REAFEEBUKNSFY

Tohoku University Repository

Mathematical Modelling 1n PET Studies

0ad Fares Y., ltoh M., Matsuzawa T.
journal or CYRIC annual report

publication title

volume 1985

page range 251-269

year 1985

URL http://hdl._handle.net/10097/49306




CYRIC
Annual Report 1985

Iv. 10 Mathematical Modelling in PET Studies

Fares Y., Itoh M.* and Matsuzawa T.*

Biosystems Research Division, Industrial Engineering Department,
Texas A&M University, USA

Radiology and Nuclear Medicine Department, Research Institute for
Tuberculosis and Cancer, Tohoku University*

Introduction

In biomedical studies, a knowledge of the physiology and biochemistry of
what is going on in a given volume of tissue, in some increment of time, for a
given situation; or the change in total activity in that volume element (often
called region of interest, ROI) as a function of time is desired. A safe
approach to take is to formulate a theory or a hypothesis that one can test
with appropriate technology, in this case POSITRON EMISSION TOMOGRAPHY, PET.
The hypothesis is then cast into a set of mathematical relationships that
relate certain variables such as concentrations, the kinetic exchange of
molecules, e.g. between blood and tissue, the distribution space clearance
and/or washout of certain precursors ... etc. These variables must be related
by equations based on a kinetic model of the processes under study. The model
assumptions, on which the formulation of the mathematical equations are based,
must be founded on the valid principles of thermodynamics, biochemistry, and
biophysics. This means that PET work is centered for the most part around

1)

physiological modelling such as models of cerebral utilization of glucose™’,

2,3) 4,5), and

regional blood flow models in humans , heuroreceptor ligand models
other models relative to actual physiology that we understand to exist.

Based on the biochemistry of the tissue under study, we then develop a
suitable radiopharmaceutical that, via its emitted radiation, give us in vivo
qualitative images, and quantitative informations on the distribution of the
labelled compound introduced in that tissue. This capability is useful when
the isotope used for labelling is confined to a defined chemical species, or
its degradation products, and/or their paths in the body are known, hence the
judicious choice of the radiopharmaceutical used.

We may ask the guestion: Why PET? In comparison to other scanners PET
has two advantages:

i) High spatial resolution, hence sharp images and accurate localization
of the position of the activity;

ii) Temporal information, i.e. sequential isotope distribution as a

function of time in the localized volume.



System Identification and the Inverse Problem

The important task for the researcher is that of deriving an appropriate

model from the data and informations available in the field. This, in its
various aspects, 1is the inverse problem. In general, once a model is fully
specified, at least conceptually, it is easy to solve. At times there are

difficulties in obtaining analytical solutions, but then one can generally
obtain numerical slutions; however, the two are not entirely independent.

The design of an experiment, and the choice of data to be collected is
determined in part by implicit as well as explicit models current at the time,
by prior knowledge, and by the viewpoint of the investigator. The important
point is that "there is constant interaction between the models current in the
area, and the experiments conducted, and the type of data collected". Thus
there is no experiment without theory, and there is no meaningful theory
without experiment. This is one of the reasons the inverse problem in general
is so difficult.

The inverse problem presents itself at many levels of complexity. If one
has some information that specifies the model, say an n-compartment system,
then the inverse problem is one of model parameter estimation. At the other
end of the spectrum, one may know very little about the structure of the
system, and the problem then becomes one of system identification or
specification. At times the problem lies between these extremes, and the
inverse problem becomes a mixture of parameter estimation, and system
identification.

It should be obvious from the above, that the general inverse problem
includes the problems of experimental design, theory of estimation, and

statistical analysis.

Modelling

As discussed above, theory attempts to predict the specific from the
general, it establishes functional relationships; it identifies variables,
material properties, and the physical, the chemical, and biological constants
involved in a state or process. Once thermodynamically valid assumptions of
the theory are made, a conceptual framework is established. This is then
followed by casting the hypothesis into a set of fucntional mathematical
relationships. These equations relate the various variables - dependent and
independent - generally in time and/or space. These gquantitative

relationships are called models.

Uniqueness

The question of uniqueness is very important for the problem of system
identification. Clearly the model cannot be so complex that the resultant
parameters might not be uniquely qualified by the available data. In the

general sense there is rarely any way of knowing how good the solution is to a



problem involving system identification because we seldom have available for
us the full set of possible alternatives for comparison. Furthermore, it is
often possible to find a compartmental description for a system. Whether not
a compartmental description is reasonable or useful can only be decided in
terms of other information available on the system.

Compartmental Models

One of the most useful and widely used representations of biological
systems is based on the notion of a compartment. Very often we choose to
model our biological system as a system of compartments because of the
conceptual simplicity, as well as the feasibility of mathematical description.
A compartment generally represents a quantity of a substance within the
organism, which has uniform and distinguishable kinetics of transformation or
transport. Such compartments may represent volumes which are clearly
identifiable, and localized, e.g. lungs, or may be non-contiguous and highly
distributed, such as the capillary bed, the red blood cells, or a chemical
species.

The most widely used models of biological systems consist of compartments
represented by a system of linear-first order differential equations. Thus an
n-compartment system could be represented by eq. (1), and depicted in Fig. 1.,

Et) = F &(t) + T(t) (1)

where E(t) is an n-vector representing the concentration of a particular
material (e.g. the tracer) in each of the n compartments. T(t) is an r-vector
representing the inputs into the various compartments. F is a matrix of
constants, the rate constants, or the fractional transfer constants, f.t.c.,
from compartment i to compartment j, as shown in Fig. 1. It is typical in
problems of this type that concentrations of a particular substance are
measured in several of the compartments, but the f.t.c., i.e. the elements of
the F matrix are unknown. We should remember that:
i) the elements of the F matrix determine the system's kinetics; and

ii) the functional form of the elements of the input vector T(t) will
determine the shape, or the functional form of the system's response.

Since the system is assumed to be linear, i.e. it is described by a
linear compartmental system, 1l.c.s., the elements of the F matrix are time-
invariant. In addition, the inputs are often into one compartment, and are
either constant in time, or take simple functional form, e.g. bolus or delta

function.

Data Analysis

Exponential fitting: Extensive work has gone on in the determination of
techniques for identifying the elements of the matrix F. Provided all the



eigenvalues of F are distinct, the solutions of the system of eq. (1), i.e.
the values of the concentrations of tracers or any other substance in any

compartment will be represented by a sum of exponentials, e.g.

™Mo

Cj(t) = a, + a., e i - j=1, 2 ... n (2)

i=1
where ag and a; are real, and ki is real and positive. Frequently the problem
includes that of estimating the number of compartments in the system, i.e. the
number of exponential terms in eq. (2). This is the problem of system
identification. The obvious approach is to try a number of models with 1, 2,
and more exponential terms to see which gives the "best fit". However, it
should be apparent that the more parameters available to us, the better fit.
One might hope that if a curve actually consists of n exponential components
plus some error, then n exponential terms will give a good fit to the data,
and the addition of more components will not greatly improve the fit. It
should also be noted that, in general the number of data points needed to
obtain good fits for sums of exponentials increases markedly as the number of
exponentials increases. This is in itself is a serious limitation in data
acquisition of the present generation of tomographs. However, there is an
alternative method by which n can be determined from washout curves, or the
time course of changes in one or more compartments using the Fourier Transform
methods, as will be discussed later.

A number of graphical and computational techniques have been developed
for identifying the exponents ki , and the coefficients ay of eq. (2).6-10)
Since such techniques are useful in systems involving radioactive tracers,

such as PET, it is not surprising that formal parameter estimation techniques

have been applied to this problem.t1714)
Other fitting techniques: Other fitting techniques such as fitting the
rate equations directly, fitting the smoothed rate equation, fitting the

integrated rate equation, or fitting the rate equation by integration could be
useful though unpopular.

Biological and Physiological Considerations of the F.T.C.

There is good reason to believe that the f.t.c. are not always constant,
or have the same value in health as in disease. Although we are treating
biological systems as linear systems in order to simplify the modelling, and
the data analysis, yet this provides an incomplete base for the
interpretations of 1long term experiments with intact animals. As we
characterize the dynamics of biological systems with the f.t.c., we must
consider other 1linear compartmental systems in which some variences of the
f.t.c. are included. The following may serve as examples to be considered.

15,16) .

i) Circadian Changes Many body functions vary periodically with

a circadian period, so we must consider linear systems which have periodic



fractional exchange coefficients, i.e. eq. (1) will have a matrix F which has

a periodic component, e.q.

E(t) = (o + Bsin wt) &(t) + T(t) . (3)

Urine output is low at night and rises to a peak at mid day. The urinary
excretion of sodium, potassium, chloride and other salts follow a similar
period. Phosphate excretion is at a minimum early in the morning, and rises
to a peak in the early evening. ACTH secretion by the anterior pituitary
gland follows a 24 hr cycle which drives the secretion of adrenal steroids, so
there is a peak in plasma levels of adrenal steroids near 8 am, and a minimum
at 8 pm. Miotic activity in the tissues of the body follow a 24 hr cycle,
believed to be driven by the diurnal cycle of levels of epinephrine, and
norepinephrine in the body fluids. Many of these important circadian rythems
either reflect changes in, or affect the fractional transfer coefficients
between compartments.

ii) Stochastic Behaviourl’/ 197,

There are good reasons to believe that
the f.t.c. often have random components because they must be subject to
fluctuations in 1living things, and if so, we need some theory of 1linear
stochastic compartmental systems. Renal excretion of most materials depends
on renal blood flow, and the latter shows variations with changes in position,
activity, emotional state ... etc., let alone effects of disease, particularly
tumors, more importantly, active transport of many solutes is affected by
hormones. Glucose transport in some tissues is affected by insulin, growth
hormone, glucagon, and epinephrine. Growth hormone affects amino acid
transport. Furthermore there are fluctuations in hormone levels, so we expect
to see fluctuations in many f.t.c. which we can treat as random fluctuations.
A linear stochastic compartmental system can be thought of as one which
can be obtained by taking a linear compartmental system and adding random

components to the f.t.c., such that eq. (1) becomes

Ee) = a8 + T(t) (4)

where A = F + E, E being a random matrix, while F remains the same as before.

iii) Contr0120_24):

The most important consideration is the fact that
biological systems are control systems, and when described as compartmental
systems it appears that control is exerted through the f.t.c. Therefore we
need to consider control in the context of linear compartmental systems.
Metabolic pathways are controlled in two ways: a) slow control via the
enzymes which, being pfoteins that mediate the reaction steps, are synthesized
and broken down in 1living cells. The rate of synthesis of the enzymes is
controlled by the rate of formation of the mRNA at the genes; b) fast control
which involves the modification of the enzymes which have already been

synthesized by the binding of some compounds to the enzymes.



Another method of control is illustrated by the action of a number of
hormones, insulin for example, which at least exert their effects in living
things, in part, by affecting the transport of specific compounds across the
cell membranes of various cell types. These act by controlling the rates of
exchange of specific compounds between extracellular and intracellular phases.
Thus insulin increases the transport of glucose across cell membranes of the
muscle and other tissues, but not the brain. One of the effects of growth
hormone is to increase active transport of amino acids in many celltypes.
Other examples are found in the oxygen extraction fraction variation with
cerebral blood flow, and oxygen levels in the plasma. LCMRGlu changes with
disease, emotions ... etc., as reflected in the variations in the k's of
Sokoloff's model.zs)

amino acids ... etc., with age is another important example of control.

The changes of brain permeabilities to oxygen, glucose,
26) We
can see that for compartmental representation of living systems, the f.t.c.
are functions of permeabilities or transport rates of materials across cell
membrane, or the reaction rates of metabolic pathways. Thus we expect to see
control exerted via the f.t.c.. Two examples of feed back control are studied

in detail; plasma-glucose control systemsz6_31), and control of the adrenal

cortisol secretion.32734)

In practice we expect to run into difficulties because more data points
are needed in order to extract the parameters of the various matrices of the
three cases discussed above, as well as others. The logistics of
instrumentation sensitivity, speed of data acquisition, dose limitations,
isotope and biological half-lives, and patient's endurance with prolonged
measurements with PET, may add another dimension of difficulty in attempting

to resolve some of the variances of the f.t.c.

Inputs

The term I(t) in eq. (l) is the vector of inputs into the system's
compartments. In PET work, as in many other investigations involving
radioactive tracers, the elements of this vector give the functional
expression of the quantity and manner of introduction of these inputs into the
system. In general it is one input introduced into one compartment of the
system, and very often it has a simple functional form, e.g. unit impulse or
constant infusion. However the shape of the input determines the functional
form of the response (Fig. 2).

i) Unit Impulse Response: For the analysis of the response of 1linear
systems it is useful to define a formal function which has the following
properties:

h  ty<tsty+ 1/h
u(t-t,) = { . (5)

0 otherwise



Then the Dirac delta function is defined as (and depicted in Fig. 3):

G(t-to) = iig u(t-to) . (6)

Thus the delta function can be thought of intuitively as a wunit impulse
delivered instantaneously, i.e.

©o

f 6(t—t0) =1. (7)
0

In practice the closest we get to a unit impulse is the administration of a
bolus of radiopharmaceutical over a very short period of time. The response
of a linear system to this unit impulse input is called the Unit Impulse
Response, U.I.R. This unit impulse response of the system is of great
importance because i) the U.I.R., often called the transfer function, T.R.,
of the system, h(t), characterizes the system, i.e. it acts as a fingerprint
of the system, 1ii) it can be used via the convolution integral, C.I., to
calculate the response of the system to any other input, e.g. if the input is
described by I(t), then the response of the system, R(t), is given by

t t
R(t) = J I(t) H(t-t1) dt = J I(t-t) h(t) dr (8)
0 0

called the convolution integral and often written in the form

R{t) = I(t) * h(t) = h(t) * I(t) . (9)

Though many workers in PET studies use bolus inputs routinely35), few

characterize the systems under study with their transfer functions per se.
The concept of the T.F. finds most of its applications in linear flow systems,
particularly for the calculations of transit times. Recall that for many
living flow systems, the only quantities available for direct experimental
measurements are the concentrations in the inflow, e.qg. arterial blood
concentration of glucose of FDG, Ca . and venous blood concentrations of these
species, Cy 7 and the total activity in the ROI, ¢, - This is a general
method of analysis that does not depend on the detailed structure of the
system. This is essentially a stochastic description of the transfer of the
injected material from inflow to outflow. In simple language, the T.F. tells
us what happened to the system input between the time of administration and
the time of outflow, or the time of observation. If the flow rate is
constant, the concentration at the outflow is given by the C.I.

t
co(t) = Joci(T) h(t-t) ar (10)



where Ci(T), Co(t), are the input and output concentrations respectively, h(t)
is the T.F., and t is a dummy variable.
Since h(t) is the probability density function of transit times, then the

mean transit time of the flow in the system is given by
E=Jth(t) at . (11)
0

ii) Step Function Input: Recently there has been a growing interest in
using the technique of constant infusion of short-lived isotopes for the
measurement of systems dynamic parameters with PET such as regional blood

36-40)
flow.

to the input of a steady state system (s.s.) at constant level until a steady

In general, in work with radioactive tracers the label is added

state in the tracer is achieved, then stopping the infusion of the isotope.
The time course of the activity in the system is followed from the instance of
administration, In this technique the decrease in the isotope concentration
due to its physical decay, and clearance from the ROI is compensated for by
the constant infusion of the isotope. In order to understand the important
implications of the constant infusion in determining the dynamic parameters of
the system, a formal description of the term "constant infusion", and the
system's response to it is very useful.

Constant infusion is mathematically represented with what is called Unit
Step Function (note that the step function can take any height but it is
convenient to normalize it). By definition the U.S.F. is given by

0 t<tO

S(t—to) = { (12)

and schematically represented by Fig. 3.

The response of a linear compartmental system to such input is shown in
Fig. 4b. It represents the build up of the labelled material in the system
till it reaches static equilibrjum, i.e. a constant level of the isotope.
Static equilibrium means that the rate of input into the system is equal to
the rate of loss of the isotope by decay and washout.

Since we cannot introduce the isotope indefinitely, e.g. because of dose
limitations, we stop the constant infusion at an appropriate time when the
system has reached isotope steady state. Mathematically, and schematically,
the response of the system throughout the observation will look 1like the
difference between two functions, F(t), and the same function displaced in the
time scale by 6, i.e. F(t-0), as shown in Fig. 5a and b. The net result will
look like Fig. 5c. If we examine Fig. 5c carefully we notice that it is made
of three parts. Part (1) represents the dynamic build up of the activity in
the system, part (2) represents the steady state level of activity, while
part (3) gives the washout behaviour of the system after stopping the



administration of the isotope.

The analysis of part (1) of Fig. 5c using one of the methods discussed
earlier, e.g. fitting sums of exponentials, should provide informations on the
dynamic parameters of the system, e.g. the elements of the matrix F. Part (2)
of the same figure simplifies the analysis since the differential equations of
eq. (1), and their sum will be equal to zero at steady state. Observations at
the steady state have been used extensively in calculating Cerebral Blood

Flow, CBF, in PET work because of its simplicity.36—40)

Extensive analysis of
the sensitivity of the values of the calculated CBF by this method to
experimental and statistical errors especially at low count rates was done, as
well as the dependence of the usefulness of the method on the isotope half
1ife.36-40’41)

The analysis of the washout curve, part (3) of Fig. 5c¢, using curve
fitting will give informations on the elements of the matrix F, as in the
analysis of the dynamic build up part. However, this will not uniquely
quality the system, i.e. n will not be uniquely determined. This problem can
be resolved by using the Fourier Transform to transform the washout curve from
the time domain to the frequency domain as shown in Fig. 6, and described by

many authors.42’43)

The number of peaks in Fig. 6b determines the number of
components in the system, and the value of ki gives the biological time
constant of the ith compartment i. Because experimental measurements are
subject to noise, and statistical fluctuations, the transformed spectrum will
look like the dashed curves of Fig. 6b. However, we should note that Ai is
proportional to a; and ki = ki of eq. (2).

Very often measurements in PET work are stopped at the time of stopping
the infusion of the isotope, i.e. at time, without following the washout curve

except in few cases.44)

This is done for many reasons, not the least of them
being the patients' emotional state, the high data noise due to low count
rates. These problems should be overcome with the new fast and more sensitive
generation of tomographs. Yamamoto et al.40) did a beautiful study with
continuous inhalation of Clso2 which they call "dynamic plus equilibrium
imaging", as illustrated in Fig. 7. The fact that the transformation of the
washout curve to the frequency domain can uniquely specify the system is worth
applying in many more studies with PET, particularly with very short-lived
isotopes because the measurement time can be shortened considerably.

iii) Other Types of Inputs: Haung et al., and Selikon and Eichling41)
and others argue that high count rates, and the use of isotopes that are
neither of too short nor too long half-lives are needed to reduce the
fluctuations in the data obtained in the constant infusion method. They argue
that a modification of the constant infusion method to exponentially

45), will maintain a

increasing infusion rate, as suggested by Hack et al.
constant rate of tracer. An exponential infusion is simply achieved by
varying the rate at which material is infused as Exp(pt), where p>s, p being

the rate of infusion, and s the isotope decay constant. An exponentially



increasing infusion will reach equilibrium faster than constant infusion. The
important point is that with exponential infusion one has the flexibility to
pick a value for p which will optimize the outcome of the method. What may
prove to be an even more significant aspect of exponential infusion is the
possibility of using several different rates of delivery on the same subject,
which could mean that several unknowns could be solved for simultaneously.

Infusion Schedules

Patlack and Pettigrew46) devised an elegant method for obtaining infusion
schedules for blood concentration-time courses. Following an approach based
on unit impulse response analysis, eq. (8), via Laplace Transformation
techniques, a general method for an input injection schedules which will
achieve this goal were derived. Specific infusion schedules which attain
blood levels that are constant, increase linearly, decrease exponentially, and
increase exponentially were obtained and illustrated experimentally.
Approximate infusion schedules of the above were also obtained and illustrated
experimentally. As discussed earlier, the equation that relates the output
function, R(t), of any input function, I(t), is the convolution integral via
the T.F., h(t) of eq. (8 or 9). The Laplace Transform of eq. (8) is

R(S) = I(S) H(S) (13)

where R(S), 1I(Ss), and H(S) are the Laplace Transforms of the output, the
input, and the transfer function respectively. Thus, if the T.F. h(t) is
known analytically or numerically for any system, then I(t) may be determined
for any specific output function, R(t), via the Laplace Transform methods.

As explained above, if a unit impulse input (bolus) is introduced in the
system, then the system response will be the T.F., 1i.e. R(t) = h(t), and if
R(t) is described by an appropriate fit of sum of exponentials to the output

data, for example, then

h(t) = R(t) (14)

il
[
o4
o

From eq. (14), I(t) can be calculated from the inverse of the Laplace
transformation of

R(S)

I(S) (15)

N
Z A./(s+a.)
i=1 * +

where Ai/(s+ai) is the Laplace Transform of the sum of exponentials, eq. (14).

Input-Output and Discrete-Time Methods

When a system's input and output can be isolated, and the system in



question is approximately linear, discrete-time methods of analysis of the
system's response, have been applied with considerable success.47)

The independent variable of the mathematical representation of an
observation may be either continuous or discrete. However, even in the case
of a continuous function, in analyzing such function with digital computers,
it is necessary to represent the data as a series of discrete numeric values,
i.e. sequences of numbers.

By using the definition of a discrete system as a transformation of an
input sequence u(k) into an output sequence y(k), as shown in Fig. 8, which
obey the superposition, and shift invariance principles, it follows that the
definition of the unit impulse sequence (similar to the unit impulse in the

time continuum domain) is given by

§(k) = (16)
c k#0
then we also have
1 k=n
u(k-n) = { . (17)
0 all other discrete values of k

We can also define the Convolution Summation, which is equivalent to the C.I.,

of eq. (8), by

y(k) = Z h(k) u(k-i) (18)
i=0

and the linear constant coefficient difference equation as,

y(k) = bou(k)+b1u(k—l)+....bMu(k—M)

-a;y(k=1)-....ayy(k-N) . (19)

Equation (19) tells us that the kth value of the output can be computed from
the kth input value, and the Nth and Mth past values of the output and input
respectively, provided eq. (19) satisfies the boundary conditions and gives
unique solution to the constant coefficients, the a's and the b's. The
sequence h(0), h(l), ... of eq. (18) is called system weighting sequence or
the system T.F., which is completely equivalent to h(t) in the continuum

domain, and is often written in the same format as

y(k) = u(k) * h(k) . (20)
Bolus inputs can be approximated by a unit impulse sequence, §(k), and
continuous infusion with a unit step sequence. In the first case u(k-i) in

eqg. (18) will be §(k-i) and will be equal to zero for all i in the summation



range except at i=k, it is equal to zero, i.e.
Y(k) = h(k) for k =0, 1, 2. (21)

Linear discrete systems are said to be stable if and only if the
weighting sequence goes to zero at large discrete times, i.e. h(i) = 0 as i
goes to infinity. Similarly, for a unit step sequence u(k) = 0 for k<0, then
from eq. (18) the response to such input will be
k

y(k) = h(i) (22)

i=0

i.e. the response to the unit step sequence input is the first k+l terms of
the system's weighting sequence. It can be shown that the response of linear
systems to such input is steplike in nature and approaches a steady state
value, Ygg * after an initial transit period as i increases as shown in

Fig. 9, and Fig. 4b, and represented by

k
Ygg (k) = 1£0h(l) . (23)

The same result can be obtained from the linear difference equation. Bolus

injections of FDG in RCMGlu studies, and continuous inhalation studies of
1502 , C15o
importance in yielding transfer functions of linear systems. Figure (7) of
40)

gt etc. are examples where discrete-time methods are of great
Yamamoto et al. is an excellent example to illustrate this point.

Transit Times with Discrete-Time Methods: Equation (19) is nothing but a
model that relates the output of a linear system to the history of its past
and present input sequences, and its past outputs. If in a flow study we
obtain data on the discrete sequences of inputs and outputs of the system and
fit the data with a model like that of eq. (19), then we can evaluate the
constants ag r @y o .eer, and b1 , b2 r +++. Once a stable relationship is
obtained, the model is used to calculate the transfer function of the system
using a unit impulse sequence. The mean transit time t is given by

ty h(i)/ 2 h(i) (24)
0 i=0

(]
1l
| [ o B

i

where ti is the time interval between observations, and eq. (24) is the ratio
of the first to the zeroth moments of distribution of transit times, and it is
equivalent to eqg. (11).

Conclusions

Models used in describing biological systems' behaviour should be based
on sound thermodynamical, biochemical, and biophysical assumptions; should be



as simple as the above requirements dictate, but able to determine the
system's parameters uniquely.

Though linear compartmental models are conceptually clear, and often
described by simple mathematical relationships that make the task of data
analysis feasible, variances in the fractional transfer coefficients should be
included in the mathematical formulation to account for the nature of living
systems' dynamics. It is the F.T.C. that characterize the system's kinetics,
and we do not expect them to be the same in health as in desease, for example.

The shape of the input function that describes the manner of delivery of
the radiopharmaceutical into the system under study, and upon which the
system's response function depends, should be carefully described and planned.
The deciding factor on that shape should be: what kind of information, and
parameters are we looking for?

Finally, discrete-time methods of analysis, should be used more often in
data analysis in PET studies, as they are simpler and can provide insight into
the system under study.
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