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Abstract—In this paper, we demonstrate CMOS characteristics
on a Si(110) surface using surface flattening processes and radical
oxidation. A Si(110) surface is easily roughened by OH− ions in the
cleaning solution compared with a Si(100) surface. A flat Si(110)
surface is realized by the combination of flattening processes,
which include a high-temperature wet oxidation, a radical oxi-
dation, and a five-step room-temperature cleaning as a pregate-
oxidation cleaning, which does not employ an alkali solution. On
the flat surface, the current drivability of a p-channel MOSFET
on a Si(110) surface is three times larger than that on a Si(100)
surface, and the current drivability of an n-channel MOSFET on
a Si(110) surface can be improved compared with that without
the flattening processes and alkali-free cleaning. The 1/f noise of
the n-channel MOSFET and p-channel MOSFET on a flattened
Si(110) surface is one order of magnitude less than that of a con-
ventional n-channel MOSFET on a Si(100) surface. Thus, a high-
speed and low-flicker-noise p-channel MOSFET can be realized
on a flat Si(110) surface. Furthermore, a CMOS implementation
in which the current drivabilities of the p-channel and n-channel
MOSFETs are balanced can be realized (balanced CMOS). These
advantages are very useful in analog/digital mixed-signal circuits.

Index Terms—Channel, cleaning, CMOS, flicker, mobility,
MOSFET, noise, roughness, surface orientation.

I. INTRODUCTION

THE miniaturization of MOSFETs has been able to in-
crease the level of integration and performance of large-

scale-integrated (LSI) devices. However, miniaturization in
the critical dimension of integrated circuits is accompanied
by a decrease in the thickness of the gate insulator films of
metal–oxide–semiconductor transistors. Recently, the leakage
currents of MOSFETs have mainly been composed of a leakage
current through the gate insulator films and a drain leak-
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age current. Therefore, suppression of the leakage current in
ultralarge-scale-integrated (ULSI) devices is one of the crucial
technologies for the improvement of ULSI devices. Recently,
there have been many reports on high-k dielectric films for
the gate insulator [1]–[4]. At the same time, the improvement
of the current drivability of MOSFETs without shrinkage of
the device scale is a very important alternative technological
approach for realizing an increase in LSI performance. Some
efforts on increasing device performance such as the develop-
ment of strained silicon [5]–[8] and Fin-FET [9]–[11] have been
reported. However, it is difficult to suppress the leakage currents
because of the bandgap narrowing that accompanies germa-
nium incorporation or the local high electric field concentration
at the corner edge. Recently, a technology based on a Si(110)
surface has been reported [12]–[16]. It has been reported that
the hole mobility in the channel on a Si(110) surface is largest
compared with any other surface [17]. This means that, with
this technology, it is possible to increase the current drivability
without changing the material and the device structure. How-
ever, the current gate formation technology cannot form high-
quality insulator films on all surface orientations except for the
Si(100) surface. In contrast, we have reported that very-high-
quality gate insulators are formed on any silicon surface by
microwave-excited high-density plasma oxidation/nitridation,
and very low 1/f noise MOSFETs are realized using this
oxidation/nitridation technology [12], [18].

In this paper, we demonstrate that the low noise balanced
CMOS fabricated on a very flat Si(110) surface by using the
five-step room-temperature cleaning and microwave-excited
high-density plasma oxidation presents very promising perfor-
mances and may be very useful for analog/digital mixed-signal
circuits.

II. EXPERIMENTAL

Dual-gate MOSFETs on Cz-Si(100) and Cz-Si(110) surfaces
are employed for this experiment. Gate oxides (5 nm) are
formed by microwave-excited high-density plasma oxidation
(radical oxidation) at 400 ◦C after modified RCA cleaning
[19]–[21] and five-step room-temperature cleaning (shown in
Fig. 1 [22]). As+ and BF+

2 (4 × 1015 cm−2) ions are implanted
into the gate poly-Si (300 nm) and source/drain regions af-
ter the gate formation for n-channel MOSFET and p-channel
MOSFET, respectively. After the formation of an aluminum in-
terconnect, hydrogen sintering is applied at 400 ◦C in N2/H2 =
9/1 ambient.

0018-9383/$25.00 © 2007 IEEE
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Fig. 1. Five-step room-temperature cleaning process. This cleaning method
does not employ any alkali solution and does not etch the silicon surface [22].

Fig. 2. Interface trap density at midgap of the SiO2/Si interface formed
by radical oxidation and thermal oxidation of Si(100), Si(110), and Si(111)
surfaces.

The surface microroughnesses of the silicon surfaces is mea-
sured by vacuum scanning tunneling microscopy (STM) and
atomic force microscopy (AFM) after the RCA and five-step
room-temperature cleaning for evaluation of the surface flat-
ness. The density of Si atoms dissolved in water is measured by
inductively coupled plasma Auger electron spectroscopy after
immersion in the water containing dissolved oxygen at various
concentrations of 0 ppm (N2 ambient), 8 ppm (O2/N2 = 1/4),
and 32 ppm (O2 ambient) and its correlation to the surface
microroughness is evaluated.

III. RESULTS AND DISCUSSIONS

We reported that the high-quality gate oxides can be formed
by radical oxidation using microwave-excited high-density
plasma [23], [24]. Fig. 2 shows the measured interface trap

Fig. 3. ID–VG characteristics of p-channel MOSFETs. (a) The gate oxide
was formed by dry oxidation. (b) The gate oxide was formed by radical
oxidation.

density at the Si/SiO2 interface formed by radical oxidation
(400 ◦C) and the conventional dry oxidation (900 ◦C) on
Si(100)-, Si(110)-, and Si(111)-oriented surfaces [23], [24]. In
this experiment, the interface trap density is evaluated by the
quasi-static C–V method. It is well known that high-quality
SiO2 films and a Si/SiO2 interface having a low interface
trap density can be realized by thermal oxidation only on a
Si(100) surface, as shown in Fig. 2. On the contrary, the results
in Fig. 2 show that radical oxidation using microwave-excited
high-density plasma can form the high-quality SiO2 films and
Si/SiO2 interface having a low interface trap density on any
of the three silicon surface orientations. In addition, it has
been reported that this radical oxidation can form high-quality
gate insulators even on a polycrystalline silicon surface [26].
These mean that every silicon surface can be applied in the
LSI formation by using radical oxidation. In this experiment,
the 5-nm gate oxides are employed. The interface trap den-
sity at the midgap of these 5-nm gate oxides is also about
1 × 1010 cm−2 eV−1. Fig. 3 shows the drain current ID–gate
voltage VG characteristics (drain voltage VD = −50 mV) of
p-channel MOSFETs whose gate oxides were formed by:
(a) dry oxidation and (b) radical oxidation. In the case of dry ox-
idation, threshold voltages differ between Si(100) and Si(110)
owing to the Si/SiO2 interface traps and the fixed charge in the
gate oxide. However, no threshold voltage difference appears
between the MOSFETs on Si(110) and Si(100) whose gate
oxide was formed by radical oxidation. This indicates that
radical oxidation can be adequately employed for gate oxide
formation on Si(110) surfaces as regards the bulk and interfacial
quality of oxide. One of the most crucial problems on the
Si(100) surface, which is currently used for LSI fabrication,
is the very low current drivability of p-channel MOSFETs.
Improving the current drivability of p-channel MOSFETs is
thus very important. Fig. 4 shows the ID–VD characteristics
of p-channel MOSFETs on (a) Si(100) and (b) Si(110). The
current drivability of a p-channel MOSFET on Si(110) is three
times larger than that on Si(100). Fig. 5 shows the chan-
nel direction dependences of the drain currents of n-channel
and p-channel MOSFETs formed on Si(110). The vertical
axes are absolute currents and currents normalized by that of
a p-channel MOSFET on Si(100). All currents of n-channel
and p-channel MOSFETs on Si(110) are much larger than that
of p-channel MOSFETs on Si(100). This suggests that the
CMOS property on a Si(110) surface is improved compared
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Fig. 4. ID–VD characteristics of p-channel MOSFETs on Si(100) and
Si(110) surfaces.

Fig. 5. Channel direction dependence on the drain current of n-channel
MOSFETs and p-channel MOSFETs formed on Si(110). The vertical axes are
absolute currents and currents normalized by that of p-channel MOSFET on
Si(100).

Fig. 6. Effective channel mobility µeff in p-channel MOSFETs as a function
of effective electric field Eeff .

with that on a Si(100) surface. Unlike the drain currents on
Si(100) that have a weak dependence on the channel direction
[27], the drain currents on Si(110) have a strong dependence
on the channel direction [17]. It should be noticed that the
channel direction giving the maximum current of n-channel
MOSFETs differs from that of p-channel MOSFETs by 90◦.
Then in the circuit design, the channel direction dependence
of the drain current must be taken into account in the case of
Si(110), unlike in Si(100). Fig. 6 shows the effective channel
mobility µeff as a function of the effective electric field Eeff in
the p-channel MOSFET. Eeff is defined as (QB + Qi/η)/εsi,

Fig. 7. Effective channel mobility µeff as a function of the operating temper-
ature T in the p-channel MOSFETs.

Fig. 8. Effective channel mobility µeff in n-channel MOSFETs as a function
of effective electric field Eeff .

where the η of p-channel MOSFET is taken to be 3 [8], [28]
and εsi is the dielectric constant of silicon. As shown in Fig. 6,
the µeff of p-channel MOSFET on Si(100) is the same as the
universal hole mobility [29]. The µeff of p-channel MOSFET
on Si(110) is much larger than that on Si(100) and is also larger
than the value of µeff on Si(110) previously reported [8]. It
is considered that this enhancement of the µeff of p-channel
MOSFET is due to the high-quality oxides and Si/SiO2 in-
terface realized using radical oxidation. Fig. 7 shows µeff as
a function of the operating temperature T in the p-channel
MOSFETs. In the region of temperature higher than 100 K,
the effective hole mobility in the channel is proportional to
T−1.5 on Si(110), which means that the effective hole mobility
is limited by phonon scattering. In addition, the Eeff − µeff

characteristics of the n-channel MOSFETs are shown in Fig. 8.
Unlike the case of p-channel MOSFETs, the µeff value of
n-channel MOSFET on Si(110) is the same as the reported µeff

on Si(110) [8] and is less than that on Si(100). Fig. 9(a) and
(b) shows µeff as a function of the operating temperature in the
n-channel MOSFETs. The temperature dependence of µeff is
very small in the low-temperature region, as shown in Fig. 9(b),
and the Eeff dependence of µeff is high in the high-field region.
In the relatively high electric field region, µeff is defined as
follows [28]:

µ−1
eff = µ−1

ph + µ−1
SR (1)
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Fig. 9. Effective channel mobility µeff as a function of (a) effective electric
field Eeff and (b) operating temperature in the n-channel MOSFETs.

Fig. 10. (a) AFM and (b) STM images of the Si(110) surface after UPW final
rinsing in RCA cleaning and diluted HF treatment.

where µph and µSR are the mobilities limited by phonon
scattering and surface roughness scattering, respectively. When
the electron mobility is limited, the acoustic phonon scattering
µeff is proportional to T−1.5. In the relatively high-temperature
region, µeff is not proportional to T−1.5 in Fig. 9(b). This means
that the electron mobility of n-channel MOSFETs on Si(110) is
not limited by phonon scattering but by interface microrough-
ness scattering. These results lead us to realize the importance
of microroughness suppression. Fig. 10 shows (a) AFM and
(b) STM images of the Si(110) surface after ultrapure water
(UPW) rinsing following RCA cleaning and diluted hydrogen
fluoride (HF) treatment. The lines indicating the 〈−110〉 direc-
tion on the Si(110) surface can be observed. This means that the
etching on Si(110) occurs along the 〈−110〉 direction, which is
oriented to Si(111) surface. Fig. 11 shows the average surface
microroughness (Ra) and the density of silicon atoms dissolved
in the water after immersion in UPW containing dissolved
oxygen at various concentrations of 0 ppm (N2 ambient), 8 ppm
(O2/N2 = 1/4), and 32 ppm (O2 ambient). The Ra values and
the density of dissolved silicon atoms of the Si(110) surface
are much larger than those of the Si(100) surface even after
immersion in UPW. It is considered that an etching process that
occurs on the silicon surface owing to OH− ions in water causes
the surface microroughness, and a Si(110) surface is much more
sensitive to this effect than a Si(100) surface. This indicates
that the surface microroughness on a Si(110) surface is caused
by alkali solution (NH4OH/H2O2/H2O = 0.05/1/5) in RCA
cleaning [20], [21] and causes the degradation of channel mo-
bility in n-channel MOSFET. This implies that the technology
used to suppress the generation of surface microroughness on

Fig. 11. Average surface microroughness (Ra) and the density of dissolved
silicon atoms in water after immersion in water containing dissolved oxygen
at various concentrations of 0 ppm (N2 ambient), 8 ppm (O2/N2 = 1/4), and
32 ppm (O2 ambient).

Fig. 12. Ra improvement for the Si(110) surface by wet oxidation at 1000 ◦C
and radical oxidation.

Fig. 13. (a) AFM and (b) STM images of the Si(110) surface after H2-UPW +
megasonic rinsing in five-step cleaning process after wet oxidation and radical
oxidation.

Si(110) is much more important than that on Si(100). Fig. 12
shows the improvement of the Ra of a Si(110) surface brought
by about wet oxidation at 1000 ◦C and radical oxidation at
400 ◦C. Both methods are isotropic oxidations of the silicon
surface; as a result, the silicon surfaces are flattened by these
oxidations. Fig. 13 shows (a) AFM and (b) STM images of
the Si(110) surface after H2-UPW + megasonic rinsing, which
is part of the five-step cleaning process (shown in Fig. 1
[22]) employed in pregate-oxidation cleaning. Wide terraces
are observed in the STM image. This means that the flat
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Fig. 14. µeff–Eeff characteristics of n-channel MOSFETs having a conven-
tional and Si/SiO2 flattened interfaces.

Fig. 15. Noise power as a function of frequency f . The noise power is
proportional to 1/f . The 1/f noise of p-channel MOSFET on Si(110) is one
order of magnitude smaller, although its current drivability is the same as that
of n-channel MOSFET on Si(100).

surface in atomic order is realized by the flattening processes
of high-temperature wet oxidation and radical oxidation, and
the advanced cleaning process, which does not employ any
alkali solution and does not etch the silicon surface. Fig. 14
shows the µeff–Eeff characteristics of n-channel MOSFETs
having conventional and Si/SiO2 flattened interfaces. The µeff

value can be improved by flattening the Si/SiO2 interface.
This means that trap charge reduction is realized by the sur-
face flattening process. Fig. 15 shows the noise power as a
function of frequency (f). The noise power is proportional to
1/f . The 1/f noise of p-channel MOSFET on Si(110) is one
order of magnitude smaller than that of n-channel MOSFET
on Si(100), although current drivabilities are almost the same.
We have reported that the 1/f noise can be reduced by a
combination of surface flattening and radical oxidation [30].
These results support that the flattening processes and five-step
room-temperature cleaning enable the realization of a very flat
surface on Si(110).

Fig. 16(a) and (b) shows the simulated Vin–Vout charac-
teristics of the CMOS inverter on unbalanced CMOS, which
is the same as the inverter on Si(100), and balanced CMOS,
in which the current drivabilities of p-channel MOSFET and
n-channel MOSFET are the same for various gate width ratios
of p-channel MOSFET/n-channel MOSFET=3/1, 1/1, 1/3. The

Fig. 16. Simulated Vin–Vout characteristics of the CMOS inverter on Si(100)
and Si(110) for various gate width ratios of p-channel MOSFET/n-channel
MOSFET (p/n = 3/1, 1/1).

Fig. 17. Measured Vin–Vout characteristics of the CMOS inverter on Si(110)
for different gate width ratios of p-channel MOSFET to n-channel MOSFET
(p/n = 1/1, 3/1).

inverter operates at VDD/2 for p/n ratio=1/1 and 3/1 on the bal-
anced CMOS and unbalanced CMOS [Si(100)], respectively.
On Si(100), the current drivability of n-channel MOSFET is
about three times larger than that of p-channel MOSFET.
The currents of both n-MOSFET and p-channel MOSFET
are the same when the gate width of p-channel MOSFET
is three times larger than that of n-channel MOSFET; as a
result, the CMOS-on-Si(100) inverter operates at VDD/2 for
p/n ratio = 3/1. When the current drivabilities of n-channel
MOSFET and p-channel MOSFET are the same, channel
width adjustment is not needed. Fig. 16(b) shows that the
balanced CMOS inverter operates at VDD/2 for p/n ratio = 1/1.
Fig. 17 shows the measured Vin–Vout characteristics of the
CMOS inverter on Si(110) for different gate width ratios of
p-channel MOSFET to n-channel MOSFET (p/n = 1/1, 3/1).
The CMOS inverter with p/n ratio = 1/1 begins to operate at
almost VDD/2. This indicates that the balanced CMOS is
realized on a Si(110) surface. When the current drivabilities of a
p-channel MOSFET and an n-channel MOSFET are balanced,
the offset of output voltage in the analog switch can be reduced
and a NOR circuit can be easily used for logic devices compared
with the Si(100) unbalanced CMOS [25]. These results indicate
that these MOSFETs fabricated on Si(110) can be applied not
only to digital circuits but also to analog, RF, and mixed-signal
circuits.
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IV. CONCLUSION

We demonstrated CMOS characteristics on a Si(110) sur-
face by using a surface flattening process, which involves a
five-step room-temperature cleaning process and radical gate
oxidation. By fabricating a device on a Si(110) surface, the
characteristics of p-channel MOSFET on Si(110) are supe-
rior to those on Si(100), although the current drivability of
n-channel MOSFETs fabricated on Si(110) is less than that
on Si(100). It is noticed that the circuit layout must take
into account the fact that the drain currents have a strong
dependence on the channel direction and that channel direction
giving the maximum current to n-channel MOSFETs differs
from that giving the maximum current to p-channel MOSFETs
by 90◦ [17]. The current drivability of n-channel MOSFET on
Si(110) can be improved by the suppression of the surface mi-
croroughness by the flattening processes with high-temperature
wet oxidation and radical oxidation and an advanced cleaning
process, which does not employ any alkali solution and does not
etch the silicon surface. Then, a balanced CMOS in which the
current drivabilities of both n-channel and p-channel MOSFETs
are balanced is realized on Si(110).

Furthermore, low 1/f noise in n-channel and p-channel
MOSFETs can be realized by a combination of surface micro-
roughness flattening and radical gate oxidation. These results
indicate that these MOSFETs that are fabricated on Si(110) can
be applied not only to digital circuits but also to analog, RF, and
mixed-signal circuits.
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