REAFEEBUKNSFY

Tohoku University Repository

Nanoscale elasticity measurement with In situ
tip shape estimation In atomic force
miCcroscpoy

00O OO0 OO0

journal or Review of Scientific Instruments
publication title

volume 71

number 6

page range 2403-2408

year 2000

URL http://hdl.handle.net/10097/48088

doi: 10.1063/1.1150627



REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 71, NUMBER 6 JUNE 2000

Nanoscale elasticity measurement with  in situ tip shape estimation
in atomic force microscopy

Kazushi Yamanaka,® Toshihiro Tsuji, Atsushi Noguchi, Takayuki Koike,

and Tsuyoshi Mihara
Department of Materials Processing, Tohoku University, Aoba02, Sendai 980-8579, Japan

(Received 1 October 1999; accepted for publication 2 March 2000

For a quantitative evaluation of nanoscale elasticity, atomic force microscopy, and related methods
measure the contact stiffnegsr force gradient between the tip and sample surface. In these
methods the key parameter is the contact radius, since the contact stiffness is changed not only by
the elasticity of the sample but also by the contact radius. However, the contact radius is very
uncertain and it makes the precision of measurements questionable. In this work, we propose a novel
in situ method to estimate the tip shape and the contact radius at the nanoscale contact of the tip and
sample. Because the measured resonance frequency sometimes does not depend so sensitively on
the contact force as expected from the parabolic tip model, we introduced a more general model of
an axial symmetric body and derived an equation for the contact stiffness. Then, the parameters in
the model are unambiguously determined from a contact force dependence of the cantilever
resonance frequency. We verified that this method is able to provide an accurate prediction of the
cantilever thickness, the tip shape, and the effective elasticity of soft and rigid samplexd0@
American Institute of Physic§S0034-6748)0)05306-5

I. INTRODUCTION results are not as reliable as in the elasticity measurements on

L . _the micrometer scale, known as acoustic microscdpy,
Quantitative measurement of nanoscale elasticity has Nyhere a precise calibration procedure is establi€fed.

creasingly become important for fundamental research of the To solve this problem, we propose a noviel situ
physical properties of matter as well as quality control of o4 for estimating the tip shape in this article, applicable

modern micro- and nanoscale devices. Efforts for realizinq0 all methods in AFM and near-field mechanical probes
this measurement applying atomic force microsCO¥M)  1is method is based on a generalized theory of elastic con-

(Ref. 1) and near-field methods are reported. These includ?act for arbitrary axial symmetry #?%24and an efficient

the slc:apn|ng .tunnel|ng4 m||croscqpy ba;edf mefhckjrce inverse analysis proceduféThe information we use in the
modulation mlg’ré)scop% latrasgnlﬁ at]?mlc Orce MICros- iy /erse analysis is the contact force dependence of the reso-
copy (UAFM),>® and other higher-frequency vibration nance frequency of cantilever deflection vibration. In Sec. Il,

modes’~*"In these methods the measurable parameter is the . <\ mmarize the principle of UAFM that we use in this
contact stiffnes$® or the ratio of contact force and the dis-

. . . . . 6
surface dislocations in graphite single crysfat’® quantum 4o 4 Hertzian contact mechaniésThen, in Sec. IV, we ob-

dots;” and magnetic particles in storage mediwere ob- tain quantitative results for the inverse analysis and two

tained. h , L inciol ib| . proofs are presented to show that the estimated effective
At the same time, it is in principle possible to obtain elasticity® is correct.

guantitative values of elasticity using these methods, and
some results are reported on goland polymef:® where
comparison with the literature values was performed. How-
ever, no proof was presented for the obtained results. ThI 'IEEI(’)\‘SCCIF(;LPEY?E:FLJ)RASONIC ATOMIC FORCE

major reason for the lack of proof is the lack of knowledge

on the shape of the tip near the contact point, because the The principle of UAFM (Ref. 5 is depicted in Fig. 1.
latter determines the radius of contact between the tip antdye use this method because it has been proven to have the
sample. The change in contact radius tremendously chang@sost advantageous property for quantitative analysis among
the contact stiffness even if the elasticity of the sample is NoAFM based method%' although the approach proposed here
changed? Thus, the problem of tip shape attracted the attenis applicable to all other methods. Figur@iishows a usual

tion of some previous authofébut no attempt for a funda- AFM. If the cantilever is soft enough, the tip does not de-
mental solution has been established. Therefore, the obtainégrm the surface of stiff materials, such as hard polymers,
metals, and ceramics. Thus, the topography of the sample
3Author to whom correspondence should be addressed: electronic maipUrface can be precisely measured. However, the stiffness of
yamanaka@material.tohoku.ac.jp the sample cannot be evaluated using the same cantilever,

0034-6748/2000/71(6)/2403/6/$17.00 2403 © 2000 American Institute of Physics

Downloaded 23 Apr 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp



2404 Rev. Sci. Instrum., Vol. 71, No. 6, June 2000 Yamanaka et al.

enhanced. The advantage of UAFM over related techniques
are the following>%*

(1) High-resolution nanoscale spatial resolution is realized,
(a) Static /Force modulation AFM which acoustic microscops?® cannot achieve.
(2) Nondestructive evaluation: the sample is not damaged.
Recent technologies of nanoindentation can be applied to
nanoscale resolution elasticity measurenfém,t since
the plastic deformation is induced on the sample, the
elastic property is not necessarily identical to the intact
(b) 1 st mode deflectional Resonance surface.
(3) Quantitative evaluation: UAFM together with analyses
given below provide the first quantitative elasticity
evaluation in scanning probe microscopy.

Figure 2 shows an implementation of UAFM developed
(¢) 2 nd mode deflectional Resonance using a contact-mode AFM. In addition to the usual func-
tions of AFM, a high-frequency vibrator attached to the sup-
port of a cantilever is driven by an output of a network ana-
lyzer (NWA). The resultant vibration of the cantilever is

since it is necessary to elastically deform the sample andetected by a photodiode and processed by the NWA while

measure the deformation for the elasticity measurement. the force is kept constant by the feedback loop ofziseage
The UAFM is a novel method in AFM that eliminates using the low-pass-filtered deflection sigridwer part of

the above dilemma using the mode dependent elastic behalig. 2).

ior of a cantilever. As illustrated in Fig.(f}), a resonant

V|brat|on. is excited on the cantllever. by applying a V|bra_t|ng|“_ THEORY OF RESONANCE FREQUENCY AND

force to its base. Then, the sample is deformed according R ONTACT STIFENESS

the inertia force of the cantilever and tip, even if the stiffness

of the cantilever is low. At the same time, the resonance As shown previously, the resonance frequency of the

frequencies as well as the vibration amplitude at fixed frelUAFM cantilever is determined by the effective elastidity

quencies vary depending on the elasticity of the sampléa function of Young's modulus and Poisson’s ratio of the tip

through the boundary condition at the tip—sample cortact.and sample through the boundary condition at one end

As a result, the elasticity of the sample can be evaluated bwhere the tip attached to the cantilever is in contact with the

monitoring the cantilever vibration. When higher-order- sample> Recently, we found that careful measurements at

mode vibration is excited, as shown in Figcll the presence low-excitation power, keeping the tip and sample in contact

of nodes effectively enhances the cantilever stiffness, and th@ithout jumping out, provide a resonance frequency compat-

ability to deform the sample and evaluate the elasticity isble with the linear theory of cantilever vibratidf.

FIG. 1. Principle of ultrasoniic atomic force microscoiyAFM).
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The resonance frequency is calculated from the fre- OF  OF /968
uency equation =—=—/ —
a yed S dé6 oda Jda
k 3Ken(n+1) 3
———(kL)3(1+coskL coshkL) ————Vva"- —\J67Kya
3Sy 2 2
= : 4
= coskL sinhxL —sinkL coshkL, (1) 1 [8my
(n+1)nPeca" - —\/—
2 V 3Ka

wherek is the cantilever stiffness, is the (vertica) contact
stiffness (slope of the force versus indentation depth rela
tion), L is the cantilever length and= (w?pA/El)Y*is the
wave number of the elastic wave on the cantilever in whic i
o is the angular frequency, is the densityA is the areaf ~ When ¥ approaches zero, even whenis not equal to 2.

is the elastic modulus, ardis the moment of inertia of the HOWever, since the surface energy becomes more dominant

cantilever, which depends on the width and the thickness oS the scale of contact is reduced, the use of (Bgrather
the cantilever. The cantilever stiffneds is given by k than Eq.(2) is essential in a the analysis of AFMhis is

—3EI/L3!® and in the case of rectangular sectign Proven in Sec. V. o _
=Ewt¥/4L3, wherew is the width and is the thickness of In Eq. (4), the contact radius is given by solving the

‘where vy is the surface energy change due to the increase of
the unit contact area, and=(\/7/2)['(n/2+1)/T'(n/2
ht3/2). Itis easily seen that Ed4) is reduced to Eq(2)

cantilever. Though the nominal dimension of the cantileve©auation

is sometimes available, the value of thickness very often 3Kcn

. . n+1 3

inaccurate. Therefore, we do not rely on the nominal value F=— Wa' = 6mKya®, )

but estimate it for each cantilever.

The effect of lateral contact stiffness can be taken intaUsing the contact forc and the surface energyis deter-
account by modifying the boundary conditions. The resultanfined from the measured pull of forég, using the follow-
frequency equation is available in the literatdffd?24Al-  ing equatior?>**

though this improvement is significantly important, espe- 2(n+1) 2n-1 1Un+1)

cially at large normal force and for stiff materials, it is not —|FC|} [n(n+1)cV]3

used in this article. The possible error caused by the lateral  g,— 2n—1 — . (6)

force can to some extent be compensated by the calibration K

procedure shown below. In this formulation we have three unknown parameters,
The contact stiffness in vertical directidy is usually ¢ n andt. To reduce the number of unknown parameters,

approximated by the following equation: the constant in Eq. (3) is related to the tip shape index

using a measuring tip profile by a reference tip, a sharp

Sy=(3/2)akK, 2) needle of silicon crystal left in a porous silicon layer. If the

origin of the measured profile is located at the apex of the tip
and a reference point on the profile is given Ioy,go), the

; i —A4r(1— 2 . . . .
wherea is the contact radius anll = 5[ (1— v{,)/Ep+ (1 constantc is related to the tip shape indexby

—v)?/E] ! is the effective elasticity® The contact radiua
increases with increasing force if the tip is sharp, whereas it c=zgry". @)
remains constant if the tip is flat. Therefore, the sensitivity of

the contact radius on the force depends on the bluntness of. RESULTS AND DISCUSSION

the tip. Usually, the tip shape is assumed to be parabolic and

the Hertzian contact modélis used. However, we found As shown in the previous section, it is necessary for
that the tip is sometimes rather blunt, and the measured res§omplete modeling of the operation of AFM to determine the
nance frequency does not depend so sensitively on the cofiP shape indexn, and another parameter, the cantilever
tact force as expected from the parabolic tip model. Then, wéhicknesst. To achieve this, we use the shape of the force
introduce a more general model of an axial symmetricdependence of the resonance frequency. For the resonance

body?*??Here, the profile of tip is expressed by an equationfrequency measurement, we used three sets of microma-
chined silicon cantilevers with a silicon tip. The nominal

length, width, thickness, and stiffness of the cantilever were
L=444 ym, w=73 um, t=3.5 um, andk=1.5 N/m, re-
spectively. Another cantilevelr =226 um, w=30.5 um, t
wherezis the height and is the radial distance of a point on =3.0 um, andk=3.0 N/m, with a diamond-coated silicon
the tip profile in the cylindrical coordinate, is a constant tip, was also used. For the sample, four kind of materials,
andn is an arbitrary real number, which we call the tip shapesilicon crystal with a(100) surface, soda lime glad&L),
index. For this tip profile, the approximation in E§) is not  highly oriented pyrolytic graphitd GR), and polystyrene
valid when the surface energy is dominant. Based on théPS, were used. The literature values of Young's modulus
theory of Maugis and Barquirfs,we have derived an equa- and Poisson’s ratioH, v) used to calculate the effective elas-
tion for the contact stiffne$ ticity K were (166 GPa, 0.2Rfor silicon, (62.0 GPa, 0.24

Z=cr", ©)

Downloaded 23 Apr 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp



2406 Rev. Sci. Instrum., Vol. 71, No. 6, June 2000 Yamanaka et al.

T T T T T T T [%e)
<
g o
3
90 »
N ©n
Q
= g8
" L o
bl k=i
> [
= 5
S =
g 8 9
Y- 80 T2 4.0 6.0
Tip profile index n
0.07 0.5

Maximum error kHz

Force F, nN

FIG. 4. Maximum error between measured and calculated resonance fre-

FIG. 3. Contact force dependence of the resonance frequency on soda linfglency as a function of cantilever thicknesand tip shape inder, based
glass(GL), highly oriented pyrolytic graphitéGR), and polystyrenéPS. on the resonance frequencies in Fig. 3 for the soda lime ¢lalssusing a
The symbols are the measured resonance frequencies and the curves aresiligon lever with a silicon tip.

calculated ones based on the estimated tip shape index and cantilever thick-

ness.
estimated thickness and the average value of measured thick-

ness. This result shows that the present model is applicable
to the analysis in AFM. Although we used the model of the
gantilever with a uniform rectangular cross section, a more
accurate analysis taking into account the trapezoidal cross
tentatively used for Young’s modulus. section gives even better results, as will be pu.blished Iatt_ar.

The closed circles in Fig. 3 are an example of the ex- As another proof of the an{;\lyss, the'proﬂle 9f the tip
perimental force dependence of the resonance frequency of@s calculated based on !5(3) using the eStlmatgd tip shape
tained on a soda lime glass using a cantilever with a s;ilicoﬁndex h, and compz_;\red W'th. the m_easured profile. Then, we
tip. It is noted that the frequency was almost constant at IarggounOI that the estimated tip profile was very close to the
contact forces, but it decreased as the force decreased until

the tip was pulled off the sample surface.

As the first step of analysis, we estimated the cantilever
thickness and the tip shape indexn). To do this, we first
assumed arbitrary initial values for the combinationtoh.
Then, we solved Eq(5) for each contact forc& to obtain
the contact radiua. Next, we calculated the contact stiffness

for GL, (3.60 GPa, 0.3bfor PS, and(30.0 GPa, 0.24for
GR. For silicon, the Voigt averad®of the single-crystal
elastic stiffness was employed. For graphite GR, the invers
of the compressibility in the direction of the axis’ was

Sy using Eq.(4). Finally, we calculated the resonance fre- B~ vy

quency using Eq(l). This calculation was repeated for the - R S—
values of force where the resonance frequency was mea- - -

sured. Using these calculated resonance frequencies we _ -

evaluated the maximum difference between the measured Root Centar Tip
and calculated resonance frequencies. Then, the maximum
difference was minimized by appropriately changing the pa-
rameter sett(n), using an efficient inverse analysis called
the down-hill simplex metho® The inverse analysis
searches for the minimum of the curved surface om)(
axes illustrated in Fig. 4. There is a sharp and unique mini-
mum at ¢=0.34,n=5.6) in Fig. 4, and this minimum as-
sures a satisfactory convergence of the inverse analysis. We
repeated the same analyses for four different cantilevers.

As proof of the accuracy of the above analyses, we com-
pared the estimated cantilever thickndswith the values
measured in a scanning electron microsc6®EM). In the
SEM observation, we found that the thickness was almost (b)
uniform along the cantilever, but has some variation, a%IG. 5. Estimation accuracy of cantilever thickne&. Scanning electron

shown by _the horizontal error bars in Fig. 5. _However, in all picroscope images of a cantileveéh) Comparison between the estimated
three cantilevers, good agreement was obtained between thed measured thickness of the cantilevers showing remarkable agreement.

> Hm o

3.5r .

3.0r 7

23.5 3?0 3?5 4.0

Measured thickness of cantilever t, um

Estimated thickness of cantilever t
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(b) nm data by a diamond-coated Si tip. To evaluate Si, only the

. _ _ , diamond-coated Si tip was used, because of severe wear of
FIG. 6. Comparison between the estimated and measured tip profile. Thq%e Si tip
tthe )

solid curves represent the measured ones and the dotted curves represen .
estimated ones. The circles show the origin and the reference[pemEq. We generally obtained a good agreement between the

(7] on the tip profile(a) The tip used to obtain data in Fig. 3. The estimated estimated and literature values of the effective elasticity. The
proﬁle _is close to the measured orib) Another tip, where the estimated agreement for PS was particularly good. The agreement for
profile is more flat than the measured one. GR was worse than in PS and the estimated elasticity was
usually less than the literature value. A possible reason for
measured one, as shown in Figaje This result suggests a this is because we assumed an isotropic indentation mechan-
reasonable accuracy of the present analysis. It is important tios for GR, although GR has a layered structure with a strong
note that the estimated tip shape index5.6 was signifi- anisotropy. A finite-element analysis for the anisotropic con-
cantly larger than 2for the parabolic tip model This n  tact mechanics would improve the agreement.
indicates a flat shape and explains the slow increase of the Another source of error is noticed in Fig. 3, in which
resonance frequency as a function of force in Fig. 3. Thehere is some discrepancy between the measured and the es-
usually assumed parabolic tip model gives a faster increastmated force dependence of the resonance frequency for the
of the resonance frequency as the force is increased, becauSs® and PS samples. It can be explained by the wear of the
the contact radius is easily increased by increasing the forcéip. Although the tip shape inder had been determined
Then, it cannot explain the observed flat force dependenceusing the data on the GL sample, this value cannot be correct
Once the parameter set, ) is estimated, the contact after wear of the tip takes place. In fact, if we treated the tip
stiffness of the unknown sample can be evaluated using thehape index as an adjustable parameter, and apply an inverse
same parameter set. In this case, the unknown parameterasalysis, the tip shape index was estimated to be larger than
the effective elasticityK. Open squares and circles in Fig. 3 5.6 and the agreement in the force dependence was
show the measured force dependence of the resonance fiexproved®*
guencies on graphite and on polystyrene, respectively. The For some cases, the estimated tip shape indexas
solid curves represent fitted curves using the same parameterore than 10, and the tip shape calculated using the index
set (,n) obtained on GL, with the effective elasticityad-  was significantly more flat than the measured one, as shown
justed so as to minimize the maximum error. The agreemerih Fig. 6(b). The reason for this error would k§&) the wear
between the measured and calculated force dependence afftip changes the tip shape index a®l the position of the
the resonance frequency is fairly good. The valu&kahat tip apex in contact with the sample is different for different
gives the best fit for PS was 6.99 GPa, whereas the literaturgamples.
value is 5.36 using the Young’s modulus and Poisson’s ratio  We verified possibility(1) by a tip profile measurement
of (3.60 GPa, 0.3b The agreement is fairly good. The value using a reference tip. However, if we used a diamond-coated
of best fitK for GR was 22.3 GPa, which is comparable buttip, we found that the wear resistance of the tip was signifi-
less than the literature value of 36.3 GPa using the Young'santly improved. At the same time, the reproducibility of the
modulus and Poisson’s ratio ¢80.0 GPa, 0.24 estimated effective elasticity was improved. Moreover, we
We repeated this procedure for four different cantileversobtained reproducible data for the Si samples, as shown in
Figure 7 shows a comparison between the estimated valu€sg. 7, which was difficult using the silicon tips. Thus, the
and literature values of the effective elasticity for variouswear of the tip is certainly a dominant source of error in the
materials. The straight line corresponds to the case of perfegiresent analysis. Development of a wear resistant tip is
agreement between the two. The symbols other than circledearly one of the most important efforts needed for realizing
represent the data by silicon tips, and the circles represent tiipiantitative AFM when a strong force is acted upon the tip.
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Another limitation in the present analysis lies in the ne-°0. wright and N. Nishiguchi, Appl. Phys. Leff1, 626 (1997.
cessity of the reference point on the tip profile. Though the'U. Rabe, J. Turner, and W. Amold, Appl. Phys. A: Mater. Sci. Process.

reduction of variables by assuming the reference point is,

66, S277(1998.
V. Scherer, W. Arnold, and B. Bhushan, Surf. Interface Argal. 658

useful for a fast convergence of the inverse analysis, mea-(1999.
surement of the tip profile using a reference tip needs a cerf20. Kolosov and K. Yamanaka, Jpn. J. Appl. Phys., Pag22 L1095
tain skill and effort. Moreover, the estimated tip profile may ,,(1993.

be affected by the selection of the reference point. Therefore

K. Yamanaka, H. Ogiso, and O. Kolosov, Appl. Phys. L&, 178
1(1994.

improved analysis without the need for a reference point iSsk. yamanaka, H. Ogiso, and O. Kolosov, Jpn. J. Appl. Phys., P&g, 1

required.
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