

$^6\text{Li}(p,n)^6\text{Be}$ Reaction at $E_p = 70$ MeV

著者	Kumagai K., Orihara H., Kikuchi Y.,
	Fujisawa H., Uemori T., Sugimoto N., Suzuki
	H., Terakawa A., Ishii K., Ohnuma H.
journal or	CYRIC annual report
publication title	
volume	2001
page range	1-7
year	2001
URL	http://hdl.handle.net/10097/30107

I. 1. 6 Li $(p,n)^{6}$ Be Reaction at $E_{p} = 70 \text{ MeV}$

Kumagai K., Orihara H., Kikuchi Y., Fujisawa H., Uemori T., Sugimoto N., Suzuki H., Terakawa A., Ishii K.*, and Ohnuma H.**

Cyclotron and Radioisotope Center, Tohoku University Department of Quantum Engineering, Tohoku University* Department of Physics, Chiba Institute of Technology**

Because of their simple structure consisting of 4 He plus two nucleons, the mass 6 system provide a good place to explore the effective nucleon-nucleon interaction through, for example, charge-exchange scattering. 6 Li nucleus is only the odd-odd target which provides a strong $1^{+} \rightarrow 0^{+}$ GT-like transition in a pure manner for scattering experiments. A number of experiments have been reported concerning nucleon and electron scattering, as well as charge-exchange reaction on 6 Li¹⁴). However, there should be interesting higher excited states, for which two nucleons are excited through a different type of spin-isospin excitation.

From the view points of effective nucleon-nucleon interaction between particles or particle-hole in such a simple system, it is significant to extend scattering experiments over high-lying states whereas no reliable data have not yet reported for the transitions including to the first excited state in ⁶Be. Petrovich and his collaborators have reported⁵⁾ consistent folding model descriptions of nucleon elastic, inelastic and charge-exchange scattering from ^{6,7}Li at 25-50 MeV.

In this report, we discuss spin-isospin excitation in nuclei through the ${}^6\text{Li}(p,n)\,{}^6\text{Be}$ reaction by observing the transitions to the ground 0^+ state, 1.67-MeV 2^+ state and to the possible highly lying states. Observed neutron spectra are interpreted by particle-hole excitation and three- and four-body break up processes. Angular distributions of the differential cross section leading to the definite states are analyzed with distorted wave (DW) Born approximation, where one-body-transition-density (OBTD) has been obtained by full-space shell-model calculations.

The experiment was performed at the Cyclotron and Radioisotope Center, Tohoku

University, with a 70-MeV proton beam from the K=110MeV AVF-cyclotron and the new beam swinger system⁶⁾. The details of the experimental setup have been described Ref. 6. Neutron energies were measured by the time-of-flight technique (TOF), where neutrons were detected by a detector array consisting of 16peaces of the disk type detector located at 44.3 m from the target. The detectors were filled with 25.1-liter organic liquid scintillator BC501A in the total sensitive volume. The absolute efficiencies of the detectors were obtained from the $^{7}\text{Li}(p,n)$ ^{7}Be activation analyses with an error less than \pm 6%. Errors in the absolute magnitude of (p,n) cross sections were estimated to be less than 12%. The target was a metallic foil of ^{6}Li isotopes with enrichments better than 95%.

Figures 1 illustrates the neutron excitation-energy spectrum measured at a laboratory angle of 30 degree for the $^6\text{Li}(p,n)^6\text{Be}$ reaction at $E_p = 70$ MeV. Curves in the figure are results of the phase space calculation for three- and four-body break up, and those of peak fitting for the low-lying together with the high-laying proposed states. It is noticeable that extra states other than ground and 1.67-MeV states are seen at $E_x = 3$, 15 and 25 MeV as shown more clearly in the back-ground subtracted overlaid figure.

The angular distributions of neutrons for the (p,n) reactions leading to these five states are illustrated in Figs. 2 through 6 along with theoretical calculations. The data are compared with microscopic DW results calculated by the computer code DWBA-74⁷⁾, which includes knock-on exchange effects in an exact manner. Note that fully antisymmetrized calculations were made in the present microscopic DW analysis, in which non-normal parity terms also contribute to the cross section. Optical potential parameters of Nadasen et al.⁸⁾ were used for the entrance channel. Those for the exit channel were potential parameters derived by Varner et al.⁹⁾ The effective nucleon-nucleon interactions used in the present DW analysis were those by Love and Franey¹⁰⁾. Spectroscopic amplitudes (OBTD) for the microscopic DWBA analysis were obtained from full spsd shell model calculations using the code OXBASH¹¹⁾ with the A-dependent interaction of Cohen, Kurath and Millener¹²⁾. Single-particle radial wave functions used in DW calculations were generated in a harmonic-oscillator potential with $\alpha = 0.625$ fm⁻¹.

Figure 2 shows experimental and theoretical angular distributions of the differential cross section for the (p,n) reaction to the 0^+ ground state of 6 Be. Four kinds of DW calculations are shown. "pm3y(LF-100)" denotes that the (p,n) calculation is carried out by Love - Franey 100MeV effective interaction with OBTD obtained by the M3Y interaction in the p-shell space, while "spsd(LF-50)" corresponds to the calculation by Love

- Franey 50MeV effective interaction with OBTD by Cohen, Kurath and Millener interaction over the large spsd-shells space. The cross section magnitude at 0-degree is explained reasonably by these calculations. Over all fitting is obtained by the set of spsd(LF-100) like the case in the 12 C(p,n) 12 N reaction as reported in Cyric Annual Report 2001 in this issue 13 . Here after analyses are carried out by the set of spsd(LF-100) including negative parity transitions.

In Fig. 3, we present the angular distribution of neutrons leading to the 2^+ first excited state in 6 Be along with theoretical curves. This state is assigned to be the first 2^+ state in the shell-model prediction. There are three components in the 1^+ to 2^+ transition contributing incoherently to the cross section. The $\Delta J = 1$ component, the main part in which is $\Delta J(\Delta L, \Delta S) = 1(0,1)$ GT-transition, dominates over small angle cross section, while the $\Delta J = 3$ component does those at larger angles. An extra peak is firstly observed at $E_x \sim 3$ MeV in the (p,n) spectrum. The angular distribution in Fig. 5 shows forward peaked one suggesting an $\Delta L = 0$ transition. We tentatively assign this state to be the second 2^+ state predicted by the shell-model. Other transitions to the 1^+ and 0^+ states give much smaller theoretical cross sections. As illustrated in Fig. 4, the $\Delta J = 1$ component dominates over small angle cross section, while the $\Delta J = 2$ component does those at larger angles. Note that observed cross sections are absolutely fitted.

As seen in Fig. 1, two broad peaks have been observed at $E_x \sim 15$ and 25MeV. These transitions are tentatively assigned to the fourth 1, and the fifth 2 states predicted by the shell-model calculations. Of course, the main contribution to the continuum in the neutron spectrum in Fig. 1 is due to the $\Delta L=1$ dipole transition Among them, some transitions give strong intensities, thus exhibiting broad peaks, e.g. $E_x \sim 15$ and 25MeV, as mentioned above. Comparison with theoretical predictions are shown in Figs. 5 and 6.

In a summary, the experimental study for the $^6\text{Li}(p,n)^6\text{Be}$ reaction has carried out at $E_p=50 \sim 80$ MeV region. Differential cross sections of neutrons leading to the five states in the residual nucleus were measured. Results have been compared with the large-space shell-model prediction based on DW theory. The newly observed low-lying state at $E_x=3\text{MeV}$ has been tentatively assigned to be 2^+ , T=1 one. Two broad bump observed at $E_x=15$ and 25MeV were discussed as 1^- and 2^- components of the $\Delta L=1$ giant resonance. This work is supported by grant in aid for scientific research of Ministry of Education, Culture, Sports, and Science and Technology No.13640257.

References

- 1) Batty C. J. et al., Nucl. Phys. A120 (1968) 297.
- 2) Rapaport J.et al., Phys. Rev. C41 (1990) 1920.
- 3) Glover C. W. et al., Phys. Rev. C41 (1990) 2487.
- 4) Glover C. W. et al., Phys. Rev. C43 (1991) 1664.
- 5) Petrovich F. et al., Nucl. Phys. A563 (1993) 387.
- 6) Terakawa A. et al., Nucl. Instrum. and Methods A491 (2002) 419.
- 7) R. Schaeffer and J. Raynal, the computer program DWBA70 unpublished.
- 8) Nadasen A. et al., Phys. Rev. C 23 (1981)1023.
- 9) Varner et al., Phys. Rep. 201 (1991) 57.
- 10) Franey M. A. and Love W. G., Phys. Rev. C 31 (1985) 488.
- The shell model code OXBASH, Echegoyen A. E., National Superconducting Cyclotron Laboratory Report No. 524 (1984).
- Kohen S. and Kurath D., Nucl. Phys. A101 (1967)1.
 Millener D. J. and Kurath D. Nucl. Ohys. A255 (1975) 315.
- 13) Kikuchi Y. et al., CYRIC Ann. Rep. 2001.
- 14) Yang X. et al., Phys. Rev. C 52 (1995) 2535.

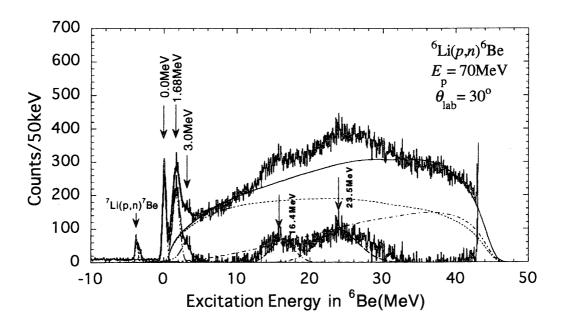


Fig. 1. A sample excitation energy spectrum from the ⁶Li(p,n) ⁶Be reaction taken at 30° with a flight path of 44.3 m. Energy per bin is 50 keV.

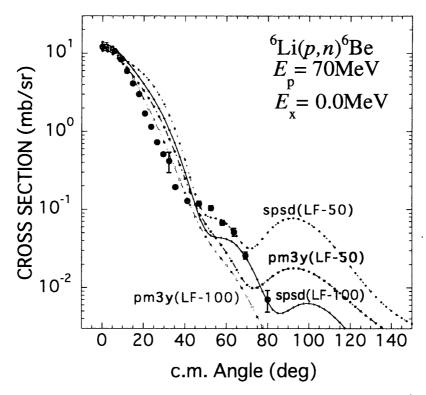


Fig. 2. Differential cross sections for neutrons leading to the ground state of ⁶Be.

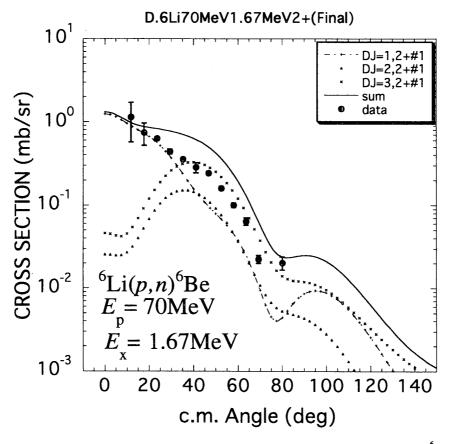


Fig. 3. Differential cross sections for neutrons leading to the 1st excited state in ⁶Be.

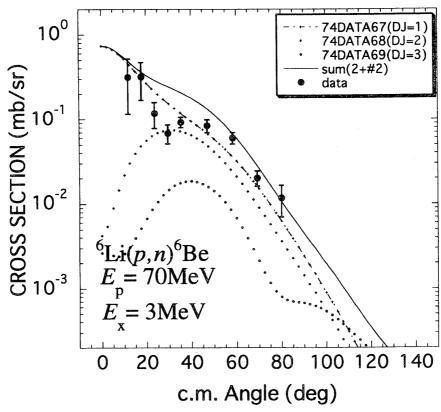


Fig. 4. Differential cross sections for neutrons leading to the excited state at $E_x = 3$ MeV in 6 Be.

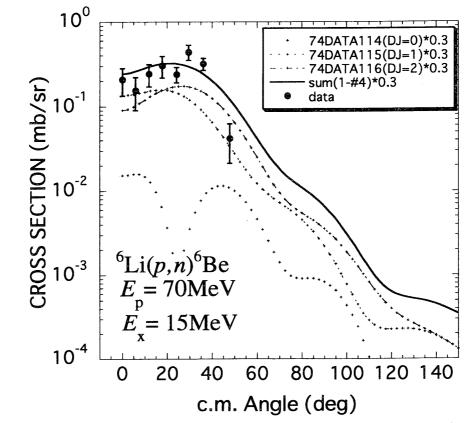


Fig. 5. Differential cross sections for neutrons leading the excited state at $E_x = 15$ MeV in ⁶Be...



Fig. 6. Differential cross sections for neutrons leading the excited state at $E_x = 25$ MeV in ⁶Be..