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A magnetic material with high permeability and low loss characteristics at high frequency is required for miniaturizing electronic
components such as antennas. The key factors to keeping low magnetic loss are a high magnetic resonance frequency and the suppres-
sion of the eddy currents. We have fabricated a low-loss magnetic composite material by dispersing Ni78Fe22 (permalloy) fine flakes in
polymers; the thickness of the flakes was less than skin depth. The magnetic loss decreased with increased stirring time, and the minimum
value occurred when the agglomerated particles decreased and most of the particles were deformed into flakes. Moreover, Zn5Ni75Fe20
composite material indicated high permeability when the flakes were oriented in the direction of sheets. The effect of wavelength short-
ening by permeability enhancement and the low loss characteristic were confirmed by experimental results of a rod antenna loaded with
the developed magnetic composite material.

Index Terms—Antennas, high frequency, magnetic loss, permalloy, permeability.

I. INTRODUCTION

THE rapid growth of multifunctioning and the downsizing
of portable communication devices, such as cellular

phones, demands a further miniaturization and a high density
mounting of electronic components. This is particularly true
for antennas, where the demand for miniaturizing has risen for
internal antennas inside a portable terminal. Some techniques
are known for miniaturizing antennas. For instance, adding a
matching circuit, changing the route of the currents, loading
dielectric and magnetic material, and so on. The length of the
electromagnetic wave propagating inside the material is given
by

(1)

where , and are wavelength in the material, wave-
length in vacuum, relative permittivity, and relative permeability
of material, respectively. Hence, the miniaturization of an an-
tenna becomes possible by loading material which has large
value of and [1].

Furthermore, the impedance of the material is given by

(2)

where and are the impedance of the material and
vacuum, respectively. By loading magnetic material and
making almost equal values of and , the improvement of
the antenna properties can be expected, as the impedance of the
antenna matches to the impedance of free air [2].
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Recently, in Japan, cellular phones have been required to have
reception functions of UHF and FM bands, therefore a mate-
rial which has a large effect on wavelength shortening is de-
sired. Though the dielectric material is generally used for minia-
turizing antennas such as ceramic patch antennas, there is the
problem that the bandwidth narrows because very high permit-
tivity is demanded. To solve such problems, an antenna loaded
with magnetic materials has been researched, and for instance,
the miniaturized Planar Inverted-F Antenna (PIFA) and Me-
ander Line Antenna (MLA) were reported [3]–[5].

Ferrite is a magnetic material that is known to have excel-
lent properties at high frequency. However, there is a relational
expression between the initial permeability and the resonant
frequency , which is called Snoek’s limit [6], [7] described as

(3)

where is the gyromagnetic ratio, and is the saturation mag-
netization. Having high saturation magnetization is important
for high-frequency applications [8], and the ferrite is an inade-
quate material in the gigahertz band because of its small satura-
tion magnetization.

Metallic magnetic material has comparatively larger satura-
tion magnetization than the ferrite, hence the resonant frequency
can be raised. However, the eddy current, due to its high electric
conductivity, causes an increase in loss and a decrease in perme-
ability at high frequency. Reducing the thickness of the mag-
netic material to less than skin depth is effective in decreasing
the eddy current. The skin depth is described as

(4)

where and are the angular frequency, the permeability,
and the electric conductivity, respectively. Thus, the skin depth
becomes several micrometers at 1 GHz.
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The effective permeability also decreases by the demagneti-
zation field depending on the shape of the magnetic material.
On the inside of the magnetic material, the magnetizing force

is determined by the relation

(5)

where and are the external applied field, the demag-
netizing factor, and the magnetization, respectively. depends
on the aspect ratio of the material. Though is equal to
for spherical particles, in all other cases such as needle-shaped,
flake-shaped, and so on, is smaller than in a long axis
direction [9]. It has been reported that an aspect ratio of 10 or
more is preferable to increase permeability in the microwave
range [10].

Based on these theoretical backgrounds, desirable properties
of magnetic material at high frequency can be obtained by dis-
persing flake-shaped metallic magnetic particles in polymers,
with the thickness of the particles being less than skin depth. In
the past, high-frequency magnetic properties of the composite
materials that are made of flat metallic particle such as Fe–Si–Al
and Fe have been reported [11], [12]. However, these materials
indicated high permeability and high loss at high frequency,
hence they are assumed to be used for electromagnetic inter-
ference (EMI) suppression.

The purpose of this study is to fabricate a magnetic mate-
rial that indicates low loss characteristics in spite of high per-
meability. The key points to suppress the eddy currents are to
use fine particles that are smaller than skin depth and to dis-
perse them uniformly in polymers. The raw material particles
should be as fine as possible, because they become easily coarse
by rolling and cohesion when spherical particles are deformed
into flakes. Less than 0.2 m of the diameter of the particle is
preferable according to (4). The techniques of crushing agglom-
erated particles and preventing re-agglomeration are also impor-
tant since the fine particles tend to agglomerate.

The magnetic properties of a composite material filled with
metallic magnetic particles are inferior in comparison with that
of bulk, since the magnetism of each of the metallic particles
acts on a the surrounding space separately. To obtain a high per-
meability, the raw material particles should have a small coer-
cive force and a large saturation magnetization . Ni–Fe
alloy (Ni Fe , permalloy) is known to have an excellent soft
magnetic property due to its small magnetic anisotropy, low
magnetostriction, and high dc permeability. However, the di-
ameter of the Ni–Fe alloy particle, which is obtained by a gen-
eral manufacturing method called the atomize method, is usu-
ally over 1 m, hence it is unsuitable to decrease the eddy cur-
rent at 1 GHz. Although the vapor phase reduction method is
known as a process of preparing comparatively small particles,
due to its high temperature processing, particles are easily fused
by contact, thus it is difficult to prevent a large particle being
generated.

This paper describes the magnetic properties of our devel-
oped composite material, which indicates high permeability and
low loss characteristics at high frequency. The composite ma-
terial consists of flakes dispersed in polymers. The 0.15 m

Fig. 1. (a) TEM image and (b) hysteresis loop of Ni–Fe particles measured at
room temperature.

Ni–Fe alloy as a raw material particle was prepared by the liquid
phase reduction method. In addition, the characteristics of a
rod antenna loaded with the fabricated composite material are
described.

II. EXPERIMENTAL DETAILS

A. Characteristics of the Raw Material

Fine particles of Ni–Fe (Ni Fe ) alloy were prepared by
reducing nickel chloride hexahydrate (NiCl 6H O) and iron
chloride tetrahydrate (FeCl 4H O) in an aqueous solution.
Similarly, fine particles of Zn–Ni–Fe (Zn Ni Fe ) alloy
were prepared by the addition of zinc nitrate hexahydrate
(Zn(NO ) 6H O) to the aqueous solution. Figs. 1(a) and 2(a)
show the images of Ni–Fe fine particles and Zn–Ni–Fe fine
particles, respectively, observed by a Hitachi H-800 transmis-
sion electron microscope (TEM). The particles were spherical
and the median diameter was 0.15 m for Ni–Fe and 0.25

m for Zn–Ni–Fe. Hysteresis loops measured by a Hayama
OP-01 vibrating sample magnetometer (VSM) are shown in
Figs. 1(b) and 2(b). The coercive force and the saturation
magnetization was 9.04 kA/m and 76.4 A /kg for Ni–Fe
particle and 4.73 kA/m and 73.7 A /kg for Zn–Ni–Fe par-
ticle, respectively. Though Zn–Ni–Fe became slightly small

because of the addition of nonmagnetic Zn atoms, was
improved and showed an excellent magnetic property compared
with Ni–Fe.

B. Preparation of Magnetic Composite Material

The preparation procedure of the magnetic composite mate-
rial is as follows. The raw material particles, and the zirconia
balls which have diameters of 200 m as grinding media, were
put in the solvent with the surfactant. When the slurry in the
high-speed rotation-revolution mixer was stirred at an acceler-
ation of approximately 3900 m/s , the agglomerated particles
were crushed in a short time. Also the particles were deformed
into flakes with 2 m length and 0.2 m thickness. Flakes were
mixed with thermosetting polymer so that the volume content
might become 38%. A film of approximately 60 m thickness
was fabricated by the doctorblade method and dried at 323 K in
the atmosphere. The composite material of approximately 0.3
to 0.6 mm thickness was prepared by laminating films, which
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Fig. 2. (a) TEM image and (b) hysteresis loop of Zn–Ni–Fe particles measured
at room temperature.

were hot-pressed at 433 K under uniaxial pressure of 0.1 MPa
for 40 min in 0.01 MPa vacuum atmosphere.

C. Measurement of the Material

The microstructure of the fabricated composite material was
observed by a JEOL JSM-6700F scanning electron microscope
(SEM). The permeability characteristic of a direction parallel to
the sheet was measured by an Agilent 8791ES vector network
analyzer using the parallel line method [13]. The permittivity
characteristic of a direction perpendicular to the sheet was mea-
sured by a Hewlett-Packard 4291A impedance analyzer using
the parallel plate capacitor method.

III. RESULTS AND DISCUSSION

A. Characteristics of the Ni–Fe Composite Material

Fig. 3 shows the microstructures of Ni–Fe composite mate-
rial for different stirring times. As shown in the figure, particles
were crushed and deformed into flakes as the stirring time in-
creased. The permeability characteristics are shown in Fig. 4.
At the stirring time of 0 (i.e., nonprocessing), imaginary part of
the complex permeability has two peaks at approximately
0.7 and 4 GHz, and high loss was seen in a broad frequency
range [Fig. 4(a)]. Though the peak on a higher frequency re-
gion seems to be caused by the magnetic resonance, the one on
a lower frequency region depends on the size of the particles. As
the stirring time increased, a peak on a lower frequency region
shifted to the higher region. As a result, at 1 GHz became
the minimum value by stirring for 30 min [Fig. 4(d)]. The ob-
tained permeability was and the calculated
magnetic loss factor was 0.08. In addition, the obtained
permittivity was and the calculated dielectric loss factor

was 0.04. As compared with the composite material used
for the EMI suppression having of 0.5 to 1, the fabricated
material showed quite low loss characteristics. When the stir-
ring continued further, gradually increased again [Fig. 4(e)
and (f)]. We consider that the reason for this is that the size

Fig. 3. Cross-sectional SEM images of Ni–Fe composite materials for different
stirring times. (a) 0 min, (b) 30 min, (c) 50 min, and (d) 80 min.

Fig. 4. Permeability characteristics of Ni–Fe composite materials for different
stirring times. (a) 0 min, (b) 10 min, (c) 20 min, (d) 30 min, (e) 50 min, and (f)
80 min.

and shape became heterogeneous because particles repeated de-
struction and cohesion.
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Fig. 5. Cross-sectional SEM images of Zn–Ni–Fe composite materials for dif-
ferent stirring times. (a) 0 min and (b) 30 min.

Fig. 6. Permeability characteristics of Zn–Ni–Fe composite materials for dif-
ferent stirring times. (a) 0 min and (b) 30 min.

B. Characteristics of the Zn–Ni–Fe Composite Material

The Zn–Ni–Fe composite material was prepared in the same
process as the Ni–Fe composite material. The microstructures of
the material are shown in Fig. 5. As shown in the figure, the par-
ticle was crushed and deformed into flakes by stirring. Perme-
ability characteristics of the Zn–Ni–Fe composite material are
shown in Fig. 6. At the stirring time of 0 (i.e., nonprocessing),

has two peaks at approximately 0.4 and 4 GHz [Fig. 6(a)].
As well as the Ni–Fe alloy material, the decrease of was
seen along with the stirring and as a result, at 1 GHz be-
came the minimum value by stirring for 30 min [Fig. 6(b)]. For
this material, the obtained permeability was ,
and calculated was 0.1. In addition, the obtained permit-
tivity was and calculated was 0.05. This material
also shows sufficiently low loss for high-frequency application
usage.

C. Permeability Enhancement of Zn–Ni–Fe Composite
Material Gained by Oriented Particles

We impressed the external magnetic field to the film fab-
ricated by the doctorblade method while being dried, thus
the long axis of flakes became parallel to the direction of the
sheets (Fig. 7). The permeability enhancement of the Ni–Fe
composite material was slight [Fig. 8(a)]. By contrast, the
Zn–Ni–Fe composite material indicated great enhancement of
permeability which are , and
at 1 GHz [Fig. 8(b)]. To investigate the reason why the perme-
ability increased only in the Zn–Ni–Fe composite material, the
crystal structure of the particles in the composite material that
was stirred for 30 min was evaluated by PANalytical X’Pert
PRO X-ray diffraction (XRD) patterns. Fig. 9 shows the XRD

Fig. 7. Cross-sectional SEM images of composite materials consists of (a) ori-
ented Ni–Fe particles and (b) oriented Zn–Ni–Fe particles.

Fig. 8. Permeability characteristics of composite materials consists of (a) ori-
ented Ni–Fe particles and (b) oriented Zn–Ni–Fe particles.

patterns of measured at different tilt angle . The
patterns show that both the Ni–Fe alloy and the Zn–Ni–Fe alloy
had face-centered cubic (fcc) structures and no other products
were seen in the crystals. As for the Ni–Fe composite mate-
rial, their peaks intensity are almost constant for changing
whether its particles are oriented or not [Fig. 9(a) and (b)]. As
for the Zn–Ni–Fe composite material, the peaks intensity did
not change when the particles were not oriented [Fig. 9(c)].
In contrast, when they were oriented, (111) and (200) diffrac-
tion peaks intensity increased significantly, and (220) peak
intensity decreased when was 45 [Fig. 9(d)]. These results
suggest that the crystal structure was oriented along a particular
direction in Zn–Ni–Fe. This implies that plastic deformation
by mechanical stress occurred in a specific direction of the
crystal, since malleability increased by the effect of the Zn.
That is, when the particle is deformed into flakes, the axis of
easy magnetization turns to the direction of the long axis of the
flake. Permeability increased to a large value of approximately
10 because the axis of an easy magnetization agreed with the
direction of the magnetic field and also the demagnetization
factor has decreased by orientating the particle. By contrast,
permeability was only approximately 6 when the particle was
not oriented or was made without addition of Zn, since an ar-
rangement of flakes or a crystal structure becomes random and
the axis of easy magnetization does not agree with a constant
direction.

D. Evaluation of Antenna Loaded With Magnetic
Composite Material

To confirm the effect of magnetic properties in high frequency
applications, the characteristics of a rod antenna loaded with the
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Fig. 9. X-ray diffraction patterns of composite materials stirred for 30 min
recorded at different tilt angle  : (a) nonoriented Ni–Fe particles, (b) oriented
Ni–Fe particles, (c) nonoriented Zn–Ni–Fe particles, and (d) oriented Zn–Ni–Fe
particles.

Fig. 10. Schematic configuration and cross-sectional view of the antenna.

fabricated composite material was investigated. The rod antenna
is a very basic structure, which simplifies the comparison be-
tween the experimental result and the simulation result. Fig. 10
shows the configuration of the evaluated antenna. The magnetic
loaded rod antenna consisted of 44 mm 1.5 mm 0.05 mm
strip conductor and 2 of 42 mm 5 mm 0.35 mm magnetic
composite materials which were stuck together from both sides
of the strip conductor with 0.1 mm thickness double-faced ad-
hesive tape. The magnetic composite materials were made of

Fig. 11. Return loss characteristics of the antenna: (a) loaded with Ni–Fe com-
posite material (stirred for 30 min and not oriented) and (b) without material.

Fig. 12. Input impedance characteristics of the antenna: (a) loaded with Ni–Fe
composite material (stirred for 30 min and not oriented) and (b) without mate-
rial.

38 vol% Ni–Fe particles which had been stirred for 30 min and
not oriented. The rod antenna was connected to a 35 mm 80
mm 0.1 mm plate conductor.

The simulation was performed by the electromagnetic
full-wave simulator Ansoft High Frequency Structure Simu-
lator (HFSS) Ver. 9.1.2 which is able to set the value of ,
and , separately. The size of the air box was 500 mm 500
mm 500 mm and the boundary was set to nonreflective (radi-
ation) layer. The parameters of the magnetic composite material
were set to , and .
These parameters are assumed to take definite value that does
not depend on frequency.

Return loss and input impedance characteristics of the an-
tenna were measured by an Agilent Technologies E8364B PNA
network analyzer. Fig. 11(a) and (b) show the return loss char-
acteristics of the rod antenna with the magnetic composite mate-
rial and without the material (i.e., an usual rod antenna), respec-
tively. We can see two resonance modes because this antenna
is a kind of dipole antenna which has asymmetric arms. The
higher resonance mode depends on the length of the rod struc-
ture (44 mm), and the lower resonance mode depends on the
length of the entire antenna (124 mm). Fig. 12(a) and (b) show
the input impedance characteristics of the antenna with the mag-
netic composite material and without the material, respectively.
The imaginary part of impedance increased by approximately
150 ohms by loading the magnetic materials, and as a result, the
lower resonance mode became superior so that the resonance
frequency of the antenna shifted from 1.8 to 1.0 GHz. Fig. 13
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Fig. 13. Radiation patterns measured at 1.0 GHz for the antenna loaded with
the Ni–Fe composite material (stirred for 30 min and not oriented). (a) X–Y
plane, (b) X–Z plane, and (c) Y–Z plane.

shows the radiation patterns at 1.0 GHz. The experimental re-
sults agree well with the simulation results and the radiation ef-
ficiency calculated from the obtained gain was 86.3%, hence the
influence of the material loss was hardly seen.

As a result, the developed composite material indicates high
permeability and low magnetic loss properties in the gigahertz
band, therefore, we are able to conclude that this material is very
useful for high-frequency applications.

IV. CONCLUSION

We presented the magnetic properties of developed magnetic
composite materials with high permeability and low loss char-
acteristics at high frequency. The composite material consists
of Ni Fe or Zn Ni Fe fine flakes dispersed in polymers.
The raw material particles with a median diameter of 0.15 m
are prepared by the liquid phase reduction method. Magnetic
loss decreases with an increase of the stirring time, and the min-
imum value can be obtained when the agglomerated particles
decrease and most particles are deformed into flakes. Moreover,
the Zn–Ni–Fe composite material indicates high permeability
when the flakes are oriented in the direction of the sheets. The
effect of wavelength shortening and low loss characteristics are
verified by the experimental results of a rod antenna loaded with
developed magnetic composite material.

In conclusion, the possibility and the feasibility of miniatur-
izing electronic components by loading the developed magnetic
composite material were confirmed. We propose to make and
study further high permeability and low loss materials that can
be applied to built-in terminal antennas.
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