

Large uniaxial magnetic anisotropy of Co-Pt perpendicular films induced by lattice deformation

著者	北上修
journal or	IEEE Transactions on Magnetics
publication title	
volume	43
number	6
page range	2995-2997
year	2007
URL	http://hdl.handle.net/10097/47581

doi: 10.1109/TMAG.2007.893126

Large Uniaxial Magnetic Anisotropy of Co–Pt Perpendicular Films Induced by Lattice Deformation

T. Shimatsu¹, Y. Okazaki¹, H. Sato¹, O. Kitakami², S. Okamoto², H. Aoi¹, H. Muraoka¹, and Y. Nakamura¹, *Fellow, IEEE*

¹Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan

²Institute of Multidisciplinary Research for Advanced Material, Tohoku University, Sendai 980-8577, Japan

A study of the thickness dependence of the uniaxial magnetic anisotropy K_u of Co–Pt perpendicular films deposited on Ru seed layers was extended over a wide range of Pt content from 10 to 30 at%, to further investigate the origin of the significant increase in K_u on reducing the film thickness, which was previously reported for $Co_{80} Pt_{20}/Ru$ films. K_u increased significantly as the thickness decreased in all series of films with various Pt content. The rate of increase of K_u with reducing thickness became increasingly large as the Pt content decreased. It should be noted that the K_u of 2-nm-thick films was an almost constant 2×10^7 erg/cm³ over the range of Pt contents studied, although K_u was maximized at 25–30at% Pt content for films thicker than 5 nm. Experimental results suggest that the increase in K_u on reducing the thickness was mostly related to a reduction of the hcp Co–Pt lattice c/a ratio.

Index Terms—Co–Pt films, fcc volume fraction, hcp lattice, lattice deformation, Ru underlayer, surface anisotropy, uniaxial magnetic anisotropy.

I. INTRODUCTION

LARGE uniaxial magnetic anisotropy K_u of $1.5-2 \times 10^7$ erg/cm³ was obtained in Co-20at%Pt perpendicular films deposited on Ru seed layers with no evidence of a Co₃Pt-type ordered structure [1], [2]. K_u increased significantly as the thickness decreased, and our results suggested that the increase in K_u was mostly related to a reduction of the c/a ratio of the hcp Co-Pt lattice due to epitaxial growth of Co-Pt on the Ru layers.

In this paper we extend the study of the thickness dependence of K_u to Co–Pt films with 10, 14, 20, 25, and 30at%Pt content, to further investigate the origin of the high K_u . The lattice mismatch between Co–Pt and Ru increased as the Pt content decreased; therefore, it was expected that reducing the Pt content would result in a further enhancement of K_u . We discuss the variation of K_u as a function of crystal structure in relation to the Pt content. The lattice deformation for films thinner than 10 nm was analyzed by synchrotron radiation grazing incidence X-ray diffraction (XRD), and included in the discussion. Moreover, the thickness dependence of K_u for Co–14at%Pt films deposited on Au seed layers was also examined for comparison; the lattice mismatch between Co–Pt and Au is much larger than that between Co–Pt and Ru.

II. EXPERIMENTAL PROCEDURE

Co–Pt films were deposited on 4-in SiO_x/Si substrates by the cosputtering method with Co and Pt targets using a dc-magnetron sputtering system [2]. The film thickness was varied from 2 to 60 nm. Ru (20 nm) films were used as seed layers with a preseed layer of Pt(10 nm)/Ta(5 nm). No substrate heating was carried out during the deposition process. Capping layers of Pt (2 nm) were deposited on top of the Co–Pt layers. For comparison, Co–14at%Pt films with Au seed and capping layers were also

Fig. 1. K_u as a function of thickness δ for Co–Pt films with various Pt content. The inset figure shows the Pt content dependence of K_u for the same films.

deposited. $K_{\rm u}$ was obtained by subtracting the shape anisotropy $2 \pi M_s^2$ from the value measured by torque magnetometry. The accuracy of the measured $K_{\rm u}$ values was confirmed in our previous work [2].

III. RESULTS AND DISCUSSIONS

A. $K_{\rm u}$ as Functions of Pt Content and Film Thickness

The saturation magnetization M_s was almost constant in all series of films with various Pt content, except for films thinner than 5 nm, for which M_s increased as the thickness decreased. This increase in M_s was due to polarization of the Pt capping layer [2], suggesting that no significant diffusion occurred at the top/bottom surfaces of the Co–Pt layer.

Fig. 1 shows the values of $K_{\rm u}$ for films with various Pt content as a function of film thickness δ . $K_{\rm u}$ increased as δ decreased, and reached about 2×10^7 erg/cm³ at $\delta = 2$ nm in all series of films. The $K_{\rm u}$ values of these films were a few times larger than those of Co–20at%Pt films previously reported [3]–[6]. The $K_{\rm u}$ values of films thinner than 5 nm exceed the $K_{\rm u}$ of Co₃ Pt ordered alloy films [7]. Moreover, the rate of increase of $K_{\rm u}$

Digital Object Identifier 10.1109/TMAG.2007.893126

^{0018-9464/\$25.00 © 2007} IEEE

Fig. 2. The fcc volume ratio, $V_{\rm fcc}/V_{\rm total}$, for 20 nm-thick films as a function of Pt content. The inset figure shows the thickness dependence of $V_{\rm fcc}/V_{\rm total}$ for films with 14at%Pt content.

with reducing δ became increasingly large as the Pt content decreased, as expected. The $K_{\rm u}$ of films of $\delta = 2$ nm was almost constant for films with Pt content from 10 to 30at%, as seen in the inset figure, although $K_{\rm u}$ was maximized at 25–30at%Pt content for films thicker than 5 nm. Our investigation of the first- and second-order energy terms of the uniaxial anisotropy, K_{u1} and K_{u2} , for Co–20at%Pt films revealed [1], [2] that the ratio of K_{u2} to K_{u1} was 0.16 for films with $\delta = 40$ nm, but reduced to less than 0.03 on decreasing δ to 5 nm. The K_{u2} values of these films were particularly small, unlike in previous reports [5], [6]. A similar thickness dependence of $K_{\rm u}$ was also observed in Co–14at%Pt films deposited on Au seed layers, as shown in the figure; however, the $K_{\rm u}$ values were smaller than those of Co–14at%Pt films deposited on Ru seed layers.

B. Structure

X-ray diffraction patterns revealed that the Co-Pt films with Ru seed layers had good c-axis orientation perpendicular to the film plane, with a c-axis distribution $\Delta \theta_{50}$ of about 2.8°, independent of Pt composition. No evidence of a Co₃Pt type ordered structure was found in the X-ray diffraction patterns. The diffraction of the fcc(111) plane was weakly observed by tilting the sample an angle $\chi = 70.5^{\circ}$. χ is the angle between the normal axis to the film plane and the optical plane. This means that hcp Co-Pt lattice of grains contains a small number of fcc layers. We measured the diffraction intensities for the hcp(101) and fcc(111) planes, respectively, and calculated the fcc volume fraction, $V_{\rm fcc}/V_{\rm total}$, taking account of the preferred grain orientation, the multiplicity, form factor, Lorentz-polarization factor, and Debye–Waller factor [8]. Fig. 2 shows the values of $V_{\rm fcc}/V_{\rm total}$ as a function of Pt content for films with $\delta = 20$ nm. $V_{\rm fcc}/V_{\rm total}$ could not be estimated for films thinner than about 10 nm because of the very low diffraction intensities. $V_{\rm fcc}/V_{\rm total}$ was about 0.15 for films with a 10at%Pt content; however, $V_{\rm fcc}/V_{\rm total}$ decreased significantly as the Pt content increased, becoming less than 0.02 at 30at%Pt content. It should be noted that the value of $V_{\rm fcc}/V_{\rm total}$ was nearly constant as a function of δ , as shown in the inset figure for Co–14at%Pt films. This was supported by cross section (dark field) transmission electron microscopy (TEM) images; thin fcc layers form nearly

Fig. 3. Values of c/a ratios and V_{lattice} of the hcp Co–Pt lattice as a function of thickness. Symbols: X = 20 (circle), 14 (square), and 10 (triangle).

independently of the film thickness. The use of Au instead of Ru seed layers resulted in $V_{\text{fcc}}/V_{\text{total}}$ nearly doubling.

C. Appearance of High $K_{\rm u}$ in Relation to Structure

The magnetic anisotropy of fcc Co–Pt should be negligibly small compared to that of hcp Co–Pt, and the Pt content dependence of $V_{\rm fcc}/V_{\rm total}$ was qualitatively in good agreement with that for $K_{\rm u}$, shown Fig. 1. This result suggests that an increase in $V_{\rm fcc}/V_{\rm total}$ plays a role in reducing $K_{\rm u}$ in the low Pt content region. However, the change in $K_{\rm u}$ was significantly large compared to that in $V_{\rm fcc}/V_{\rm total}$. Moreover, the value of $V_{\rm fcc}/V_{\rm total}$ was nearly constant as a function of δ . It is likely that the thickness dependence of $K_{\rm u}$ was mainly caused by other factors.

The surface anisotropy should be taken into account when discussing the value of $K_{\rm u}$ in the thin film region. Assuming that the increase in $K_{\rm u}$ was caused by the surface anisotropy, we tried to estimate the surface anisotropies at the top and the bottom surfaces, $K_{\rm s1}$ and $K_{\rm s2}$. However, the $K_{\rm u} \sim 1/\delta$ curve was not linear in all series of films, similar a series of Co–20at%Pt films [2]. Moreover, the calculated values of $K_{\rm s1} + K_{\rm s2}$ in these films ranged from 5 to 8 erg/cm², which are much larger than the surface anisotropy of Co-based alloy films [9]. These results indicate that the thickness dependence of $K_{\rm u}$ cannot be explained only by the surface anisotropy.

The lattice mismatch between Co–Pt and Ru increased as the Pt content decreased; therefore, it was expected that reducing the Pt content would result in an enhancement of lattice deformation. We measured the hcp-CoPt lattice spacings of the (002), (004), and (112) planes of these films, and used them to calculate the lattice constants a and c. The diffraction of the hcp (112) plane was measured by tilting the sample at an angle $\chi = 58-59^{\circ}$. Fig. 3 shows the values of the c/a ratio and the lattice volume, V_{lattice} , (= $(3^{1/2}/2)ca^2$) as a function of δ for films with 10, 14, and 20at%Pt content. In the fig, the results for Co–14at%Pt films in the very thin film region (from 3 to 20 nm), analyzed by synchrotron radiation grazing incidence XRD method, are also shown. The c/a value decreased as δ decreased for all series of media. This c/a reduction was mainly caused by

Fig. 4. Relationship between the c/a ratio of the hcp Co–Pt lattice and K_u . Symbols: X = 20 (circle), 14 (square), and 10 (triangle).

an increase in the *a* value (the lattice spacing in the lateral direction), probably due to epitaxial growth of Co–Pt on the Ru layers. The c/a reduction in Co–14at%Pt films reached 1% on decreasing δ from 60 to 3 nm. We expected that increasing the lattice mismatch by reducing the Pt content would enhance the lattice deformation. However, the c/a values for the 10at%Pt films were large relative to the others, which may be related to the formation of a small number of fcc layers in the hcp-lattice. Moreover, it should be noted that V_{lattice} increased significantly, especially in the δ region less than 20 nm. The increase in V_{lattice} for Co–14at%Pt films with Au seed layers showed larger c/a and smaller V_{lattice} compared to films with Ru seed layers.

Fig. 4 shows the relationship between the c/a ratios of the hcp Co–Pt and K_u . The increase in K_u on reducing δ was coincident with a reduction of the c/a ratio. This relationship between the c/a ratio and K_u was qualitatively in good agreement with theoretical predictions [10]–[13]. The rate of increase of K_u with reducing c/a value was slightly larger in series of films with low Pt content; however, no significant difference was found.

Experimental results suggested that the increase in K_u on reducing the thickness was mostly related to a reduction of the hcp Co–Pt lattice c/a ratio. The results for Co–14at%Pt films with Au seed layers are located in the extrapolated area of the $K_u - c/a$ plot for the films with Ru seed layers. We deposited Co–25at%Pt binary alloy films (10-nm thickness) on various seed layer materials, and found [14] that K_u and the c/a ratio showed a greater dependence on the seed layer materials used, and K_u increased significantly as the c/a ratio decreased. This result supports our conclusion. Moreover, it is likely that a huge increase in the lattice volume enhances the increase in K_u on reducing the thickness especially below 10 nm; however, more intensive effort is required to clarify the relationship between the lattice deformation and K_u .

IV. CONCLUSION

The rate of increase of K_u of Co–Pt films with reducing thickness becomes increasingly large as the Pt content decreases as we expected, and $K_{\rm u}$ of 2-nm-thick films was almost a constant 2×10^7 erg/cm³, independent of Pt content in the region from 10 to 30at%Pt. Our results suggest that the increase in $K_{\rm u}$ on reducing the thickness was mostly related to a reduction of the hcp Co–Pt lattice c/a ratio.

ACKNOWLEDGMENT

This work was supported in part by the MEXT IT-program (RR2002).

REFERENCES

- [1] T. Shimatsu, H. Sato, T. Oikawa, Y. Inaba, O. Kitakami, S. Okamoto, H. Aoi, H. Muraoka, and Y. Nakamura, "High perpendicular magnetic anisotropy of CoPtCr/Ru films for granular-type perpendicular media," *IEEE Trans. Magn.*, vol. 40, no. 4, pt. 2, pp. 2483–2485, Jul. 2004.
- [2] T. Shimatsu, H. Sato, Y. Okazaki, H. Aoi, H. Muraoka, Y. Nakamura, S. Okamoto, and O. Kitakami, "Large uniaxial magnetic anisotropy by lattice deformation in CoPt/Ru perpendicular films," *J. Appl. Phys.*, vol. 99, p. 08G908(1–3), 2006.
- [3] F. Bolzoni, F. Leccabue, R. Panizzieri, and L. Pareti, "Magnetocrystalline anisotropy and phase transformation in Co-Pt alloy," *IEEE. Trans. Magn.*, vol. 20, no. 5, pp. 1625–1627, Sep. MAG-1984.
- [4] T. Hikosaka, T. Komai, and Y. Tanaka, "Oxygen effect on the microstructure and magnetic properties of binary CoPt thin films for perpendicular recording," *IEEE. Trans. Magn.*, vol. 30, no. 6, pp. 4026–4028, Nov. 1994.
- [5] O. Kitakami, N. Kikuchi, S. Okamoto, Y. Shimada, K. Oikawa, Y. Otani, and K. Fukamichi, "Effects of Pt and Ta on the magnetic anisotropy of Co and Co–Cr thin films," *J. Magn. Magn. Mater.*, vol. 202, pp. 305–310, 1999.
- [6] B. Xu, J. Du, T. J. Klemmer, R. Schad, J. A. Barnard, and W. D. Doyle, "Epitaxial Co₈₀ Pt₂₀ films with in-plane uniaxial anisotropy," *IEEE*. *Trans. Magn.*, vol. 37, no. 4, pt. 1, pp. 1512–1514, Jul. 2001.
 [7] Y. Yamada and T. Suzuki, "Origin of large perpendicular anisotropy
- [7] Y. Yamada and T. Suzuki, "Origin of large perpendicular anisotropy in Co₃ Pt alloy thin film," *J. Magn. Soc. Jpn.*, vol. 23, pp. 1855–1860, 1999.
- [8] B. E. Warren, X-Ray Diffraction (Book Style). New York: Dover, 1990, pp. 41–45.
- [9] M. T. Johnson, R. Jungblut, P. J. Kelly, and F. J. A. den Broeder, "Perpendicular magnetic anisotropy of multilayers: Recent insights," *J. Magn. Magn. Mater.*, vol. 148, pp. 118–124, 1995.
- [10] W. J. Carr, JR., "Theory of ferromagnetic anisotropy," *Phys. Rev.*, vol. 108, pp. 1158–1163, 1957.
- [11] W. J. Carr, JR., "Temperature dependence of ferromagnetic anisotropy," *Phys. Rev.*, vol. 109, pp. 1971–1976, 1958.
- [12] O. Hjortstam, K. Baberschke, J. M. Wills, B. Johansson, and O. Eriksson, "Magnetic anisotropy and magnetostriction in tetragonal and cubic Ni," *Phys. Rev. B*, vol. 55, pp. 15026–15032, 1997.
- [13] T. Burkert, O. Eriksson, P. James, S. I. Simak, B. Johansson, and L. Nordstorm, "Calculation of uniaxial magnetic anisotropy energy of tetragonal and trigonal Fe, Co, and Ni," *Phys. Rev. B*, vol. 69, p. 104426-(1–7), 2004.
- [14] H. Sato, T. Shimatsu, Y. Okazaki, O. Kitakami, S. Okamoto, H. Aoi, H. Muraoka, and Y. Nakamura, "Magnetic anisotropy of Co–M-Pt (M = Cr, Mo, Ru, W, Re) perpendicular films epitaxially deposited on various seed layer materials," presented at the 10th Joint MMM-Intermag Conf., Paper FX-03.

Manuscript received October 31, 2006 (e-mail: shimatsu@riec.tohoku.ac.jp).