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We propose a scheme for electrical measurement of two-electron spin states in a semiconductor double

quantum dot. We calculated the adiabatic charge transfer when surface gates are modulated in time.

Because of spin-orbit coupling in the semiconductor, spatial displacement of the electrons causes a total

spin rotation. It follows that the expectation value of the transferred charge reflects the relative phase as

well as the total spin population of a prepared singlet-triplet superposition state. The precise detection of

the charge transfer serves to identify the quantum superposition.
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Electron spins confined in semiconductor quantum dots
provide intrinsic quantum bits (qubits) [1]. In 2002, an
efficient framework for universal quantum computation
using singlet-triplet qubits was proposed by Levy [2].
Two-electron states in a double quantum dot (DQD) are
characterized by the charge number in each dot labeled
(m, n) and the total spin s ¼ fS; Tg. Then, the basis set

is composed of three singlet states jS�i � ½jð2; 0ÞSi �
jð0; 2ÞSi�= ffiffiffi

2
p

, jSi � jð1; 1ÞSi and triplet states jT�i �
jð1; 1ÞT�i with a magnetic quantum number � ¼ f0;�1g.
A single spin qubit is defined in one of the singlet-triplet
subspaces, e.g., S-T0 subspace. The proposal has inspired
different experimental [3–6] and theoretical studies [7,8] in
recent years.

In the S-T0 subspace, any of quantum superposition
states can be written as

jc i ¼ cos
�

2
jSi þ sin

�

2
ei�jT0i (1)

and is mapped on the Bloch sphere in Fig. 1(a). To build the
quantum gates, it is necessary to manipulate and detect the
Bloch angles � and �. However, the conventional readout
experiments using the Pauli spin blockade cannot detect
the relative phase �, but can detect the total spin popula-
tions characterized by the angle � [3–6]. The relative phase
� is a fundamental element of the quantum mechanics in
itself, and is essential in quantum algorithms such as
Grover’s database search problem [9]. Therefore, we
need to explore schemes for measuring the two Bloch
angles in parallel.

In this work, we propose a measurement scheme for the
coherence phase between the entangled spin states, which
utilizes adiabatic charge transfer. It is assumed that the
DQD defined by metal surface gates is located on a two-
dimensional electron gas (2DEG) in a semiconductor.
Then, we can control the electrical potentials in the two
dots and the barrier potential separating them [3,4,10]. We
calculated the charge difference in the DQD when the

quantum state in Eq. (1) is temporally varied by the gate
manipulation. It was shown that the expectation value of
the transferred charge depends on the initial phase� due to
spin-orbit couplings in the 2DEG. Thus, it becomes pos-
sible to identify the state vector on the Bloch sphere in the
S-T0 subspace by charge-sensing measurements at each dot
[3–6,11].
The system we consider is well described by the Hund-

Mulliken model, in which doubly occupied states are taken
into account. In this model, the orthonormalized single-

particle state is defined as �LðRÞ ¼ ð’LðRÞ �
g’RðLÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�gþ g2

p
where � is the overlap integral

of the orbitals in the left and right dots ’L;R, and g ¼
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
Þ=� [12]. We consider the spin-orbit interac-

tions for the singlet-triplet coupling [13–15]. Electron
tunneling thus accompanies the spin precession with re-
spect to the vector P=2 ¼ �ih�Lj�j�Ri, in which the

spin-orbit interaction is expressed by Ĥso ¼ �i¼1;2�ðkiÞ �
Si with ki and Si being the wave vector and spin operator
of i-th excess electron, respectively [13]. It is convenient to
take the spin quantization axis to be parallel to P=2. For
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FIG. 1 (color online). (a) Bloch sphere of the S-T0 spin sub-
space. The angle � characterizes the total spin populations,
whereas the angle � denotes the relative phase. (b) Scattering
processes in the DQD; jSi and jT0i couple with each other
through the doubly occupied states. jSgðeÞi is a linear combina-

tion of jð2; 0ÞSi and jð0; 2ÞSi, which diagonalizes the doubly
occupied states when we set T ¼ P ¼ 0 virtually.

PRL 103, 046806 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
24 JULY 2009

0031-9007=09=103(4)=046806(4) 046806-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.046806


this choice, the states jT�1i are decoupled from the other
states [13], and will be omitted below. Thus, the
Hamiltonian in fjSþi; jS�i; jSi; jT0ig basis can be written
as [12,13,16]

Ĥ ¼
Uþ X " T �iP

" U� X 0 0
T 0 0 0
iP 0 0 0

0
BBB@

1
CCCA; (2)

in which U ¼ h�LðRÞjCj�LðRÞi and X ¼ h�LjCj�Ri with
�LðRÞ ¼ �LðRÞðr1Þ�LðRÞðr2Þ and Cðr1; r2Þ being a

Coulomb interaction. T=2 and " are the single-particle
interdot tunneling and the gate-controlled potential differ-
ence between the dots, respectively. One can see that the
singlet and the triplet (1,1) states couple with each other
through the doubly occupied states [see Fig. 1(b)]. We
assume that � and " are the accessible parameters by
modulating the gate voltages. The matrix elements T and
P are approximately proportional to � [12,13], and X to �2

[12] in the tunneling regime.
In Eq. (2), only the ground orbital of each dot is consid-

ered. When one of the electrons is brought into the first
excited orbital, the additional singlet and triplet states
fjð0; 2ÞS0i; jð2; 0ÞS0i; jð0; 2ÞT�i; jð2; 0ÞT�ig are possible [8].
However, in the typical experiments, these states lie far
(*0:4 meV � T, P) above the jS�i state [3–6]. Thus, we
can disregard them as long as " & U.

We performed a unitary transformation of jS�i so that,
as j"j increases, one of them jSgi energetically approaches
the (1,1) states while the other state jSei draws apart [see
Fig. 1(b)]. After adiabatic elimination of the higher state
jSei [17], the effective Hamiltonian is given by

Ĥ eff ¼
Eg T sin� �iP sin�

T sin� � T2

Ee
cos2� i TPEe

cos2�

iP sin� �i TPEe
cos2� � P2

Ee
cos2�

0
BB@

1
CCA; (3)

where EgðeÞ ¼ U�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ "2

p
and tan� ¼ ð�X þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ "2
p

Þ=". Here, we introduce the instantaneous eigen-
states and energies of the time-dependent Hamiltonian of

Eq. (3), such that ĤeffðtÞjmðtÞi ¼ EmðtÞjmðtÞi. Because of
the presence of the spin-orbit couplings, the (1,1) charge
state is expanded with the so-called bright state jBi ¼
cos�jSi þ i sin�jT0i and dark state jDi ¼ sin�jSi �
i cos�jT0i with tan� ¼ P=T [18]. Therefore, one sees
that the instantaneous eigenstates are jDi and

jþi ¼ cos�jSgi þ sin�jBi;
j�i ¼ � sin�jSgi þ cos�jBi; (4)

in which

tan� ¼
~Eg þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2
g þ 4ðT2 þ P2Þsin2�

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðT2 þ P2Þp

sin�
; (5)

~E g ¼ Eg þ ðT2 þ P2Þ
Ee

cos2�: (6)

The dark state jDi is free from the double occupancy state,
and is not affected by the sweep of the bias potential. In
addition, since the spin-orbit coupling is always weak
compared with the hopping energy, the variation of the
mixing angle � by the center gate is considerably small.
On the other hand, the angle� changes from�=2 to 0 with
increasing ", which indicates that there is an avoided
crossing of the jBi and jSgi states. The corresponding

eigenenergies are respectively

ED ¼ 0;

E� ¼
~Eg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2
g þ 4ðT2 þ P2Þsin2�

q
2

� ðT2 þ P2Þ
Ee

cos2�:

(7)

We calculate the charge difference in the DQD after
varying the system parameters adiabatically. The expected
value of the charge difference is defined by

Qð�Þ ¼
Z �

0
dthc ðtÞjÎ0jc ðtÞi; (8)

in which Î0 is 3� 3 the ‘‘current’’ operator. The current

operator is obtained by mapping Î ¼ ði=@Þ½Ĥ; �̂z� on
fjDi; jþi; j�ig basis, where �̂z ¼ 2e½jð2; 0ÞSi�
hð2; 0ÞSj � jð0; 2ÞSihð0; 2ÞSj� and [,] denotes commutation.
Because the dark state jDi is decoupled from the double
occupancy state, it does not contribute to the current. Then,
the detection of Qð�Þ corresponds to the projection mea-
surement in the bright state jBi. Note that in the Pauli spin
blockade measurement, the projection axis is jSi [3–6].
Since the bright state lies on the sphere with a well-defined
azimuthal angle of �B ¼ �=2, the charge difference can
capture the initial relative phase.
With use of the instantaneous eigenstates, one can ex-

pand a two-electron state as

jc ðtÞi ¼ X
m¼fD;�g

cmðtÞei�m jm;qi; (9)

where �mðtÞ ¼ �R
t
0 dt

0Emðt0Þ=@ is the usual dynamical

phase. The coefficient cm is varied with respect to the set
of gate-controlled parameters qðtÞ ¼ f�ðtÞ; "ðtÞg, and
obeys the differential equation [19,20]

dcm
dt

¼ �X
n�m

cne
i�n�i�mhm;qj d

dt
jn;qi: (10)

The time variation of 	cmðtÞ ¼ cmð0Þ � cmðtÞ represents
the nonadiabatic level transition. However, as far as the
adiabatic condition jhm;qj@ðd=dtÞjn;qi=ðEm � EnÞj 	 1
is satisfied, it is negligible and may be dropped.
The adiabatically pumped charge difference is obtained

by substituting Eqs. (9) and (10) into Eq. (8), and taking the
zero-order terms in terms of 	cmðtÞ. Here, we assume that
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the manipulation time � is much longer than the period of
the unitary time evolution ei�m . As a result, we find that the
charge difference consists of two parts; Qð�Þ ¼ Q0 þQ1.
One is

Q0 ¼ 2@Im
X

m;n�m

jcmð0Þj2
Z �

0
dthnj d

dt
jmi hmjÎ0jni

Em � En

: (11)

The other is the interference part, which includes rapid
interlevel oscillation in the integrand;

Q1 ¼ 2@Im
X

m;n�m

cmð0Þc
nð0Þ
Z �

0
dtei�m�i�nKmn; (12)

where

KmnðtÞ ¼ i

2@
hnjÎ0jmi � X

l�fm;ng
hmj d

dt
jni hljÎ

0jmi
El � Em

: (13)

When an eigenstate is prepared as an initial state, i.e.,
cmð0Þ ¼ 1 for a certain m and cm0�mð0Þ ¼ 0, Qð�Þ reduces
to the result in the previous work [19,20].

Hereafter, we calculate the charge difference Qð�Þ for
specific manipulation sequence. The gate voltages are
initially adjusted so that no bias potential is present, and
the barrier potential is so high that the system stays almost
in the prepared state. The gate control under consideration
is presented in Fig. 2. The sequence consists of three parts;
we (i) lower the interdot potential barrier in order to
increase the overlap integral �, (ii) tilt the electric potential
until " ¼ "f > 0 to be ~Egð"f;�0Þ ¼ 0, and (iii) raise the

barrier potential height again.
Before proceeding to the calculation, we review the

adiabatic conditions. First, no charge transfer occurs dur-
ing the process (i) because the doubly occupied state is
entirely decoupled. In the second process (ii), the gate
sweep affects only the mixing angle �. The dark state
jDi is thus left unperturbed. Then, the nonadiabatic con-
tribution 	cm is roughly proportional to the Landau-Zener
(LZ) transition rate [21] between the doubly occupied state
jSgi and the bright state jBi. At the avoided crossing, the

LZ transition rate is estimated as

pðiiÞ ’ exp

�
��ðT2

1 þ P2
1Þ

@j _"j
�
; (14)

where _" ¼ d"=dt, T0ð1Þ ¼ Tð�0ð1ÞÞ, and P0ð1Þ ¼ Pð�0ð1ÞÞ.
In the last process (iii), lowering � changes both the mix-
ing angles � and �, but generally d�=dt 	 d�=dt.
Thus, assuming that the applied bias is so large that
�fðtÞ � �ð"f;�Þ � �=4, the LZ transition rate is

pðiiiÞ ’ exp

�
��Eeð"fÞ2

@j _�j
�
; (15)

where _� ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ P2

p
=dt is approximately proportional

to d�=dt. It should be noted that the spin-orbit interaction
appears in parallel with the interdot tunneling as long as the
dark state is robust against the gate control. The coherent
oscillation between the singlet and the triplet states holds
when the adiabatic condition for the interdot tunneling T=2
is satisfied. This is a definite difference between the pre-
vious work using a field gradient for singlet-triplet mixing
[3–7] and ours. Besides, the single level spacing for the

individual electrons is of the order of 1 meV �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ P2

p
.

Therefore, the nonadiabatic transition to the excited orbi-

tals is negligible as long as pðiiÞ, pðiiiÞ 	 1 is satisfied.
The target state we focus on is arbitrary superposition

state of jSi and jT0i as shown in Eq. (1). At the initial
condition t ¼ 0, it does not contain the excited state j�i,
i.e., c�ð0Þ ¼ 0. Therefore, one can see that the interference
part becomes

Q1 /
Z �

0
dt

ei�þ sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2
g þ 4ðT2 þ P2Þsin2�

q d

dt
�: (16)

As is mentioned above, the integrand is negligibly small
and rapidly oscillating. Thus, all we have to calculate isQ0,
which is proportional to jcþð0Þj2. Within the first order of
P=T, we obtain the adiabatically pumped charge difference
as

Qð�Þ ¼ � e

2

�
ð1þ cos�Þ þ 2

P0

T0

sin� sin�

�
: (17)

The first term in the right-hand side describes the Pauli spin
blockade [3–5,22]. It should be noted that the charge
difference oscillates with respect to the relative phase �.
The oscillating term reflects the imaginary part of jc i, and
originates from the projection axis jBi which is slightly
tilted from jSi. In addition, the oscillation does not appear
when the initial state is a pure singlet (� ¼ 0) or triplet
state (� ¼ �).
For a clean GaAs=AlGaAs 2DEG confined in 10�

100 nm long, the spin-orbit interaction energy is estimated

to be hĤsoi ¼ 10�2 � 10�1 meV from magnetoresistance
data [23]. On the other hand, the confinement energy is
�1 meV for a quantum dot with a 30 nm side [12]. In that
case, it is possible to experimentally achieve the condition

FIG. 2 (color online). Sequence of gate voltage manipulations
under consideration. The upper panel shows the potential bias
between the left and the right dots. The overlap of the orbitals in
the two dots � is moved up and down by the gate-controlled
potential barrier.
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in which the oscillation amplitude is�10% ofQð�;� ¼ 0Þ
[13]. Therefore, the repetitive experiments can reveal the
relative phase as well as the total spin population of the
prepared state.

So far, we have neglected the effect of nuclear spins
in the semiconductor. The hyperfine fields due to the nu-
clei (Overhauser field) hLðRÞ couple with the electron spins
as Vhf ¼ h � ðS1 þ S2Þ þ 	h � ðS1 � S2Þ, where h ¼
ðhL þ hRÞ=2 and 	h ¼ ðhL � hRÞ=2. Then, the average
of the Overhauser fields h rotates the subspace of the three
spin triplet states, while the inhomogeneity 	h mixes jSi
with jT�is [24–26].

The Overhauser fields can disturb the electron spin state
during the adiabatic gate control. However, the hyperfine
coupling between jSi and jT�i does not undergo virtual
double occupancy, and the adiabatic condition for 	h is
different from that for T=2 and P=2. Thus, we can separate
off the effect of the Overhauser field using the technique
called ‘‘rapid adiabatic passage,’’ in which the sweep of the
bias is adiabatic for the electron tunneling but is nonadia-
batic for the hyperfine couplings [3,27]. In a quantum dot
containing unpolarized N ¼ 105 nuclear spins, the root
mean square of the Overhauser field is jhhLðRÞirmsj �
10�4 meV. The required length of the manipulation se-
quence � is a few 
s or shorter for interdot tunneling
coupling T1=2� 10�2meV. This condition has been
achieved in a couple of experiments [3,27].

In summary, we propose an adiabatic charge transfer in a
gate-defined DQD as an indicator of singlet-triplet quan-
tum superposition on a S-T0 Bloch sphere. After the gate
manipulations, the transferred charge number is found to
oscillate with respect to two Bloch angles in the initially
prepared superposition state. The oscillation can be ob-
served in an ensemble average of charge-sensing measure-
ments in each dot with quantum point contacts [3,4,11].
Recently, Kosaka et al. demonstrated the quantum coher-
ence transfer from light polarization to electron spin po-
larization in a quantum well [28,29]. By applying this
method, it becomes possible to prepare arbitrary S-T0

superposition states in DQD. The present scheme can
help to check whether a system is indeed prepared in the
desired state.
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[20] M. Möttönen, J. P. Pekola, J. J. Vartiainen, V. Brosco, and
F.W. J. Hekking, Phys. Rev. B 73, 214523 (2006).

[21] L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932);
C. Zener, Proc. R. Soc. A 137, 696 (1932).

[22] K. Ono, D.G. Austing, Y. Tokura, and S. Tarucha, Science
297, 1313 (2002).

[23] J. B. Miller, D.M. Zumbuhl, C.M. Marcus, Y. B. Lyanda-
Geller, D. Goldhaber-Gordon, K. Campman, and A. C.
Gossard, Phys. Rev. Lett. 90, 076807 (2003).

[24] W.A. Coish and D. Loss, Phys. Rev. B 72, 125337
(2005).

[25] J.M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby,
C.M. Marcus, and M.D. Lukin, Phys. Rev. B 76,
035315 (2007).
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