) ~ Iol z, where t L - a z / D ~  and t L - a 2/DLs are characteristic times of  the 

short- and long-time self-diffusion processes, respectively. A good agreement is indeed 
seen between the theoretical results7 and the experimental data.12,13 Thus, there exists 

a crossover from the short-time process described by D[~ to the long-time process 

described by DLs for intermediate times, where the dynamic anomaly of  Ds(q~) plays 

an important role. 

R E S U L T S  

In order to solve the coupled diffusion equations (1) and (2) self-consistently, we 
first fix the values of  the two parameters, band zo, as the initial conditions, where 

z0 = 1 - (1 / v) f a~ I1 - ~(x,O)/¢ I- To integrate those equations, we employ the forward Euler 

difference scheme with the time step O . O l a ~ / D  o and the lattice spacing 0.2a in the 

volume (128a) 3 of  the three dimensional simulation system with periodic boundary 

conditions. The initial value ~ x , 0 )  is chosen at each position x from a random 

number with a Gaussian distribution, which is characterized by a mean value 1 and a 

standard deviation s ,  where s is adjusted so as to find a given value ofz  0- 

We first discuss the numerical solutions of  Eq(1), starting in a completely random 

configuration with t/~(x,O) toward afinal configuration with t/~(x, oo). Figure 1 shows 

the space-time dependence of  CP(x,t) at z0=0.8 in the supercooled region with 

4}= 0.571 ( < ~ ) .  Figure 2 shows a sequence of  snapshots projected onto a plane of  a 

typical configuration of  the glassy phase where cl~(x,t) > ~ .  On the time scales of  

order to, the finite-sized, glassy domains are formed. After to, the spatial 

rearrangement of  those domains occurs and continues up to t .  After t,,, they are 

dissolved, disappearing very slowly in the supercooled region for q~a _< q~ < 0k, while 
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IFIGURE 1. q~(x,t) versus reduced distance x/a for ~ = 0.571 at zo= 0.8. 

they form clusters, covering a whole space very slowly in the glass region for 4)>_ ~e, 

where  q~t~ is a crossover volume fraction, over which the two-s tep  relaxation 

appears.14 Hence  one  can assume that fort imes  t~ t~, ~ x , t )  is scaled, n e a r , g ,  as 

mmW m m l  
D n t / a  ~" - 1 3 9 6  (t,) |00 D, , t /a :=  1 3.96 (tr~ |00 

853 (to) 1300 2.8 × 10 a (t .)  t578 (t~) 2500 4 4  × 104 ( t . )  

105 3.4× l0  t (t~) 106 103 7.3 × 10 s (t~) 10 ~ 

FIGURE 2. Typical contigurations of glassy domains for(A)¢=0.571 and (B) ¢=0.573 at z0=0.8. 
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' / ( x , 0  = ¢[1 + z( t"x)] ,  (4) 

where ~(z 0) is a small exponent to be determined, and ~ dxZ(x) = O. 

We next discuss the numerical solutions of Eq.(2). The numerical work shows that 
the self-intermediate scattering function Fs(k,t) can be written in the Gaussian 

approximation as 

k 2 6 '  
Fs(k,t)=exp[--~"M2(t)], Mz(0 = ! d s l d x  Ds(@(x,s)), (5) 

where M2(t) indicates the mean-square displacement. As was shown in Ref  8, at q~ 

Fs(k,t  ) reaches the plateau with the height Fs(k,t~oo )=3"~(Zo,O= 0). In the early 

stage on the time scale of  order t~, the spatial inhomogeneities are described by the 

solution of  Eq.(1) as @(x,t) = exp[ - tDi~((~) V 2]q~x,0), and the density fluctuations 

obey the short-time exponential decay, Fs(k,t ) = exp[ -kZDi~(~b)t]. After this stage, the 

dynamical behavior becomes complicated because of  the anomalous property of  
Ds(@). In order to see the crossover behavior around to, it is convenient to calculate 

the logarithmic derivatives given by ~v--O log ] J~ -  F s (k, t) 1/O logt and ~v 1 = cO ~ / cO logt.6. 

8 Then, ~v 1 = 0 is shown to give two time roots, tbo(4~,Zo,ka) and tb(4~,zo,ka), which 

reveal two fairly fiat regions; ~v=bo(~,zo,ka) at t=tbo where t<tbo~tB, and 

tp=b(~,zo,ka) at t=t b where t~'c. tb<t ~. Here the crossover time is given by 

ta ~ (DI~ D~) -1/2 _ io1-1, where b = 1.6 The crossover volume fraction ~ ( z  o,k) is thus 

determined by the equal root  tbo(~a,Zo,ka)=tb(dpa,zo,ka), or bo(~a,zo,ka)= 

b(~a,z o,ka) at fixed z0 and k.14 With increasing volume fraction at a fixed z0, we thus 

observe a progression from normal colloidal fluid (0 < q~< ~a), to supercooled colloidal 

fluid (~b~_< ~< ~g), and to glass (#___ ~g). In the so-calledfl stage on the time scale of  

order t a for ~b_> 4~a, therefore, Fs(k,t) obeys two kinds o f  power-law decays with 

exponents b0 and b around ta. In the early fl-relaxation stage t ~ t_ ta the finite-sized, 

glassy domains are formed, and Fs(k ,t) obeys 

.¢ 

Fs(k,O =J'k(Zo,O) - Ak(Zo)(t/ta) b° (6) 

with a positive constant Ak, where bo(0.571,0.95,3)--0.3 and bo(0.573,0.95,3)= 

0.33. This power-law decay continues up to the crossover time t~. In the late ,8- 
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relaxation stage ta _< t~: ta, the glassy domains change very slowly, and Fs(k , t )  obeys 

the so-called von Schweidler decay 

Fs(k,t)  =Jk(zo,0) - Bk(,.o) ( / , ~ )  (7) 

with a positive constant Bk, where b( 0. 571,0. 95 ,3  ) = 0. 68 and b(0. 573,0.95, 3) = 0.71. 

After this stage, the spatial rearrangement o f  the glassy domains occurs, and q~(x,t) 

obeys the scaling given by Eq.(4). This is the so-called a-relaxation stage. Use o f  

Eqs.(4) and (5) then leads to M 2 (t) - ~ t t~, where fl(zo)= 1 -3~u(zo). Thus, we find the 

KWW function 

• #%) 
F s ( k , t ) = e x p l - ( t / t  ) ] (8) 

- o(z ° ) 
with  the a-re laxat ion t ime to(¢,zo,k)o,(klo 1) , where  O(zo)=y/~6(zo), and 

r/(0.95) = 2.69 (fl = 0.744, ~ = 0.086) and r/(0.8) = 3.65 ~ = 0. 548, ~ = 0. 15). The 

KWW formula can thus be explained by the existence o f  long-lived, glassy domains. 

1 

0.8 

0.6 ~, 

0.4 

0.2 

0 
0 2 4 6 

log  t o(D0t/a2) 

. , '  ! 

/ it 
B) 

Z , I , , ,  I .', , ~, , , ,  I , 

0 2 4 6 
log I o(Dotla2) 

FIGURE 3. (A)the self-intermediatescattering function Fs(k,t ) for ~=0.559,0.565, 0.571 and 0.573 

(from left to right), and 03) the mean-square displacement M2(t ) for ~=0.571 at %=0.95 and ka=3. 
The long-dashed, the dot-dashed, the dotted lines indicate Eqs.(6), (7) and (8), respectively, and the 
dashed lines the simple exponential. The symbols indicate the time scales: t v (.), ta(o), t o (e), and t L (0). 
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This stretched behavior continues up to the time scale of order t L. For the late stage of 

order t L , we have cl~(x,t) = ¢, and the fluctuations obeyFs(k, t )  = exp[ - k2DLs(~)t]. We 

show the time evolution of Fs(k , t )  in Fig. 3(A) for different volume fractions; 

q~=0.559, 0.565 (~a), 0.571 (<~bg), and 0.573 (>~,), and Mz(t)  in Fig. 3(B) for 

= 0.57 t, where zo = 0.95 and ka = 3. 

C O N C L U S I O N S  

The main results reported here are as follows. (i) The existence of  long-lived, 

irregularly shaped glassy domains in the supercooled region. (ii) The neglect of  the 
non-Gaussian effects for whole times. (iii) Four characteristic stages in the supercooled 

region ¢>__ #a (see Fig. 3(B)). (iv) The two-step relaxation and the stretched behavior 

can be explained by the existence of long-lived, heterogeneous structure. 
We finally note that long-lived heterogeneities are caused by the dynamic anomaly 

of the self-diffusion coefficient which results from the many-body correlations due to 
the long-range hydrodynamic interactions.7 The present formalism is also applicable 

for highly charged colloidal suspensions. In that case, the dynamic anomaly results 
from the pair correlation due to the long-range Coulomb attractive interactions between 
macroions and counterions.l 5 
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