4,6-Dibromo-3-Hydroxycarbazole (an Analogue of Caffeine-like Ca2+ Releaser), a Novel Type of Inhibitor of Ca2+-Induced Ca2+ Release in Skeletal Muscle Sarcoplasmic Reticulum | 著者 | Takahashi Y., Furukawa KI., Kozutsumi D., | |-------------------|---| | | Ishibashi M., Kobayashi J., Ohizumi Y. | | journal or | CYRIC annual report | | publication title | | | volume | 1995 | | page range | 108-111 | | year | 1995 | | URL | http://hdl.handle.net/10097/49917 | # III. 8. 4,6-Dibromo-3-Hydroxycarbazole (an Analogue of Caffeine-like Ca²⁺ Releaser), a Novel Type of Inhibitor of Ca²⁺-Induced Ca²⁺ Release in Skeletal Muscle Sarcoplasmic Reticulum. Takahashi Y., Furukawa K.-I., Kozutsumi D.*, Ishibashi M.*, Kobayashi J.* and Ohizumi Y. Department of Pharmaceutical Molecular Biology, Faculty of Pharmaceutical Sciences, Tohoku University Department of Pharmacognosy, Faculty of Pharmaceutical Science, Hokkaido University* ### Introduction Ca^{2+} release from the sarcoplasmic reticulum (SR) plays a key role in excitation-contraction coupling (EC-coupling) in skeletal muscle^{1,2)}. It is well known that ryanodine, a plant alkaloid, promotes Ca^{2+} release from skeletal and cardiac SR and interferes with the inactivation of Ca^{2+} -induced Ca^{2+} release (CICR) from SR^{3+} . The alkaloid binds with high affinity to a receptor localized in the heavy fraction of SR (HSR)⁴⁾. The purified ryanodine receptor^{5,6)} is identical in morphology with the "feet" structures to span the transverse tubule-SR junction and form caffeine-sensitive Ca^{2+} channels. It has been reported that ryanodine locks the Ca^{2+} release channels of SR in an open state and that its high affinity binding site is localized in terminal cisternae of SR^{4+} . These studies revealed that the ryanodine receptor is identical with CICR channels of SR^{7+} . One of the useful approaches to achieve a better understanding of the molecular mechanism of Ca^{2+} release is the application of specific drugs that affect the releasing mechanisms. It has been reported that caffeine increases the Ca²⁺ sensitivity of CICR channels and the open probability of the channels at saturating Ca²⁺ concentrations. Numerous studies using skinned skeletal muscle fibres and isolated SR membrane preparations have revealed the presence of a caffeine-sensitive Ca²⁺ release pathway through CICR channels. However, the characterization of the caffeine receptor site in Ca²⁺ release channels has not been possible because of its low affinity and the detailed molecular mechanism of Ca²⁺ release from SR remains unresolved. We have reported that bromoeudistomin D (BED), a derivative of eudistomin D isolated from the Caribbean tunicate Eudistoma olivaceum, induces Ca²⁺ release from HSR. Our pharmacological studies indicate that BED is approximately 500 times more potent than caffeine in Ca²⁺ releasing activity. For the purpose of finding the inhibitor in order to investigate the function of CICR channels, numerous analogues of BED were synthesized. ### Materials and Methods HSR was prepared from skeletal muscle of male rabbits as reported previously⁸). In order to estimate the Ca²⁺ releasing activity, the concentration of extravesicular Ca²⁺ in the HSR suspension was measured at 30°C with a Ca²⁺ electrode as described previously⁹). ⁴⁵Ca²⁺ release from HSR passively preloaded with ⁴⁵Ca²⁺ was measured at 0°C according to the method of Nakamura et al¹⁰). [³H]MBED and [³H]ryanodine binding experiments were performed by the method of Seino et al⁹). ## Results and Discussion In the course of our survey of inhibitors of Ca²⁺-induced Ca²⁺ release (CICR) in natural products and their derivatives, we have been succeeded in finding 4,6-Dibromo-3hydroxycarbazole (DBHC) as a CICR inhibitors. The pharmacological properties of DBHC were examined. In Ca²⁺ electrode experiments, DBHC (10⁻⁴ M) markedly inhibited Ca²⁺ release from the heavy fraction of sarcoplasmic reticulum (HSR) induced by caffeine (1 mM) and BED (10⁻⁵ M). DBHC (10⁻⁴ M) abolished ⁴⁵Ca²⁺ release induced by caffeine (1 mM) and BED (10⁻⁵ M) in HSR. These results indicate DBHC to be a CICR inhibitors. As shown in Fig. 1b-1d, inhibitory effects of CICR blockers such as procaine, ruthenium red and Mg²⁺ on ⁴⁵Ca²⁺ release were clearly observed at Ca²⁺ concentrations from pCa 7 to pCa 5.5, and were decreased at Ca²⁺ concentrations higher than pCa 5.5 or lower than pCa 7. However, DBHC decreased ⁴⁵Ca²⁺ release induced by Ca²⁺ over the wide range of extravesicular Ca²⁺ concentrations (Fig. 1a). These results indicate that the inhibitory effects of procaine, ruthenium red and Mg²⁺ but not DBHC are suppressed at high Ca²⁺ concentrations and that DBHC is a novel type of CICR inhibitors having unique pharmacological properties. [3H]Ryanodine binding to HSR was suppressed by ruthenium red, Mg²⁺ and procaine, but was not affected by DBHC up to 10⁻⁴ M. [³H]Ryanodine binding to HSR was enhanced by caffeine and BED. DBHC antagonized the enhancement in a concentration-dependent manner. 9-[3H]Methyl-7-bromo-eudistomin D, a [3H]-labeled analogue of BED, specifically bound to HSR. Both DBHC and caffeine increased the Kd value without affecting the Bmax value, indicating a competitive mode of inhibition (Fig. 2). These results suggest that DBHC binds to the caffeine binding site to block Ca²⁺ release from HSR. This drug is a novel type of inhibitor for the CICR channels in SR and may provide a useful tool for clarifying the Ca²⁺ releasing mechanisms in SR. ## Acknowledgments The authors greatly appreciate the cooperation of the stuff members of the Cyclotron and Radioisotope Center. # References - 1) Ebashi S., Annu. Rev. Physiol. 53 (1991) 1 - 2) Endo M., Curr. Top. Membr. Transp. 25 (1985) 181. - 3) Meissner G., J. Biol. Chem. 261 (1986) 8643. - 4) Fleischer S. et al., Proc. Nat. Acad. Sci. USA (1985) 7256. - 5) Imagawa T. et al., J. Biol. Chem. 262 (1987) 16636. - 6) Inui M. et al., J. Biol. Chem. 262 (1987) 1740. - 7) McPherson P. S. et al., J. Biol. Chem. 268 (1993) 13765. - 8) Takahashi Y. et al., Eur. J. Pharmacol. 288 (1995) 285. - 9) Seino A. et al., J. Pharmacol. Exp. Ther. 256 (1991) 861. - 10) Nakamura Y. et al. J. Biol. Chem. 261 (1986) 4139. Fig. 1. Inhibitory effects of CICR inhibitors on 45 Ca²⁺ release at various Ca²⁺ concentrations. 45 Ca²⁺ release at various concentrations of free Ca²⁺ was measured during 1 min after dilution. Each value was normalized against the amount of 45 Ca²⁺ in HSR at zero time. (a) Control (O), 10^{-4} M DBHC (), 10^{-5} M BED (). (b) Control (O), 3 mM procaine (). (c) Control (O), 30 nM ruthenium red (). (d) Control (O), 3×10^{-5} M Mg²⁺ (). Data are mean \pm s.e.mean (n = 4). Fig. 2. Effects of DBHC and caffeine on [³H]MBED binding. HSR (0.3 mg ml¹) was incubated with increasing concentration of [³H]-MBED from 20 to 100 nM for 45 min at 0°C. (a) [³H]-MBED binding was measured in the presence or absence (O) of 0.05 mM DBHC (●) or 0.5 mM caffeine (▲) and is plotted. (b) [³H]-MBED binding in (a) is presented as a Scatchard plot.