

Precision Half-Life Measurement of Tz = -1/2Nuclei in the 1f7/2-Shell Region Using IGISOL

著者	Hama H., Shinozuka T., Yoshii M., Taguchi				
	K., Kobayashi H., Suzuki S., Matsuura J.,				
	Kamiya T., Fujioka M.				
journal or	CYRIC annual report				
publication title					
volume	1985				
page range	35-37				
year	1985				
URL	http://hdl.handle.net/10097/49271				

I. 7 Precision Half-Life Measurements of $T_Z = -1/2$ Nuclei in the $1f_{7/2}$ -Shell Region Using IGISOL

Hama H., Shinozuka T.*, Yoshii M., Taguchi K., Kobayashi H., Suzuki S., Matsuura J., Kamiya T. and Fujioka M.*

Department of Physics, Faculty of Science, Tohoku University

Cyclotron and Radioisotope Center, Tohoku University*

The properties of β -decay of $T_z=-1/2$ nuclei (mirror nuclei) in the sd-shell region were already studied precisely. But the experimental data are insufficient for the mirror nuclei in the $1f_{7/2}$ -shell region. The success of mass separation of 57 Cu ($T_{1/2}=199$ ms) by means of IGISOL 1) indicated a possibility of measuring short-lived nuclei having a small production cross section.

Half-life is one of the important information of β -decay with respect to the nuclear structure and the weak interaction. Among the eight mirror nuclei in the f $_{7/2}$ -region we have observed 45 V, 49 Mn, 53g Co and 55 Ni using IGISOL, and obtained their half-lives with small experimental errors.

The half-lives of these nuclei except for that of 53g Co were deduced from the time distributions of β -rays measured by a telescope consisting of plastic (NE102A) ΔE and E scintillation counters. This telescope configuration was indispensable for reducing the back-ground induced by neutrons and/or cosmic rays. To avoid the accumulation of long-lived radioisotopes a tape transport system was used. The signals of coincidence between the ΔE and the E pulses were stored as the time signal of the β -rays using a home-made multi channel scaler. A least-squares method was used to analyze the decay curves of β -rays. To calibrate the time axis we measured the decay of 54 Co produced by the 54 Fe(p,n) reaction using the same counting system and obtained its half-life to be 193.4±0.6 ms (Fig. 1), which agreed well with the previous value of 193.2±0.3 ms. 4,5

 45 V and 49 Mn were produced by the $^{\rm nat}$ Ti(p,2n) and the 50 Cr(p,2n) reactions, respectively. The proton beam from the AVF cyclotron had an energy of 30 MeV. In the case of 55 Ni via the 54 Fe(3 He,2n) reaction, the 3 He-beam energy was 27 MeV. The deduced half-lives of 45 V, 49 Mn and 55 Ni are 53 4.9 $^{\pm}$ 9.8 ms, $^{381.8\pm7.8}$ 7.8 ms and $^{200.6\pm3.3}$ 3 ms, respectively. The results together with the previous ones are shown in Table 1. The present experimental errors are about 2 times smaller than the previous ones except for the case of 53 Co.

Measurement of the half-life of 53 Co is very difficult because it seems that the half-life of the ground state of 53 Co is quite close to that of an isomeric state of 53 Co; the half-life of this isomer was measured using the proton emission from the decay of the isomeric state by Cerny et al. $^{6)}$ The

previous value of the half-life of the ground state was obtained from the time spectrum of β -rays by Kochan et al. ⁷⁾ to be 261 ± 25 ms. It was uncertain, however, whether the β -rays from the decay of the isomer interfered their measurement. We could detect a de-excitation γ -ray from the 1329 KeV first-excited state of ⁵³Fe following the β -decay of the ground state of ⁵³Co. Although the 1329 KeV γ -ray is also populated from the decay of an isomeric state of ⁵³Fe, the half-life of this isomer is so long (2.5 min) that its time distribution did not interfere with the present measurement. The time distribution of the 1329 KeV γ -ray measured in the present measurement is shown in Figure 2. The inset shows the proposed decay scheme of ⁵³Co. We obtained $T_{1/2} = 267\pm109$ ms as a preliminary value of the half-life of the ground state of ⁵³Co, in agreement with the value obtained by Kochan et al. ⁷⁾

References

- 1) CYRIC Annual Report 1984, p. 65.
- 2) Fujioka M. et al., Nucl. Instrum. Meth. 186 (1981) 121.
- 3) Miyatake H., PhD thesis (Tohoku University 1985).
- 4) Horth S. D. et al., Phys. Lett. 51B (1974) 345.
- 5) Hardy J. C. et al., Phys. Rev. Lett. 33 (1974) 1647.
- 6) Cerny J. et al., Nucl. Phys. <u>A188</u> (1972) 666.
- 7) Kochan S. et al., Nucl. Phys. A204 (1973) 185.
- 8) Hornshoj P. et al., Phys. Lett. <u>116B</u> (1982) 4.
- 9) Hardy J. C. et al., Phys. Lett. 91B (1980) 207.
- 10) Hornshoj P. et al., Nucl. Phys. A288 (1977) 429.
- 11) Aysto J. et al., Phys. Lett. 138B (1984) 369.

Table 1. Results of half-life measurement of mirror nuclei using IGISOL at CYRIC, Tohoku University

Nucleu	s Reaction	Beam Energy(MeV)	Yield (atom/ C)	Half-Life(ms)	Previous Value(ms)	Ref.
45 _V	nat _{Ti(p,2n)}	30	4	534.9±9.8	539±18	(1)
49 Mn	⁵⁰ Cr(p,2n)	30	14	381.8±7.8	384±17	(2)
^{53g} Co	⁵⁴ Fe(p,2n)	30	15	267 ±109	262±25	(3)
55 _{Ni}	⁵⁴ Fe(³ He,2n) 27	20	200.6±3.3	189± 5 208± 5	(4) (5)
⁵⁷ Cu	⁵⁸ Ni(p,2n)	30	18	199.3±3.2	233±16	(6)

Fig. 1. Growth-decay curve of positrons from the decay of 54 Co produced via 54 Fe(p,n) reaction at E_p = 16 MeV. Lines are components of the best fit to the function A + B·exp $(-\ln 2 \cdot t/T_{1/2})$.

Fig. 2. Time distribution of the 1329 KeV γ -ray. The decay component is associated with the decay of the ground state of $^{53}\text{Co.}$