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For a quantitative evaluation of nanoscale elasticity, atomic force microscopy, and related methods
measure the contact stiffness~or force gradient! between the tip and sample surface. In these
methods the key parameter is the contact radius, since the contact stiffness is changed not only by
the elasticity of the sample but also by the contact radius. However, the contact radius is very
uncertain and it makes the precision of measurements questionable. In this work, we propose a novel
in situ method to estimate the tip shape and the contact radius at the nanoscale contact of the tip and
sample. Because the measured resonance frequency sometimes does not depend so sensitively on
the contact force as expected from the parabolic tip model, we introduced a more general model of
an axial symmetric body and derived an equation for the contact stiffness. Then, the parameters in
the model are unambiguously determined from a contact force dependence of the cantilever
resonance frequency. We verified that this method is able to provide an accurate prediction of the
cantilever thickness, the tip shape, and the effective elasticity of soft and rigid samples. ©2000
American Institute of Physics.@S0034-6748~00!05306-5#
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I. INTRODUCTION

Quantitative measurement of nanoscale elasticity has
creasingly become important for fundamental research of
physical properties of matter as well as quality control
modern micro- and nanoscale devices. Efforts for realiz
this measurement applying atomic force microscopy~AFM!
~Ref. 1! and near-field methods are reported. These incl
the scanning tunneling microscopy based method,2 force
modulation microscopy,3,4 ultrasonic atomic force micros
copy ~UAFM!,5,6 and other higher-frequency vibratio
modes.7–17 In these methods the measurable parameter is
contact stiffness,18 or the ratio of contact force and the di
tance between the cantilever tip and sample surface. Thro
this parameter, images reflecting nanoscale elasticity of s
surface dislocations in graphite single crystal,14–16 quantum
dots,17 and magnetic particles in storage media12 were ob-
tained.

At the same time, it is in principle possible to obta
quantitative values of elasticity using these methods,
some results are reported on gold2 and polymer,4,5 where
comparison with the literature values was performed. Ho
ever, no proof was presented for the obtained results.
major reason for the lack of proof is the lack of knowled
on the shape of the tip near the contact point, because
latter determines the radius of contact between the tip
sample. The change in contact radius tremendously cha
the contact stiffness even if the elasticity of the sample is
changed.18 Thus, the problem of tip shape attracted the att
tion of some previous authors,22 but no attempt for a funda
mental solution has been established. Therefore, the obta
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results are not as reliable as in the elasticity measuremen
the micrometer scale, known as acoustic microscop19

where a precise calibration procedure is established.20

To solve this problem, we propose a novelin situ
method for estimating the tip shape in this article, applica
to all methods in AFM and near-field mechanical prob
This method is based on a generalized theory of elastic c
tact for arbitrary axial symmetry tip21,22,24 and an efficient
inverse analysis procedure.23 The information we use in the
inverse analysis is the contact force dependence of the r
nance frequency of cantilever deflection vibration. In Sec.
we summarize the principle of UAFM that we use in th
article for quantitative measurement. In Sec. III, we form
late the generalized theory of contact stiffness and disc
the condition where it is significantly different from the sta
dard Hertzian contact mechanics.18 Then, in Sec. IV, we ob-
tain quantitative results for the inverse analysis and t
proofs are presented to show that the estimated effec
elasticity18 is correct.

II. PRINCIPLE OF ULTRASONIC ATOMIC FORCE
MICROSCOPY „UAFM…

The principle of UAFM ~Ref. 5! is depicted in Fig. 1.
We use this method because it has been proven to have
most advantageous property for quantitative analysis am
AFM based methods,24 although the approach proposed he
is applicable to all other methods. Figure 1~a! shows a usual
AFM. If the cantilever is soft enough, the tip does not d
form the surface of stiff materials, such as hard polyme
metals, and ceramics. Thus, the topography of the sam
surface can be precisely measured. However, the stiffnes
the sample cannot be evaluated using the same cantile
il:
3 © 2000 American Institute of Physics
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since it is necessary to elastically deform the sample
measure the deformation for the elasticity measurement.

The UAFM is a novel method in AFM that eliminate
the above dilemma using the mode dependent elastic be
ior of a cantilever. As illustrated in Fig. 1~b!, a resonant
vibration is excited on the cantilever by applying a vibrati
force to its base. Then, the sample is deformed accordin
the inertia force of the cantilever and tip, even if the stiffne
of the cantilever is low. At the same time, the resonan
frequencies as well as the vibration amplitude at fixed f
quencies vary depending on the elasticity of the sam
through the boundary condition at the tip–sample conta5

As a result, the elasticity of the sample can be evaluated
monitoring the cantilever vibration. When higher-orde
mode vibration is excited, as shown in Fig. 1~c!, the presence
of nodes effectively enhances the cantilever stiffness, and
ability to deform the sample and evaluate the elasticity

FIG. 1. Principle of ultrasoniic atomic force microscopy~UAFM!.
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enhanced. The advantage of UAFM over related techniq
are the following.5,24

~1! High-resolution nanoscale spatial resolution is realiz
which acoustic microscopes19,20 cannot achieve.

~2! Nondestructive evaluation: the sample is not damag
Recent technologies of nanoindentation can be applie
nanoscale resolution elasticity measurement,25 but since
the plastic deformation is induced on the sample,
elastic property is not necessarily identical to the int
surface.

~3! Quantitative evaluation: UAFM together with analys
given below provide the first quantitative elastici
evaluation in scanning probe microscopy.

Figure 2 shows an implementation of UAFM develop
using a contact-mode AFM. In addition to the usual fun
tions of AFM, a high-frequency vibrator attached to the su
port of a cantilever is driven by an output of a network an
lyzer ~NWA!. The resultant vibration of the cantilever
detected by a photodiode and processed by the NWA w
the force is kept constant by the feedback loop of thez stage
using the low-pass-filtered deflection signal~lower part of
Fig. 2!.

III. THEORY OF RESONANCE FREQUENCY AND
CONTACT STIFFNESS

As shown previously, the resonance frequency of
UAFM cantilever is determined by the effective elasticityK
~a function of Young’s modulus and Poisson’s ratio of the
and sample! through the boundary condition at one en
where the tip attached to the cantilever is in contact with
sample.5 Recently, we found that careful measurements
low-excitation power, keeping the tip and sample in cont
without jumping out, provide a resonance frequency comp
ible with the linear theory of cantilever vibration.24
e
-

t
s
es
r.
FIG. 2. Implementation of the UAFM
system with a network analyzer. Th
high-frequency generator is used to
gether with the lock-in amplifier to ob-
tain amplitude images at a constan
frequency. The network analyzer i
used to obtain resonance frequenci
and vibration spectra of the cantileve
P license or copyright; see http://rsi.aip.org/rsi/copyright.jsp
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The resonance frequency is calculated from the
quency equation

k

3SV
~kL !3~11coskL coshkL !

5coskL sinhkL2sinkL coshkL, ~1!

wherek is the cantilever stiffness,SV is the~vertical! contact
stiffness ~slope of the force versus indentation depth re
tion!, L is the cantilever length andk5(v2rA/EI)1/4 is the
wave number of the elastic wave on the cantilever in wh
v is the angular frequency,r is the density,A is the area,E
is the elastic modulus, andI is the moment of inertia of the
cantilever, which depends on the width and the thicknes
the cantilever. The cantilever stiffnessk is given by k
53EI/L3,18 and in the case of rectangular sectionk
5Ewt3/4L3, wherew is the width andt is the thickness of
cantilever. Though the nominal dimension of the cantile
is sometimes available, the value of thicknesst is very often
inaccurate. Therefore, we do not rely on the nominal va
but estimate it for each cantilever.

The effect of lateral contact stiffness can be taken i
account by modifying the boundary conditions. The result
frequency equation is available in the literature.10,11,24 Al-
though this improvement is significantly important, esp
cially at large normal force and for stiff materials, it is n
used in this article. The possible error caused by the lat
force can to some extent be compensated by the calibra
procedure shown below.

The contact stiffness in vertical directionSV is usually
approximated by the following equation:

SV5~3/2!aK, ~2!

where a is the contact radius andK5 4
3@(12n tip

2 )/Etip1(1
2n)2/E#21 is the effective elasticity.18 The contact radiusa
increases with increasing force if the tip is sharp, wherea
remains constant if the tip is flat. Therefore, the sensitivity
the contact radius on the force depends on the bluntnes
the tip. Usually, the tip shape is assumed to be parabolic
the Hertzian contact model18 is used. However, we found
that the tip is sometimes rather blunt, and the measured r
nance frequency does not depend so sensitively on the
tact force as expected from the parabolic tip model. Then,
introduce a more general model of an axial symme
body.21,22Here, the profile of tip is expressed by an equat

Z5crn , ~3!

wherez is the height andr is the radial distance of a point o
the tip profile in the cylindrical coordinate,c is a constant
andn is an arbitrary real number, which we call the tip sha
index. For this tip profile, the approximation in Eq.~2! is not
valid when the surface energy is dominant. Based on
theory of Maugis and Barquins,21 we have derived an equa
tion for the contact stiffness24
Downloaded 23 Apr 2010 to 130.34.135.83. Redistribution subject to AI
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3Kcn~n11!

2
Can2

3

2
A6pKga

~n11!nCcan212
1

2
A8pg

3Ka

, ~4!

whereg is the surface energy change due to the increas
the unit contact area, andC5(Ap/2)G(n/211)/G(n/2
13/2). It is easily seen that Eq.~4! is reduced to Eq.~2!
when g approaches zero, even whenn is not equal to 2.
However, since the surface energy becomes more domi
as the scale of contact is reduced, the use of Eq.~4! rather
than Eq.~2! is essential in a the analysis of AFM~this is
proven in Sec. IV!.

In Eq. ~4!, the contact radiusa is given by solving the
equation

F5
3Kcn

2
Can112A6pKga3, ~5!

using the contact forceF and the surface energyg is deter-
mined from the measured pull of forceFc using the follow-
ing equation:22,24

6pg5F F2~n11!

2n21
uFcuG2n21

@n~n11!cC#3

Kn22
G 1/~n11!

. ~6!

In this formulation we have three unknown paramete
c, n, and t. To reduce the number of unknown paramete
the constantc in Eq. ~3! is related to the tip shape indexn
using a measuring tip profile by a reference tip, a sh
needle of silicon crystal left in a porous silicon layer. If th
origin of the measured profile is located at the apex of the
and a reference point on the profile is given by (r 0 ,z0), the
constantc is related to the tip shape indexn by

c5z0r 0
2n . ~7!

IV. RESULTS AND DISCUSSION

As shown in the previous section, it is necessary
complete modeling of the operation of AFM to determine t
tip shape indexn, and another parameter, the cantilev
thicknesst. To achieve this, we use the shape of the fo
dependence of the resonance frequency. For the reson
frequency measurement, we used three sets of micro
chined silicon cantilevers with a silicon tip. The nomin
length, width, thickness, and stiffness of the cantilever w
L5444 mm, w573 mm, t53.5 mm, andk51.5 N/m, re-
spectively. Another cantileverL5226 mm, w530.5 mm, t
53.0 mm, andk53.0 N/m, with a diamond-coated silico
tip, was also used. For the sample, four kind of materia
silicon crystal with a~100! surface, soda lime glass~GL!,
highly oriented pyrolytic graphite~GR!, and polystyrene
~PS!, were used. The literature values of Young’s modu
and Poisson’s ratio (E,n) used to calculate the effective ela
ticity K were ~166 GPa, 0.22! for silicon, ~62.0 GPa, 0.24!
P license or copyright; see http://rsi.aip.org/rsi/copyright.jsp
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for GL, ~3.60 GPa, 0.35! for PS, and~30.0 GPa, 0.24! for
GR. For silicon, the Voigt average26 of the single-crystal
elastic stiffness was employed. For graphite GR, the inve
of the compressibility in the direction of thec axis27 was
tentatively used for Young’s modulus.

The closed circles in Fig. 3 are an example of the
perimental force dependence of the resonance frequency
tained on a soda lime glass using a cantilever with a sili
tip. It is noted that the frequency was almost constant at la
contact forces, but it decreased as the force decreased
the tip was pulled off the sample surface.

As the first step of analysis, we estimated the cantile
thickness and the tip shape index (t,n). To do this, we first
assumed arbitrary initial values for the combination of (t,n).
Then, we solved Eq.~5! for each contact forceF to obtain
the contact radiusa. Next, we calculated the contact stiffne
SV using Eq.~4!. Finally, we calculated the resonance fr
quency using Eq.~1!. This calculation was repeated for th
values of force where the resonance frequency was m
sured. Using these calculated resonance frequencies
evaluated the maximum difference between the meas
and calculated resonance frequencies. Then, the maxim
difference was minimized by appropriately changing the
rameter set (t,n), using an efficient inverse analysis calle
the down-hill simplex method.23 The inverse analysis
searches for the minimum of the curved surface on (t,n)
axes illustrated in Fig. 4. There is a sharp and unique m
mum at (t50.34, n55.6) in Fig. 4, and this minimum as
sures a satisfactory convergence of the inverse analysis
repeated the same analyses for four different cantilevers

As proof of the accuracy of the above analyses, we co
pared the estimated cantilever thicknesst with the values
measured in a scanning electron microscope~SEM!. In the
SEM observation, we found that the thickness was alm
uniform along the cantilever, but has some variation,
shown by the horizontal error bars in Fig. 5. However, in
three cantilevers, good agreement was obtained betwee

FIG. 3. Contact force dependence of the resonance frequency on soda
glass~GL!, highly oriented pyrolytic graphite~GR!, and polystyrene~PS!.
The symbols are the measured resonance frequencies and the curves
calculated ones based on the estimated tip shape index and cantilever
ness.
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estimated thickness and the average value of measured t
ness. This result shows that the present model is applic
to the analysis in AFM. Although we used the model of t
cantilever with a uniform rectangular cross section, a m
accurate analysis taking into account the trapezoidal c
section gives even better results, as will be published lat

As another proof of the analysis, the profile of the t
was calculated based on Eq.~3! using the estimated tip shap
index n, and compared with the measured profile. Then,
found that the estimated tip profile was very close to

me

the
ick-

FIG. 4. Maximum error between measured and calculated resonance
quency as a function of cantilever thicknesst and tip shape indexn, based
on the resonance frequencies in Fig. 3 for the soda lime glass~GL! using a
silicon lever with a silicon tip.

FIG. 5. Estimation accuracy of cantilever thickness.~a! Scanning electron
microscope images of a cantilever.~b! Comparison between the estimate
and measured thickness of the cantilevers showing remarkable agreem
P license or copyright; see http://rsi.aip.org/rsi/copyright.jsp
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measured one, as shown in Fig. 6~a!. This result suggests
reasonable accuracy of the present analysis. It is importa
note that the estimated tip shape indexn55.6 was signifi-
cantly larger than 2~for the parabolic tip model!. This n
indicates a flat shape and explains the slow increase of
resonance frequency as a function of force in Fig. 3. T
usually assumed parabolic tip model gives a faster incre
of the resonance frequency as the force is increased, bec
the contact radius is easily increased by increasing the fo
Then, it cannot explain the observed flat force dependen

Once the parameter set (t,n) is estimated, the contac
stiffness of the unknown sample can be evaluated using
same parameter set. In this case, the unknown parame
the effective elasticityK. Open squares and circles in Fig.
show the measured force dependence of the resonance
quencies on graphite and on polystyrene, respectively.
solid curves represent fitted curves using the same param
set (t,n) obtained on GL, with the effective elasticityK ad-
justed so as to minimize the maximum error. The agreem
between the measured and calculated force dependen
the resonance frequency is fairly good. The value ofK that
gives the best fit for PS was 6.99 GPa, whereas the litera
value is 5.36 using the Young’s modulus and Poisson’s r
of ~3.60 GPa, 0.35!. The agreement is fairly good. The valu
of best fitK for GR was 22.3 GPa, which is comparable b
less than the literature value of 36.3 GPa using the Youn
modulus and Poisson’s ratio of~30.0 GPa, 0.24!.

We repeated this procedure for four different cantileve
Figure 7 shows a comparison between the estimated va
and literature values of the effective elasticity for vario
materials. The straight line corresponds to the case of pe
agreement between the two. The symbols other than cir
represent the data by silicon tips, and the circles represen

FIG. 6. Comparison between the estimated and measured tip profile.
solid curves represent the measured ones and the dotted curves repres
estimated ones. The circles show the origin and the reference point@see Eq.
~7!# on the tip profile.~a! The tip used to obtain data in Fig. 3. The estimat
profile is close to the measured one.~b! Another tip, where the estimate
profile is more flat than the measured one.
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data by a diamond-coated Si tip. To evaluate Si, only
diamond-coated Si tip was used, because of severe we
the Si tip.

We generally obtained a good agreement between
estimated and literature values of the effective elasticity. T
agreement for PS was particularly good. The agreement
GR was worse than in PS and the estimated elasticity
usually less than the literature value. A possible reason
this is because we assumed an isotropic indentation mec
ics for GR, although GR has a layered structure with a stro
anisotropy. A finite-element analysis for the anisotropic co
tact mechanics would improve the agreement.

Another source of error is noticed in Fig. 3, in whic
there is some discrepancy between the measured and th
timated force dependence of the resonance frequency fo
GR and PS samples. It can be explained by the wear of
tip. Although the tip shape indexn had been determined
using the data on the GL sample, this value cannot be cor
after wear of the tip takes place. In fact, if we treated the
shape index as an adjustable parameter, and apply an inv
analysis, the tip shape index was estimated to be larger
5.6 and the agreement in the force dependence
improved.24

For some cases, the estimated tip shape indexn was
more than 10, and the tip shape calculated using the in
was significantly more flat than the measured one, as sh
in Fig. 6~b!. The reason for this error would be~1! the wear
of tip changes the tip shape index and~2! the position of the
tip apex in contact with the sample is different for differe
samples.

We verified possibility~1! by a tip profile measuremen
using a reference tip. However, if we used a diamond-coa
tip, we found that the wear resistance of the tip was sign
cantly improved. At the same time, the reproducibility of t
estimated effective elasticity was improved. Moreover,
obtained reproducible data for the Si samples, as show
Fig. 7, which was difficult using the silicon tips. Thus, th
wear of the tip is certainly a dominant source of error in t
present analysis. Development of a wear resistant tip
clearly one of the most important efforts needed for realiz
quantitative AFM when a strong force is acted upon the

he
t the

FIG. 7. Comparison between the experimental values of the effective e
ticity using the tip shape estimation from the inverse analysis of the re
nance frequency and the reported values of the effective elasticity.
P license or copyright; see http://rsi.aip.org/rsi/copyright.jsp
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Another limitation in the present analysis lies in the n
cessity of the reference point on the tip profile. Though
reduction of variables by assuming the reference poin
useful for a fast convergence of the inverse analysis, m
surement of the tip profile using a reference tip needs a
tain skill and effort. Moreover, the estimated tip profile m
be affected by the selection of the reference point. Theref
improved analysis without the need for a reference poin
required.
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