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The brain is the center of intelligence that biological systems have acquired during their evolutionary history. In unpredictably
changing environments, animals use it to recognize the external world and to make appropriate behavioral decisions.
Understanding the mechanisms underlying biological intelligence is important for the development of artificial intelligence.
Olfaction is one of the sensory modalities that animals use to locate distant objects. Because of its relative simplicity compared
with other sensory modalities and the wealth of knowledge at cellular, network, system, and psychophysical levels, it is possible
that the biological olfactory system would be understood comprehensively. This paper reviews our biological and computational
works with a focus on the temporal aspects of olfactory information processing. In addition, the paper highlights that the “time”
dimension is essential for the functioning of the olfactory information processing system in the real world.

1. Introduction

Consider animals, such as honeybees, butterflies and so
forth, collecting flower nectar in fields. For simplicity, all
flowers have the same visual cues (e.g., shape, size, color,
etc.), but each of them has a distinct odor. Some flowers can
have the same odor but are spatially distributed randomly in
the field. The quantity of flower nectar is fixed according to
the type of odor; for example, flowers with odor A have 10 mL
nectar, odor B have 5 mL, and odor C have 0 mL. There might
be some dangerous flowers, such as insectivorous flowers,
giving off specific odors. It is important to be aware of the
cognitive abilities that an animal needs to possess in order to
collect nectar efficiently and avoid danger.

An animal can sense an odor at various distances from
its source, implying that an odor can be sensed at different
concentrations. To approach or avoid flowers with a specific
odor, the animal should be able to judge the odor at different
concentrations as an odor with the same quality and should
be able to determine its direction based on whether the odor
signal becomes stronger or weaker. Thus, the animal must
have the ability to identify odors in a concentration-invariant
manner.

Suppose that the animal has visited many flowers in a
certain field and has experienced the relationship of odors
with nectar quantities or dangers and then moves to a
different field. How will the animal behave in the new field
where there are no flowers with odors identical to those
experienced in the previous field? Based on the experience
in the previous field, the animal should visit flowers with
odors similar to those associated with a large amount of
nectar and avoid flowers with odors similar to those of
dangerous flowers. Thus, the animal must detect similari-
ties and differences between odors and make appropriate
behavioral decisions. These examples demonstrate that, at
large, olfactory information processing is a typical example
of pattern recognition. Problems of pattern recognition are
further complicated in the real world where unpredictable
noises or perturbations occur. Even in such situations,
animals use the olfactory information to make appropriate
behavior decisions in order to survive in the real world.

Olfaction is the sensory modality that many animals use
to locate distant objects. Structures of the olfactory system
in the brain, especially those from peripheral olfactory
receptors to the primary olfactory network, have common
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characteristics among vertebrates, insects, terrestrial gas-
tropods (slugs/snails), and so forth [1]. Odorant molecules
are received by olfactory receptor neurons (ORNs) that are
distributed in the peripheral organs (e.g., the nasal cavity
in vertebrates, the antennae in insects, and the tentacles in
slugs/snails) [1–4]. ORNs project axons to round-shaped
structures called glomeruli in the primary olfactory network
[1, 5]. Axons of ORNs that express the same odor receptor
type converge in each glomerulus [6–8]. The primary
olfactory network (the olfactory bulb in vertebrates and the
antennal lobe, AL, in insects) consists of output neurons
and local inhibitory interneurons [2]. These neurons extend
their dendrites into glomeruli and receive inputs from ORNs.
The glomeruli are distributed as a glomerular layer along
the surface of the olfactory bulb in vertebrates [2, 3] and
botryoidally arranged in the insect antennal lobe [2, 4].
Physiological studies using an optical recording technique
revealed that even monomolecular odorants evoke broadly
distributed activation across glomeruli [9–12], so that an
odor input is first represented as a spatial pattern of
glomerular activation at the primary olfactory network.

The primary olfactory network transforms the input spa-
tial pattern into the spatiotemporal activity pattern of output
neurons [2] and sends it to various brain regions [5]. In
general, brain functions emerge by cooperative information
processing in various brain regions. To understand how
the biological olfactory system solves pattern recognition
problems in the real world, it is important to clarify the
following two issues.

(i) How do odors spatiotemporally activate the olfactory
regions in the brain, and how does the odor informa-
tion flow within the brain as a whole?

(ii) To solve the problems of pattern recognition, what
kind of computational algorithm is needed? How
does the biological network implement it? To per-
form the algorithm, how is the spatiotemporal odor
representation in the primary olfactory network
useful?

By understanding these issues comprehensively, the intel-
ligence that the biological olfactory system has acquired
evolutionarily to solve pattern recognition problems in the
real world can be explained.

This paper reviews physiological and computational
studies on olfaction from these perspectives. Section 2
describes an experimental approach to explain the flow of
olfactory information in the slug’s brain. Section 3 describes
the computational coding scheme of olfactory information
using the time dimension. Section 4 summarizes the results
and provides directions for future work.

2. Information Flows in the Whole Brain

Understanding the flow of information within the brain
as a whole is one of the goals that neuroscience research
addresses, and for this purpose, several techniques have been
developed to measure brain activities. However, it is still hard
to observe the flow of information in the whole brain because

of the following difficulties: there is a tradeoff between spatial
and temporal resolutions in any method, and the brain is too
large and complex to be easily studied. So, it is important to
select appropriate animals for measurement. In cases where
the object to be measured is small, the optical imaging
technique has a good spatiotemporal resolution. If we can use
an animal that has a good learning ability, can discriminate
objects, and has a small brain that is simple in structure,
the flow of information can be visualized in such a brain,
and it will be possible to explain the information processing
principle in the brain as a whole.

From this perspective, a slug/snail is a useful animal
model. In these animals, olfaction is a dominant sensory
modality for recognizing external objects (visual or auditory
systems have not been developed in their brain) [1, 13, 14].
The slug/snail has a good odor learning ability [15–20].
It has a small and simple brain; so whole brain activity
can be measured with good spatiotemporal resolutions [21–
26]. Furthermore, there are several experimental advan-
tages of their olfactory system. Noses of these animals
are located on the tips of two pairs of tentacles (superior
and inferior tentacles, STs and ITs). Several behavioral and
physiological studies have revealed that there are functional
differences between STs and ITs [27–31]; ST is involved
in olfactory orientation [28], whereas IT is involved in
learning [29] or retrieving odors [27, 31]. Their brain can
be dissected and isolated as a whole without a lose in the
function of these olfactory organs [23, 24, 27, 32, 33].
These features are useful for explaining the relationship
between the flow of information and the emergence of brain
functions.

Figure 1(a) shows the slug we used, the Japanese slug
Incilaria fruhstorferi, and Figure 1(b) schematically illustrates
the slug’s brain, its cerebral ganglia (CG). The STs and
ITs are connected to CG via superior and inferior tentacle
nerves (STNs and ITNs), respectively. CG comprises three
lobes: the procerebrum (PC), mesocerebrum (MsC), and
metacerebrum (MtC). Anatomical studies indicate that after
entering the body of CG, afferent fibers of the tentacle nerves
segregate into several bundles and terminate in PC and MtC
[1, 14, 35]. The PC is regarded as the olfactory center, and
many studies have investigated its role in the processing of
olfactory information [22–24, 27, 30, 36–40]. It is suggested
that PC is involved in acquiring and retrieving odor memory
[27, 30, 38].

In contrast, few studies have investigated olfactory infor-
mation processing in MtC. Anatomically, afferent fibers from
STN and ITN converge into the medial region of MtC
(mMtC) (Figures 1(c) and 1(d)) [26]. The MtC is thought
to collect olfactory, taste, and other sensory information and
to command motor actions when appropriate signals are
received [14]. The relationships between PC and MtC in the
slug’s brain might correspond to those between cortical and
subcortical structures in the vertebrate’s brain. Hence, the
slug’s brain is suitable for our research purpose to observe
the flow of information within the whole brain.

We optically recorded the brain activity evoked by
electrical stimulations of STN and ITN and obtained the
following results [26].
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Figure 1: Slug’s brain. (a) The Japanese giant terrestrial slug Incilaria fruhstorferi. A pair of superior tentacles (STs) can be seen at the head
end. A part of the left inferior tentacle (l IT) can be seen close to the base of the left ST. Scale bar: 5 cm. (b) Gross anatomy of the slug brain,
cerebral ganglia. Left and right sides show dorsal and ventral views of the cerebral ganglia, respectively. The cerebral ganglion is divided into
three lobes: the procerebrum (PC), mesocerebrum (MsC), and metacerebrum (MtC). Olfactory information received at the tips of STs and
ITs reaches the brain through superior and inferior tentacle nerves (STNs and ITNs, resp.). See [26] for details. (c) Anatomical projections
of fibers from STN (blue arrows) and ITN (red arrows). Both ST and IT send olfactory information into PC (left panel) and to the medial
region of MtC (right panel). (d) Schematic illustration of anatomical olfactory projections from ST and IT in the brain. Figures 1(b) and
1(c) are adapted and modified, with permission, from [34] 2006 IEEE.

(1) STN and ITN stimulations activate both PC and
mMtC.

(2) Regardless of STN or ITN stimulations, the mMtC
response is about 50 milliseconds earlier than the PC
response.

(3) STN and ITN stimulations evoked different activa-
tion patterns of mMtC: the ITN stimulation activated
the lateral half of mMtC more strongly than its
medial half, whereas the STN stimulation activated
both halves evenly. In contrast, there seems to be
no difference between the activation patterns in PC
evoked by STN and ITN stimulations.

It is interesting that PC responses to STN and ITN stim-
ulations are the same, in spite of memory functions of
PC [27, 30, 38, 40] and functional differences between
STs (orientation) and ITs (memory) [27–31]. This implies
that direct olfactory inputs to PC would not explain
the differences in memory functions between STs and
ITs.

Since mMtC responds faster than PC to the nerve
stimulation, there is a possibility that mMtC activations
evoked by STN and ITN stimulations affect PC differently,
and as a result, a functional difference between ST and IT

for memory functions might emerge. We hypothesized that
monoamine- (such as serotonin, dopamine, etc.) containing
neurons might mediate the transfer of information from
mMtC to PC because, as neuromodulators, monoamines
are known to have important roles in memory functions
[41–43] and in changing the functional modes of neural
networks [44–46]. Therefore, we stained the dopamine-
containing neurons in the slug’s brain [34]. Main results
are summarized in Figure 2. The dopamine-containing neu-
ropils are intensively distributed in the central and lateral
regions of MtC (Figure 2(a), dotted area), and this central
MtC region seems to spatially overlap with lateral area of
the mMtC region that was strongly activated by the ITN
stimulation (Figure 2(a)). The dopamine containing output
fibers from the central MtC region seem to project into PC.
Gelperin and his colleagues physiologically suggested that
dopamine might modulate the network function of the PC
[47, 48]. So, the revealed morphological features suggest
that the dopamine-containing neurons might act as a bridge
between mMtC and PC, especially when the mMtC region
is activated through the ITs [Note 1]. Dopamine-containing
fibers project densely into the STN and ITN, and these come
at the tentacle ganglion of ST and IT, suggesting another
possibility that dopaminergic modulation of olfactory infor-
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Figure 2: A major dopamine system in the slug brain. (a) Schematic illustrations of the major dopamine system. These figures are made
on the basis of brain sections treated using the histofluorescent method for staining catecholamine (dopamine). Top and bottom panels are
based on sections from dorsal and ventral parts, respectively. Filled ovals indicate dopamine-containing cell bodies. Dotted area indicates
the area that the dopamine-containing fibers are densely distributed. The estimated mMtC region that would be activated by the STN or
ITN stimulation is indicated by red shade. A large open-oval in the bottom indicates the metacerebral giant cell. (b) Function of the major
dopamine system (DA) suggested by its morphology. The major dopamine system might function as a bridge between the medial region of
MtC (mMtC) and the procerebrum (PC). Figure 2(a) is adapted and modified, with permission, from [34] 2006 IEEE.

mation processing might occur more peripherally through
the tentacle ganglia.

Olfactory functions in the slug brain can be explained
on the basis of the flow of olfactory information (Figure 3).
Based on the mMtC activity, ST and IT would have different
roles in olfactory functions. The medial half of mMtC
(that is strongly activated by the STN stimulation) might
be related to olfactory orientation. Indeed, several motor
neurons related to olfactory orientation movements are
known in regions close to mMtC [49–51]. The lateral half
of mMtC (that is strongly activated by the ITN stimulation)
might activate the monoamine system, and this system would
modulate functional modes of PC to acquire or retrieve odor
memory.

It is suggested that the brain (cerebral ganglia) can
evaluate important odors and can command motor actions
without PC, even though the odor discriminating ability
of the brain without PC is not good compared to that
with PC [49]. Based on this observation and data from
our study [26], it can be hypothesized that mMtC might
contribute to the rough evaluation of important odors. The
quick response of mMtC to STN and ITN stimulations
might result in quick responses of the slug/snail to important
odors and limit the odors that are processed by PC for fine
discrimination [26]. Such a temporal process would be eco-
logically advantageous, since various odors exist in the real
world.

3. Information Representation Using Time
Dimension Solves Pattern-Recognition
Problems

There is growing evidence that biological systems use time
as a dimension for sensory information coding [52–57].
Computationally, a central aspect of pattern recognition
is achieving a “good” representation in which the main
features of an object are simply and naturally revealed [58,
59]. Neurobiological information representation is crucial in
facilitating such a computation [58, 60].

Regardless of biological or artificial systems, recognition
systems must extract invariant features of objects from
varying input signals depending on situations and must
detect and judge similarities and differences between objects
appropriately. These requirements are for a system that can
identify objects and make appropriate behavioral decisions
in the real world. Thus, the temporal representation of
objects should satisfy certain computational criteria for
it to be useful for recognition. Criterion 1 is invariance.
For instance, the size or strength of sensory signals varies
when the same object is sensed from different distances.
Even in this situation, object representation should be
invariant. Criterion 2 is similarity. The degree of similarity
of objects must be reflected in their representation while
also expressing subtle differences. Regardless of sensory
modalities, biological recognition shows a speed/accuracy



Advances in Artificial Intelligence 5

MtC

PC

ST

MtC

PC

ST

(a)

MtC

PC

IT

MtC

PC

IT

(b)

Figure 3: The flow of olfactory information in the slug brain.
Brain activities evoked by superior tentacle (ST) (a) and inferior
tentacle (IT) (b) stimulations in early phase (top) and late phase
(bottom). Based on the activation patterns evoked by ST and IT
stimulations, it was suggested that only the IT stimulation would
activate the dopamine system in the early phase (a), (b) top. It may
be possible to modulate the functional mode of the procerebrum
(PC) activation by the activated dopamine system, so that the
processing of olfactory information at PC differs between ST and
IT stimulations (a), (b) bottom.

tradeoff, which is the relationship between sampling time
and accuracy in object discrimination [61–63]. This psy-
chophysical principle constrains the temporal representation
format of the biological system by imposing Criterion 3,
which is coarse-to-fine nature. The coarse similarity or
difference of objects should be encoded in the early epoch
of the temporal representation, and the information encoded
in the late epoch should help in detecting subtle differences
among objects.

The question arises as to what kind of information
representation format would satisfy the three representation
criteria. Suppose that there is a set of n feature dimensions
each of which describes a specific object feature. By prepro-
cessing of sensory signals from an object, the intensity of
each feature is obtained, and consequently, the input repre-
sentation of the object is an analog vector of n-dimensional
feature space. Changing the signal intensity or size from the
same object would only cause changes in the coefficients
or bias of input analog vectors. In this case, the order of
feature dimensions (in other words, the ranking of feature
dimensions) determined by elemental analog values of the
input vector would be scale invariant. So, if a computational
algorithm transforms the order of analog values of the input
vector into a temporal sequence of spike activity of neurons

(or neural assemblies), each of which controls the respective
feature dimension (Figure 4(a)), then the emergent temporal
representation has scale invariance, satisfying Criterion 1.
A temporal sequence of neural activities represents the
hierarchical relationship of feature dimensions: as time
advances, an object is coarsely classified on the basis of a
feature represented by the first activated neuron, further
subclassified by subsequent ones, and finally identified
by taking all activated neurons into account (Figure 4(a),
bottom), implying that the representation satisfies Criteria
2 and 3.

Using the n-dimensional feature space, a system adopting
such a coding scheme can theoretically represent and
discriminate n! objects (“!” is the factorial operator). If the
system can set a temporal range for object representation,
it can control the clustering levels of objects and make
appropriate behavioral decisions that are flexible according
to situations.

The proposed coding scheme is highly consistent with
information transformation in the primary olfactory net-
work of biological systems, especially in that of insects and
vertebrate zebra fish [52–55]. As mentioned in Section 1,
odor input representation is the spatial pattern of glomerular
activation [9–12]. Even monomolecular odorants evoke a
broadly distributed activation across glomeruli, such that
each glomerulus is regarded as a functional module detecting
a particular feature of odorant molecular structure [3, 9–
12, 64]. Odors at very low concentrations activate a few
glomeruli above the background level. As the concentration
increases, several additional glomeruli are recruited, and the
glomerular activity is a logarithmic function of concentra-
tion [9, 11, 65–67]. Furthermore, similarity in the molecular
structures of different odor molecules is correlated with sim-
ilarity in spatial patterns of glomerular activation [10, 11, 68,
69] and with perceptual similarity [69–71]. Spatiotemporal
activity patterns of the insect primary olfactory network are
robust to odor concentration changes [54], whereas those
of the zebra fish primary olfactory network are suggested to
reflect odor similarity in a temporally coarse-to-fine manner
[53]. These imply that the input spatial pattern of odor-
evoked glomerular activation can be represented as an analog
vector with a concentration bias [67]; the glomerular ranking
that can be determined by the odor-evoked glomerular
activation would be concentration invariant [72–74]; if
the glomerular ranking can be transformed into temporal
sequence of neural activities according to the proposed
coding algorithm, the emergent spatiotemporal patterns
would reflect the odor similarity as physiologically observed
[72–74].

By means of biologically plausible neural components
and their interactions, we constructed a primary olfactory
network model that can implement the coding algorithm
shown in Figure 4(a) for odor information. The model con-
sists of glomerular modules, each consisting of one output
neuron and two types (intraglomrular and interglomeru-
lar types) of inhibitory local interneurons. In the single
glomerular module model, the intraglomerular inhibition
helps to cause a phasic activity of the output neuron in
response to a constant glomerular input, and onset latency
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Figure 4: Object representation using temporal sequence of neural activities. (a) The order of feature intensities of an object (e.g., F1 >
F2 > F3 > F4) is transformed into a temporal sequence of neural activities in control of respective features (e.g., N1 → N2 → N3 → N4).
The emergent temporal sequence of neural activities represents a hierarchical relationship of object features in coarse-to-fine manner on
the temporal axis. (b) A typical simulated result of spike activities of output neurons of the four-glomerular module model. Spikes of each
output neuron are indicated in different colors.

of the phasic response of the output neuron decreases as the
input strength increases. In the network model, the glomeru-
lar modules are connected by the interglomerular inhibitory
interneurons. Through these interglomerular connections,
the activated output neuron inhibits other glomerular output
neurons and delays their phasic activation, and consequently
phasic activities of the output neurons are ordered according
to the strength order of the glomerular inputs (Figure 4(b)).
The network model successfully implements this spatiotem-
poral transformation regardless of absolute input analog
values or concentration biases [72–74].

In the insect higher center network, that is, the mush-
room body (MB), odors are represented by spikes sparsely
distributed in space and time [53]. In our primary olfactory
network model, the odor information is represented as the
temporal sequence of the output neurons’ activities, in which
the information about the activity sequence is intensively-
coded around transient overlaps of the neural activities (see
Figure 4(b)). So, we further constructed a higher center
model that evaluates the transient overlaps of the neural
activities of the output neurons of the primal olfactory
network model. The higher center model can extract odor
information as a temporal sequence of sparse spikes with
a coarse-to-fine nature and can store the odor information
as network connectivity with the help of simple Hebbian
connections [72–74].

These indicate that the essential problems of olfactory
recognition can be solved by information representation
using the time dimension. In the proposed coding scheme,
significant features characterizing objects are temporally
placed first, followed by more subtle features. This strategy is
crucial for the system to survive in an unpredictably changing
environment because it allows the system to respond quickly
to vitally important object features. Even though it may be
just one dimension mathematically, “time” is an important
dimension for systems that live and survive in the real
world. Thus, the information representation using the time

dimension is a basis for pattern recognition that warrants
further investigation in biological systems.

4. Towards an Understanding of Biological
System Intelligence

In Section 2, we have shown that the olfactory system
in the slug’s brain consists of two pathways: one is the
mMtC-pathway that probably has a role for quickly and
roughly discriminating important odors; the other is the
PC-pathway that is rather slow but important for finely
discriminating odors. With respect to the computational
model shown in Section 3, the physiological data about the
spatiotemporal neural activities are mainly based on those
obtained from the insect AL-MB pathway [52, 54, 55].
The insect MB is suggested to have important roles in fine
discrimination of odors [75, 76] and odor learning and
memory [77–79], as the slug/snail PC is suggested to have
such roles [33, 38, 40]. So, the computational model in
Section 3 is thought to correspond to the PC-pathway in
Section 2, and we can suggest that the olfactory system of the
brain uses “time” dimension doubly (i.e., the anatomically
differentiated two pathways that have different temporal
responses to odors, and the coarse-to-fine odor representa-
tion using the temporal sequence of neural activity in the fine
discrimination pathway) to quickly and dominantly process
important odors or odor-features. These temporal aspects
of olfactory information processing might be essential for
systems working in the real world.

To comprehensively understand the mechanisms
involved in olfactory information processing, we must
explain how global information flow and computational
information processing are related and integrated on the
systems level. In the information representation proposed
in Section 3, odor is described as the permutation of odor
features, each of which works like letters of an alphabet.
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So, information represented by the temporal sequence of
neuronal activities is regarded as symbolic information.
Symbolic information is useful for identifying objects
and detecting their similarities and differences. However,
symbolic information of objects itself cannot help the
system make a behavioral decision because it does not
represent information on the values of objects. We call
this “value information.” Value information cannot be
defined by attributes of objects alone. Value information
of an object should be evaluated and determined by the
system in real time on the basis of experience with the
object and current conditions of the environment and the
system. From invertebrates (including the slugs and snails
mentioned in Section 2) to vertebrates (including primates),
monoamine systems in the brain are known to be strongly
related to internal and motivational states of biological
systems and to play important roles in learning and memory
[32, 41–43, 80–86], so that monoamine systems might be
involved in determining the value information of objects.
As neuromodulators, monoamines would affect the brain
activity in a wide spatial and temporal range, and their
spatiotemporal dynamics in the whole brain would be
critical for neural network functions [84]. The challenge
is to explain biological and computational mechanisms
relating temporally represented symbolic information with
value information that might be determined by global
information flows within the brain. This approach would
clarify the design principles of an intelligent system that
works well in the unpredictably changing environment of
the real world.

Note 1. This hypothesis predicts that the PC should respond
differently between the STN and ITN stimulation by the
indirect input through the mMtC. However, we could not
observe such difference. In the experiment, both STN and
ITN stimulations evoked transient depolarization followed
by the strong and long lasting (about 10 seconds) hyper-
polarization in the PC [26]. The transient depolarization
of the PC is caused by the direct input from the STN and
ITN, whereas the following PC hyperpolarization is probably
caused by inhibitory effects of the intrinsic PC neurons [87].
In the experiment of [26], this intrinsic hyperporlaization in
the PC might mask the PC response caused by the mMtC
pathway.
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