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Abstract How the idea of the dynamic anomaly of the self-diflusion coefficient recently proposed
by the present author works on the study of equilibrium and nonequilibrium supercooled colloidal
liquids is discussed for two kinds of model suspensions, neutral and charged hard-sphere
suspensions. Near colloidal glass transition, the long-lived, spatially heterogeneous glassy
domains are shown to be formed for intermediate times in equilibrium and nonequilibrium
systems. Those spatial heterogeneities are responsible for the slow relaxation of the density
fluctuations. In fact, the long-known phenomena similar to those in glass-forming materials, such
as the stretching of the a process and the von Schweidler law, can be explained by the existence of
those spatial structure. In the equilibrium system, however, those heterogeneities must be difficult
to be observed since their sizes and magnitude are quite small compared to those in the
nonequilibrium system.

INTRODUCTION

In recent years there has been a growing interest in the dynamics of a supercooled
liquid and the mechanism for the liquid-glass transition in colloidal suspensions.1-3

Although the considerable studies have been made for structural glass transitions, our
understanding is still in incomplete. Hence the colloidal systems are expected to serve
as valuable models for the study of the atomic systems. Pusey and van Megen2 first
recovered the existence of the long-known phenomena similar to those in glass-forming
materials, such as the stretching of the a process. Since then, the dynamical properties
of equilibrium colloidal suspensions near the colloidal glass transition have been
extensively studied experimentally and theoretically. With the recent development of
the mode-coupling theory (MCT)4-6 for the dynamics of supercooled fluids, however,
much of the recent experimental studies in colloidal fluids have been designed around
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the predictions of MCT. The most striking feature of MCT is the prediction of two
distinct slow relaxation processes, a and B, with the relaxation times ta and tp,
respectively, which diverge as the separation parameter a= $/ (j)g - I approaches zero;
^~l°1 ~8 an<^ ^M* 7 > where <j)g denotes the colloidal glass transition volume
fraction, and d and r\ are time exponents to be determined. Here MCT predicts
0g~ 0.516, 5=1.60 and r/ = 2.46 for concentrated hard-sphere suspensions.6
Although MCT was the origin of all later works on the structural relaxation in glassy
liquids, we find three simple questions in its basic viewpoints for hard-sphere
suspensions. The first question is why the transition point 0.516 predicted by MCT
is quite different from the value around 0.572 obtained by the experiments.7 As is
discussed later, this question may be closely related to the fact that MCT deals with
only direct interactions between particles. The second one is why the equilibrium
density fluctuations obey a nonlinear stochastic equation. The glass transition is not a
critical phenomenon because there is no correlation length diverging at the transition
point. As long as the system is away from a critical point, therefore, the relative
magnitude of the density fluctuations to the mean density should be small even near
the glass transition point. Hence the density fluctuations should obey a linear
stochastic equation. Finally, the long-time self-diffusion coefficient satisfies the power
law DL

s((jj) <* |of with an exponent y . Then, MCT predicts that the time exponent 17

of the a relaxation process and the exponent y should be the same. However, the long-
time self-diffusion process should be different from the a relaxation process because
the former obeys an exponential decay with DL

S, while the latter obeys a stretched
exponential decay aroundta. Hence r\ * y . This was also shown in the recent computer
simulations of a binary supercooled Lennard-Jones liquid.8>9 In this paper we explore
those problem from a new viewpoint.

Recently, a new theory based on the idea of the dynamic anomaly of the self-
diffusion coefficient has been proposed by the present author10 to study the dynamics
of self-diffusion processes in nonequilibrium colloidal suspensions. The dynamics of
spatial heterogeneities of colloidal suspensions is described by the average local volume
fraction <P(r,r) = 4;ra3n(r,r)/3, where n(r,t) is the average number density of colloids,
and a the particle radius. On the other hand, the dynamics of nonequilibrium density
fluctuations can be measured by dynamic light scattering through the intermediate
scattering function* 1 which is given by the Fourier transform, F(k,f), of the

autocorrelation function of the density fluctuations F(r,t) = 6w(r,f)6n(0,0) IN, where
6n(r,t) denotes the density fluctuations around n(r,t)9 the bar represents the average
over an appropriate initial ensemble, and N is the total number of colloids. For
scattering vectors much larger than the maximum position km of the structure factor
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S(k) = F(&,0), the scattering function F(k,f) reduces to the self-intermediate scattering
function Fs(k,f), where Fs(k,0)=l. In nonequilibrium colloidal suspensions,
therefore, one can start with the following coupled diffusion equations already
described elsewhere:10

(1)

(2)

with the Fourier transform, Ds(k,t), of the self-diffusion coefficient Ds(3>). The most
important feature of this theory is that the self-diffusion coefficient DS(<P) becomes
dynamically anomalous near 0 as

1-- (3)

where y is a time exponent to be determined, and y=2 for the hard-sphere
suspensions.12 This dynamic anomaly results from the many-body correlations
between particles. Suppose that we start from a completely random initial
configuration. Then, smoothing process of<$(r,t) starts to occur, following Eq.(l), and
<&(r,i) finally reaches the equilibrium volume fraction 0 for long times. As is seen in
Fig. 1, for intermediate times there exist glassy regions with inhomogeneous local
volume fractions larger than $g. Since DS(<P)=0 at ®(r,t) = $g and the diffusion
coefficients in the glassy regions become much smaller in time than those in the liquid
regions with inhomogeneous local volume fractions less than <j>gy there are two
relaxation regions, slow relaxation regions (glassy regions) and fast relaxation regions
(liquid regions).13 Thus, the glassy regions freeze for intermediate times, forming the
long-lived, finite-sized, irregularly shaped domains, and they disappear for very long
times. Those slowly-varying glassy domains do influence the relaxations of the density
fluctuations. In fact, a divergence of relaxation times ta and ^, at $g with the
exponents d and r/(z0), a two-step relaxation around tft, including von Schweidler
decay, and also the Kohlrausch-Williams-Watts formula (KWW) with the exponent
/?(z0) = y/?7(z0) around ta were found in the supercooled colloidal state for
<l>p(Zo,kd) < 0< $g, where ̂  denotes the crossover volume fraction10 over which the
shoulder ofFs(k,f) appears. Here z0 measures how the initial state of the system
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is spatially nonuniform and is given by
given by

1-

z(J=0), where the state parameter z(f) is

(4)

V being the total volume of the system. Thus, the slow relaxation in the supercooled
colloidal state turns out to be caused by the existence of long-lived, spatial
heterogeneous structure, which results from the dynamic anomaly of the self-diffusion
coefficient. In this paper we first present the two different, nonequilibrium
suspensions and show how the idea of the dynamic anomaly works on them. Next we
discuss how this idea works even in equilibrium suspensions.

NONEQUILIBRIUM SUSPENSIONS

We consider the following two kinds of model suspensions. The first is the
concentrated, neutral hard-sphere suspension with both the hydrodynamic and the
direct interactions between particles. The second is the highly, charged hard-sphere
suspension with the interactions between macroions and counterions.

Depending on the space-time scales, there exist two characteristic stages. One is a
kinetic stage, where the space-time cutoff (rc, tc) is set as r0 <r c < fl and tQ < tc< tB. Here
(? is the characteristic length, r0 the microscopic length, tB the Brownian relaxation time,
and t0 the microscopic time. The other is a suspension-hydrodynamic stage, where

(a)

Glassy phase

Liquid phase

H
FIGURE 1. Schematic plot of the slow and fast relaxation processes, (a) 0(r,0 vs |r|. (b) A snapshot,
projected onto a plane, of a typical configuration of glassy domains. The glassy phase is colored black.
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rc> Q. and Zc> tB. In the kinetic stage, the position X .(f) and the velocity ut(t) of the /th
particle at time t are described by a set of Langevin equations12

d_x t=u t m±u t=M t + ? F t

with the force exerted by the fluctuating fluid on sphere i

Af ,(*)--£»,(')- I Gy-Mj(t) + Rt(t), (6)
;(* 0

where the tensor G iy represents the Oseen tensor, and £ is the friction coefficient. Here
F Lj is the force between particles / andy, where / and j denote either macroion or
counterion for charged case, and the random force R i (f) obeys a Gaussian, Markov
process. The second term of Eq.(6) represents the hydrodynamic interactions between
particles and contains long-range interactions. For charged case the Coulomb force F tj

is also long range. Because of those long-range nature, it is beyond our capacity to deal
with Eqs.(5) analytically. Hence we must further reduce it to obtain more macroscopic
equations, which we can reasonably analyze.

It is convenient to introduce the probability distribution function of n particles by
fn(ri>ui>— ' r n > M r t ^ ) = ^ . ( r i> M i>0 '' '^( r«'wn'0 wn"h the particle number density

N

where f(r,u,t)= A(r,n,f) is a causal part and dA(r,u,t) is a fluctuating part. Here the
relative magnitude of the fluctuations to the causal part is small; \dA/f \< I. One can
now transform Eqs.(5) into the hierarchy equations for fn. For charged case the similar
hierarchy equations are also derived for counterions. By employing the space-time
coarse-graining in an appropriate manner together with expansions in the small
parameters and also in |<5A //| , one can thus derive a nonlinear deterministic nonlinear
equation for f(r,u,t) and a linear equation for the variance 5A(r,a,r)dA(r' ,w' ,f). We
note here that in the above formulation all the direct correlation functions were
neglected for simplicity. Therefore, the resulting equations are restricted only to the
description of the self-diffusion process.

In the suspension-hydrodynamic stage, the relevant variable is the slowly-varying,
local volume fraction given b y
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$(r,f) = J dvA(r,v , t) = <f(r,t) + S#r,f) (8)

with the average local volume fraction <&(r,t) and the fluctuation d(frr,t), where
|<50/ <$>[<!, and (1/V) Jdr<&(r,0 = 0. By taking expansions in the spatial gradient
did r, the slowness parameter 3 /d f , and the relative magnitude |<50/<2>|<1, one can
then derive the nonlinear deterministic diffusion equation (1) from the equation for
f(r,u,f) and the linear equation (2) from the linear variance equation for the
fluctuations.

We now discuss the analytical results for two kinds of nonequilibrium suspensions.
The first is the neutral, hard-sphere suspension (HS) with both the hydrodynamic and
the direct interactions between particles. The self-diffusion coefficient is given by12

with y = 2 , where DQ is the single-particle diffusion coefficient, Z^(^) the short-time
self-diffusion coefficient (see Ref. 12 for details), and <^ = (4/3)3/(71n3 -81n2 + 2)
~ 0.57184 • • • . Here the second singular term in the denominator of Eq.(9) results from
the many-body correlations between particles due to the long-range hydrodynamic
interactions, while the numerator of Eq.(9) results from the coupling between the direct
and the short-range hydrodynamic interactions between particles. For short times
t<ty - a2 1 'Ds

s((p) , Ds(<&) reduces to the short-time self-diffusion coefficient Ds
s((jj)

since the direct interactions and the correlations are negligible. On the other hand, for
long times t>tL - a /D^(0), it reduces to the long-time self-diffusion coefficient D^(^)
since <&(r,f) reaches <j>. As was shown in Ref. 12, a good agreement is also seen
between the theoretical diffusion coefficients and the experimental data. Thus, there
exists a crossover from a short-time diffusion process to a long-time diffusion process
for intermediate times where the dynamic anomaly plays an important role.

It is interesting to notice here that the transition point 0.57184 • • • , which results
from the long-range hydrodynamic interactions between particles, is very close to the
experimental value. If the hydrodynamic interactions are neglected completely from the
beginning, the diffusion coefficient (9) reduces, within the bilinear approximation, to

D5(4Kr,0)-D0[l-2<P(r,f)]. (10)

From the idea of the dynamic anomaly, we then find $g = 0.5 and y = 1 . The transition
point 0.5 is quite close to the value 0.516 obtained by MCT. This may suggest that
the transition point predicted by MCT is closely related to the direct interactions
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between particles through the two-body correlations within the bilinear approximation.
Hence we emphasize that in order to obtain a reasonable value of the transition point,
the hydrodynamic interactions are indispensable.

The second is the highly, charged hard-sphere suspension (CS) with the macroions
of radius a and chargeZe, and the counterions of radius ac and chargege, whereZ> q
and a > ac . Up to lowest order in 0 and q I Z, we obtain1 4

where 00 = (4/3)/[r3/2-^/r3- J6 r3/2 + 4/(30f ) ]2, Ds
s(®) = D0(l -250/16),

r = Zq QB/a, and $™ denotes the transition point in case (HS), 4 B being the Bjerrum
length. Using the idea of the dynamic anomaly, one then finds y = 1 and

) ]2. The terms with T 3/2 in
Eq.(ll) result from the pair correlation between macroions and counterions due to the
long-range, attractive Coulomb interactions, while the last term in Eq.(l 1) results from
the long-range hydrodynamic interactions between macroions. We note here that we
have neglected the terms obtained by the repulsive Coulomb interactions between
macroions because they lead to corrections for the highly charged suspensions with
F > 2. Hence the above result is valid for F > 2 at small volume fractions. In Fig. 2,
the long-time self-diffusion coefficient DL

S(^) = Ds((j)) is shown versus the separation
parameter a for different values of F . For comparison DL

s((j>) in case (HS) is also
shown.

Although the time exponent y and the transition point $g are different from each
other for the above suspensions, their long-time relaxation behavior seems not to
depend on those qualitatively. In fact, the self-intermediate scattering function Fs(k,t)
can be written in the Gaussian form as13'14

with the mean-square displacement

M2(t) = 2d$ds$-^- Ds($(r,s)), (13)
0 ^

where d is a spatial dimensionality. There are four characteristic time stages in the
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supercooled colloidal state for ^(z0,/ca) < (j>< $g. The first is the early stage with t< r y ,
where the density fluctuations obey the short-time exponential decay
Fs(k,i) = exp[ - kzD^(0)/]. The second is the p-relaxation stage on the time scale of
orderrp ~ |a|Y/2> where Fs(k,t) obeys the von Schweidler decay for/p < t < ta. The third

is the a-relaxation stage with ta < t < tL. <&(r,f) can be scaled near </> as13

(14)

where n(z 0) is an exponent to be determined, and J dre( r) = 0. Here the exponent ^(z 0)
can be calculated numerically since l-z(t) ~fdfl from Eqs. (4) and (14). Use of
Eqs.(9), (11) and (13) then leads, to lowest order in a and |e|, to

(i=HS, CS) (15)

with

(16)

dr
(17)

0.8 -

- 1 -0.8 -0.6 -0.4 -0.2

a

FIGURE 2. Long-time self-diflusion coefficient versus separation parameter a for T= 2, 3, and 6 (from
left to right). The dotted line representsZ>^(0) in case (HS).
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where we have used the fact that \e\< 1 for t> ta, and for case (HS) the details of the
terms mm and mf5 are shown in Ref. 13. The functions m'L(f), (i = HS, CS), describes

a a-relaxation process. In fact, use of Eq.(14) leads to m*L(f) ~ \o\Y tft with the
exponent/8(z0) = 1 - d/Li(z0). Thus, one finds the KWW function

(18)

with the a-relaxation time ta «(k \ o\)"", where r](z 0) = y / /3(z 0) • For case (HS)> 7 = 2»
00(0.8,3.5) -0.56, 0g = 0.57184--- , £(0.8) = 0.586, and 17(0.8) =3.41, while for
case(CS), y = 1, 0^(0.8,1.3,r) -7.609 x 10~3, <^CT) = 7.9x 10~3, )3(0.8) =0.59, and
17(0.8)= 1.695 at r =3.684. The last is the late stage with t> tL, whereFs(k,i) obeys
the long-time exponential decay Fs(k,f)= exp[ - k 2DL

s((f>)t]. In Fig. 3 we show the time
evolution of (a) Fs(k,f) and (b) M2(f) at 0=0.571 and fa* = 3.5 (case (HS)), and
0=7.899x 10"3, T =3.684, and ka= 1.3 (case(CS)). Apart from the early stage, the
two suspensions thus turn out to give rise to the similar relaxation behavior. Finally,
we note that in the nonequilibrium case the charged suspension shows the a and (3
relaxation processes even at the very low volume fractions near 0g.

0.8

0.6

0.4

- 2 2 4

log i ( | (D o t / a 2 )

0

(b)

2 4

l o g j o( Dnt/a2)

FIGURE 3. Time evolution of (a) F£kJ) and (b) M2(t). The solid lines indicate the results in case
(HS) at 0 = 0.571 and fez = 3.5, while the dotted lines indicate the results in case (CS) at
0=7.899 xlO"3, T =3.684, and ka= 1.3. The symbols indicate the time scales: ty (A), rp (+), ta (•),
and tL (•).
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EQUILIBRIUM SUSPENSIONS

In this section we discuss the equilibrium suspensions, where the local volume
fraction <t>(r,f) is given by <J>(r,/) = 0+ <50(r,/) with \d(j) / 0|< 1 . In the following, we
focus only on case (HS) for simplicity. As was shown in Ref. 10, one can formally
derive a nonlinear stochastic diffusion equation for ^(r,r), which is similar to Eq.(l),
except that the random force f(r,0 now appears. Hence one can assume that the
diffiision coefficient is identical to that in the nonequilibrium case, except that <£(r,0 is
now replaced by &(r,i). Near c/)g, one can then write Eq.(9) approximately as

D5($)^D0[a+<5#r,0/^]2. (19)

Hence Ds ( $>) becomes dynamically anomalous when <5$>, f) I $g = - a. Similarly to the
nonequilibrium case, therefore, the glassy regions with <50/<^>-a freeze for
intermediate times, forming spatially heterogeneous structure. In contrast to the spatial
heterogeneities in the nonequilibrium case, however, their size and magnitude are very
small. Although it might be difficult to observe them experimentally, they are still
important because they do influence the dynamics of the equilibrium density
fluctuations. In fact, as long as the relative magnitude |d0 /0 l is the same order as |cr|,
the fluctuations 6$ obey the nonlinear stochastic diffiision equation, up to order) 60 1 ,

(20)

with v = oe(l-90/32)/[<^(c+a2)2] and w = c(l-90/32)(c- 3a2)/[302(c + a2)3],
where c(0) = D*(0)0/(D0<^,). Here the Gaussian random force Kr»0 satisfies

' ,0) > = 0,

' ,f ) > = - 260- f }(*na 0/3) V • [Ds($(r, t)) V d(r - r''

where the brackets denote the average over an equilibrium ensemble.
In order to calculate the self-intermediate scattering function Fs(k,f)

= < dnk(t)dn_k(0) > from Eq. (20), we here simply use the following three steps. The
first is to split up the variable d(j)q(t) into two parts, a linear part in <5<^(0) and others;
&l>q(t) = F(q,t)8<l>q(Q) + Iq(t), where Iq(t) describes nonlinear terms of order |<50g(0)|2

and fluctuations. The second consists of a factorization for the four-point correlation
of dnk(0), resulting in products of S(k). The third is to use the convolution
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approximation < dnkdnpdn_q> - d(jk+pS(k)S(p)S(q)/^W. Thus, one can obtain, to
lowest order in \d(f)k (0) /^|,

d_
~t

with the memory term

(22)

m<
air

•—!'DJl Q

(23)

where the spatial cutoff rc is set so as to be ms(t=Q)= 1. We note here that the
memory term (23) is determined by the intermediate scattering function F(q,f). From
Eq.(22),Fs(£,0 obeys Fs(k,t) = exp(-k2Ds

st) for short times since D*>D^ while it
obeys Fs(k,f) = e\p(-k2DL

st) for long times since ms(°° ) «0. In order to solve
Eq.(22), therefore, one has to derive another equation for F(q,t) from first principles.
This can be done by employing a procedure similar to that in the derivation of Eqs. (1)
and (2), except that the direct correlations are now taking into account. In the
following, however, we just use the empirical relation for F(q,f) proposed by Segreand
Pusey 15 instead, which is given by F(q,f) = exp[-q2Dc(q)M2(q,i)/(6Ds

s)], where
Dc(g,0) denotes the ^-dependent, short-time collective-diffusion coefficient. In Fig. 4

(b)

- 2 0 2 4

log f n( D()t/a2)

FIGURE 4. Time evolution of (a) Fs(kj) at ka=3.5 and (b)M2(0 for 0 = 0.545, 0.566, and 0.571
(from left to right).
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Fs(k,f) and M2 (f) are shown for different volume fractions at ka = 3.5, where we have
just put Dc(q,(j)) = Ds

s((t))/S(q) for simplicity sinceDc(q) is not known.

CONCLUSIONS

In summary, we conclude that the idea of the dynamic anomaly of the diffusion
coefficient causes the long-lived spatial heterogeneities near cj)g in equilibrium and
nonequilibrium suspensions. Since the spatial heterogeneities are enhanced in the
nonequilibrium suspensions, the a and p relaxation processes can be seen even for low
volume fractions near cj)g in case (CS). On the other hand, since their size and
magnitude are small in the equilibrium suspensions, it might be difficult to observe
them experimentally. However, they are still important since they do influence the
dynamics of equilibrium density fluctuations. In both cases (HS) and (CS), the
dynamic anomaly has been shown to result from the many-body correlations due to
the long-range interactions, such as the hydrodynamic interactions between particles in
case (HS)12 and the Coulomb attractive interactions between macroions and
counterions in case (CS)14. Hence we emphasize that in order to discuss the dynamics
of colloidal suspensions near $g, those long-range interactions are indispensable in
addition to the repulsive short-range interactions.
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