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The one-dimensional and two-dimensional sine-Gordon equations with dimensionless loss factors and 
unitless normalized bias are numerically calculated by computer. The results are presented for 
accelerations, velocities, collisions, coupled states, and two-dimensional propagation of solitons. 

INTRODUCTION 
There has been much interest in the Josephson trans­

mission lines because of their potential applications in 
electronics. 1-4 The Josephson line without losses and 
bias current can be analyzed with the Sine-Gordon equa­
tion (SGE).1,3-7 The exact soliton solutions of the equa­
tion have been given7 -

13 so that the behaviors of. solitons 
which correspond to the flux quanta in the case of the 
Josephson line can be known in detail. 3-6,14 Perring and 
Skyrme have studied interacting mesons by means of the 
SGE.8 The propagation of flux quanta on a Josephson line 
which include the effects of loss and a distributed bias 
source has been investigated by Scott4,5 and Johnson. IS 

They showed that an arbitary number of flux quanta pro­
pagate as a wave of permanent profile, but it appeared 
that these pulses might exhibit a mode of instability in 
which individual fluxons detatch themselves from the 
trailing edge. 

On the other hand, the one -dimensional mechanical 
analogs of the Josephson line have been constructed by 
Scott3,4,6 and other authors. 16 These analogs are helpful 
in understanding the various behaviors of the flux quanta 
in the Josephson line vividly. However, it is difficult to 
treat the analogs in terms of high accuracy and the wide 
range of parameters needed. As described in this paper, 
the two-dimensional mechanical analog of the Josephson 
line is designable, but it is difficult to construct the ana­
log to operate correctly. 

We have numerically calculated the behavior of soli­
tons on the one-dimensional and the two-dimensional1 ,6,12 

transmission lines whose models include a unitless nor­
malized bias and dimensionless loss factors. It is pur­
pose of this paper to describe the behavior of solitons 
under acceleration, the velocity in the stationary state, 
the propagation modes of solitons, and the collisions of 
solitons propagating in oppOSite directions on the one­
dimensional transmission line. And finally, we describe 
the configuration of the soliton propagation on the two­
dimensional transmission lines. 

EQUATIONS OF THE JOSEPHSON LINE AND THEIR 
APPROXI MATIONS 

The Josephson transmission line, which includes the 
effects of losses associated with the flow of normal elec­
trons parallel to the junction in addition to losses asso­
ciated with normal electrons tunnelling through the june­
tion and a distributed bias current source, is described 

(1) 

where I< =L(2rrJ jif!oC)1/2/r; r =g(if!oI2rrJP)1/2; Y =js/ J c; 

if!o=h/2e is the flux quantum; J c is a constant giving the 
maximum Josephs.on current per unit length; L, C, r, g, 
and jB are the series inductance, the shunt capacitance, 
the series reSistance, the shunt conductance, and the 
distributed bias current source per unit length, respec­
tively; and where distances are measured in units of 
AJ = (if!o/2rrLJY 12 and time in units of 7' J = (if!oC/2rrJY 12. 
Its equivalent circuit is shown in Fig. 1. 4 Equation (1) 
also describes the mechanical line which we have con­
structed and reported. 16 If the effects of the series re­
sistance can be neglected, Eq. (1) is written in the form 

a2cf> a2cf> acf> . 
ax2 - af -r TI=smcf> -Yo (2) 

If one considers the width of the Josephson line, which is 
smaller than 2A J because of the uniformity of the bias 
current, Eq. (2) becomes 

a2cf> a2cf> a2cf> acf> . 
~ + ~ - ~ - r - == smcf> - Y. ax ay or at (3) 

Some exact soliton solutions of the sine -Gordon equa­
tions, V2 cf> - a2cf>/af = sincf> , have been obtained, 3-13 but 
exact solutions of Eqs. (1)-(3) cannot be obtained ana­
lytic ally. To investigate the behavior of solitons given 
by Eqs. (1)-(3), we use the following finite-difference 
equations for approximations of Eqs. (1)-(3): 

1<(1 + 1)[cf>(N, 1+ 1) - cf>(N, I)] - 1«1)[cf>(N, I) - cf>(N, 1-1)] 
I::t.x2t.l 

( dx 
1 .... ..----- dx --""""~I 

by the following normalized nonlinear partial differential FIG. 1. Equivalent circuit of the Josephson transmission line 
equation4 ,15: with bias and losses. 
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K(I + 1)[¢(N -1,1 + 1) - ¢(N -1,1)] 
- 6.x26.t 

+ - K(I)[¢(N -1,1) - ¢(N -1, I -1)J 
6.x26.t 

+ A(I + 1)[¢(N, I + 1) - ¢(N,I)]-A(I)[¢(N,I) - ¢(N,I -1)J 
6.x2 

B(I)[¢(N + 1,1) - ¢(N,I)J -B(I)[¢(N.I) - ¢(N -l,I)J 
- 6.f 

_ r(1) ¢(N, I) - ¢(N -1, I) 
6.t 

==C(I){sin[¢(N,I)] -Y(I)}, 

A(I + 1)[¢(N, I + 1) - ¢(N, I)] -A(I)[¢(N, I) - ¢(N, I -1)] 
6.x2 

(4) 

B(I)[¢(N + 1,1) -¢(N,I)] -B(I)[¢(N,I) - ¢(N -1,1)] 
6.f 

_ r(1) ¢(N,I) - ¢(N -1,1) 
M 

==C(I){sin[¢(N,I)J -y(I)}, (5) 

where N denotes a point on the t axis, I denotes a point 
on the x axis, A(I) =B(I) == C(I) == 1. 0, K(I) == K, r(1) == r, 
y(1) =y, 6.x is the small increment of space in the x di­
rection, and 6.t is the small increment of time. We 
study numerically the behavior of solitons by using Eqso 
(4) and (5) on a digital computer. The exact solutions of 
the equation 

a2¢ 
a?==sincp 

are used to start the calculations of Eqs. (4) and (5). 
For the boundary conditions, we consider the condition 

a¢ =0 
ax 

at all boundaries. 

COMPUTER SIMULATIONS OF THE MOTION OF 
SOLITONS 

The small increment of spacp 6.x is selected to be 1. 0 
in order to be compared with the results of the mechan-

1.0 r·o , Y =0.4 

r.o, 1'=0.1 

a2.p _ a~ _ r~=sin,.j..-y aX! W at 't' 

r.l.o, 1'=0.1 

o 50 

FIG. 2. Normalized velocity uluo of the soliton being accele­
rated as a function of the time measured in units of.TJ for vari­
ous values of the dimensionless parameter rand ". 
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FIG. 3. Normalized velocity uluQ of a soliton as a function of 
the dimensionless parameter" for various values of the dimen­
sionless parameter r. Here K = O. 

ical analog which we have constructed. 16 But in order to 
investigate the accelerated solitons, 6.x is selected to be 
0.1, and 0.4 with respect to the two-dimensional SGE. 
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FIG. 4. Normalized velocity uluo of a pulse containing two and 
three solitons each as a function of the dimensionless param­
eter i' for various values of the dimensionless parameter r. 
Here K=O. 
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FIG. 5. Normalized velocity u/~ of a 'soliton as a function of 
the dimensionless parameter 'Y for various values of the dimen­
sionless parameter r. Here K'" 1. O. 

Figure 2 shows the normalized velocity u/ Uo of the 
soliton being accelerated which is calculated by using 
Eq, (5) as a function of the time measured in units of T,J 

for various values of the dimensionless parameters r 
and Y. Here Uo is the limiting velocity of the solitons. By 
decreasing the effects of loss, it takes a long time until 
the soliton velocity is steady, but the value of steady 
velocity is higher. If all the effects of the losses are 
neglected and Y '" 0, the soliton velocity saturates in a 
relatively short time. u is defined as the velocity of the 
soliton at the point when cp = 7T, When the loss"" 0 and 
Y "" 1, 0, the creation of many pairs of solitons with oppo­
site screw senses following the transmitting soliton is 
brought about. Consequently, bunched n solitons and 
n - 1 solitons propagate down in opposite directions with 
u""Uo. The number of n increases as time increases. 
The same phenomena are brought about when Y is applied 
suddenly, if Y < 1. O. 

The normalized velocity u/uo of a pulse containing one, 
two, and three solitons, which are calculated by using 
Eq. (5), are shown in Figs. 3, 4(a), and 4(b), respec­
tively, as a function of the dimensionless parameter Y 
for various values of the dimensionless parameter r. 
These results correspond to those of the mechanical ana­
log.16 For the points denoted by the solid triangle, where 
the pulse approaches the limiting v~locity in these fig­
ures, many pairs of solitons with opposite screw senses 
are created following the transmitting pulse. In the re­
gion denoted by II in Fig. 4, two solitons which are 
bunched rather closely together propagate down. In re­
gion I-I, a pulse containing two solitons bunched together 
shows a tendency to split up into two pulses containing 
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one soliton each. But the two solitons are not completely 
separated; the space between the two solitons are kept 
at a constant distance depending upon the values of r and 
Y. In region III, three solitons bunched together propa­
gate down. In region I-II, three transmitting solitons 
bunched together split up into two solitons bunched to­
gehter and one soliton which becomes detached from the 
trailing pulse edge. The detached soliton is left behind 
the two solitons bunched together because of the differ­
ence of their velocities. In region I'-II, three transmit­
ting solitons bunched together split up into two solitons 
bunched together and one soliton which is not completely 
detached from trailing pulse edge, In region I-I-I, a 
transmitting pulse containing three solitons bunched to­
gether splits up into three pulses containing one soliton 
each. The velocity of a pulse containing bunched solitons 
increases with an increase in the number of the bunched 
solitons for the same values of rand Y. The transmit­
ting coupled solitons are stable on the line corresponding 
to the appropriate Y values, in spite of the repulsive 
forces among solitons with same screw senses. 

The normalized velocity u/uo of one soliton, which is 
calculated using Eq. (4), is shown in Fig. 5 as a function 
of the dimensionless parameter Y for various values of 
the dimensionless parameter r. K is estimated to be 
very large to clarify the effects of the 03cp/ ox2 at term in 
Eq. (1). It can be seen from Figs. 3 and 5 that the soli­
ton velocity with 03cp/axZat is lower than that given by 
Eq. (5) for the same values of yand r. The reason for 
the lower velocity is that a3cp/ax2at represents the ef­
fects of series resistance. But the soliton velocity given 
by Eq. (4) can be faster than the limiting velocity given 
by Eq. (5); moreover, the soliton with u/uo > 1.0 is 
stable. In this case the creation of many pairs of soli­
tons with opposite screw senses following the transmit­
ting soliton is 

iii;; iiiii 
5: HiH iiiii 
4: __ -LI-LliwiL-__ ~i~i~i~i __ 
3 : ___ iLiwiL-__ ~i~i~i ___ 
2 : ____ iLiL-__ ~I~I __ __ 

0: ___ iujui~i __ _4i~jLiLi_ 
iii iii 

.: ____ ~i~i ___ ~I~I __ __ 
i 

1 : ____ -L ____ ~IL_ ___ 
x: ---------------

(a) (b) 

5 -
4 

3 -
2 MI •• 

'" 
o 0.5 r 1.0 

(c) 

FIG. 6. Collisions of solitons with opposite screw senses and 
opposite propagating directions as a function of the dimension­
less parameter 'Y for the values of r= o. 3'and K = O. Five kinds 
of states of solitons before collision are denoted by 1, 2, 3, 4, 
and 5 in (a). The states of solitons after collisions are denoted 
by symbols shown in (b). The spaces amon/i the center of the 
solitons of same screw sense are 10.0h". I denotes a soliton 
propagating in the direction of the arrow. 
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FIG. 7. Collisions of solitons with opposite screw sense and 
opposite propagating directions as a function of the dimension­
less parameter 'Y for the values of r = O. 3 and K = O. The spaces 
among the center of the solitons of same screw sense are 
5.0A". 

brought about at u/uo> 1. O. We have tried the numerical 
calculations for the value of K == O. 01 with respect to the 
behavior for the cases of one, two, and three transmit­
ting solitons. These results are very similar to the re­
suits given by Eq. (5). 

The numerical results, which are calculated using Eq. 
(5) with the value of r = O. 3, for the collisions of soli­
tons with opposite screw senses and opposite propagating 
directions are shown in Figs. 6 and 7. In Fig. 6, the 
spaces among the center of the solitons of same screw 
Sense are 10.0"-,,. In Fig. 7, the corresponding spaces 
are 5.0"-". Figure 6(a) shows five kinds of states of 
solitons before collisions, and the symbols shown in 
Fig. 6(b) denote the states of solitons after collisions. 
The numerical results of the collisions of solitons are 
given in Figs. 6(c) and 7, corresponding to the denoted 
numbers in Fig. 6(a) as a function of the dimensionless 
parameter 'Y. These results can be compared with those 
of the mechanical analog16 so that these are reasonable 
in terms of the effects of the loss, the kinetic energy, 
and the number and mutual phase relations of colliding 
solitons. In general, the number of solitons which pass 
through each other increases with an increase in the 
value of 'Y. 

The above calculations with respect to the velocities 
of pulses containing one, two" and three solitons each, 
and with respect to the colliSions of solitons, are also 
carried out for the value of Ax = O. 4 and give results 
which are qualitatively similar to the results of 
Ax== 1. O. 

We have numerically calculated some results for soli­
tons transmitting on two-dimensional lines of various 
shapes. Figure 8 shows how the vortex propagates on 
the representative lines. These results are easily under­
stood by assuming the two-dimensional mechanical ana­
log of SGE shown in Fig. 9. The mechanical analog con­
sists of pulleys, which are fastened bobs, and are con­
nected with elastic rubber belts to each other. Figure 
8(a) shows that one transmitting vortex line can be di­
vided into two vortex lines at the fork with two branches. 
Figure 8(b) shows that the width of the transmitting vor­
tex line becomes shorter and that the vortex line pro­
pagates along the contracted Josephson line. But depend­
ing upon r, 'Y, and the ratio between the width of the 
wider part and that of the narrower part of the Joseph­
son line, the vortex line may be reflected at the edge of 
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a'q, t a'q, _ a'q, _ r aq, = sinq, -Cl5 
ax' av' at' at 

FIG. 8. Propagation modes of a vortex line transmitting on the 
representative two-dimensional Josephson lines. I -denotes 
a vortex line propagating in the direction of the arrow. 

the wider part of the Josephson line, and consequently 
two vortex lines propagate along the narrower part of the 
Josephson line as shown in Fig. 8(c). Figure 8(d) shows 
that the length of the transmitting vortex line becomes 
longer and that the vortex line propagates along the wid­
er part of the Josephson line. But depending upon r, 'Y, 
and the ratio between the width of the narrower part and 
that of the wider part of the Josephson line, there is 
another case in which the vortex line cannot enter the 
wider part and halts at the boundary. 

CONCLUSIONS 

The one-dimensional and two-dimensional sine-Gordon 
equations with dimensionless loss factors and unitless 
normalized bias were numerically calculated by the di­
gital computer NEAC 2200/700 in the computer center of 
Tohoku University. These calculations are carried out 
on accelerated solitons, on the velocity of pulses con­
taining one, two, and three solitons each in stationary 
states, on the state of colliding solitons, and on propa-

Vortex Li ne 
I 

Gravitatral Field 

FIG. 9. Mechanical analog of the two-dimensional SGE. This 
consists of pulleys, which are fastened bobs, connected by 
rubber belts to each other. 

Downloaded 20 May 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



4099 Nakajima et al.: Vortex motions on Josephson structures 4099 

gation states of one soliton given by the two-dimensional 
SGE. 

The results obtained in these computer simulations 
are the following: (i) The acceleration of the soliton de­
pends upon the dimensionless loss factor r and the unit­
less normalized bias Y. (ii) There are some cases where 
coupled solitons are in stable states. (iii) The creation 
of pairs of solitons following the transmitting soliton for 
u:::: Uo is brought about. (iv) The velocity of the soliton 
given by the equation having the third differential term 
can exceed the limiting velocity Uo given by the equation 
without the third differential term; moreover the soliton 
with u/ Uo > 1.0 is stable. (v) There are various states 
after colliSion, depending upon r, Y, the number of soli­
tons, and the intervals between the solitons with same 
screw senses. 

The propagation states of solitons which propagate 
along the two-dimensional transmission lines of various 
shapes have also been studied. To understand the behav­
ior of solitons in two-dimensional lines, a mechanical 
analog of the two-dimensional SGE is shown 
schematically. 
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