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By computer simulation, interaction of two solitons with the same screw sense of the sine-Gordon equation, 
which retain their shapes and velocities upon collision with other solitons even in the presence of bias and 
loss terms, are examined. It is confirmed that they can couple when the bias is greater than a critical value. 
The conditions and mechanism of coupling are examined in detail. They are explained in terms of the 
energy of interaction between the ripple structures trailed by energy dissipative moving solitons. The 
distance D between coupled solitons can be expressed as D = (n-1/2-6)A (n is an integer), where A is a 
wavelength of the ripple structure and 6< I. 

PACS numbers: 84.40.M, 85.25. 

I. INTRODUCTION 

Research in recent years exhibits an increase of in­
terest in the nonlinear partial differential equation, the 
sine-Gordon equation. 1 Mathematical properties and 
physical applications of the pulselike solitary wave as 
the solution of this nonlinear differential equation has 
been the subject for many investigators. 1-25 In particu­
lar, the sine-Gordon equation with dimensionless bias 
and loss terms which has been known to describe an 
active Josephson-junction transmission line has been 
studied by Scott, 10 Johnson, 13 Scott et al. ,14 and 
Barone. 15 They investigated the velocity, the stability, 
and various properties of propagating flux quanta which 
are described as solitons. 4.12 They showed that an ar­
bitrary number of flux quanta propagate with permanent 
profiles, but that this state might exhibit a mode of in­
stability of which individual fluxons detatch themselves 
from the trailing edge. 12 We have presented in our pre­
vious papers a mechanical analoguelS and the numerical 
analysis19 of the sine-Gordon equation with dimension­
less bias and loss terms. In these papers, we reported 
that the soliton in a dissipative system is characterized 
by its final velocity u(y, r),l9 For a system with I' = r 
= 0, the velocity of a soliton c an be arbitrarily chos en, 
while in a lossy system with a bias, the final velocity is 
uniquely determined as a result of energy balance be­
tween the dissipative term and the bias term. This 
characteristic velocity u(y,r) is always recovered after 
a certain duration of time, so as long as solitary waves 
having opposite screw senseS do not disappear upon col­
lision .19 In the preceding paper19 we also reported that 
for a value of bias larger than a critical value, coupled 
solitons with the same screw sense were in stable 
states. 

The purpose of the present paper is to make clear the 
coupling mechanism of two solitons with the same screw 
sense for a relatively large value of bias by using com­
puter simulations. In this paper we discuss a y-depen­
dent periodic potential which is formed in the tail of 
solitons stably propagating on a line with bias and dy­
namic losses. It was found that for a relatively large 
value of 1', two propagating solitons with the same screw 
sense are coupling by attractive force caused by the 
periodic potentials created by the leading and following 
solitons in spite of the existence of a short-range repul­
sive forcel acting between the two solitons. It was found 
that the distance D between the centers of two solitons 
can be described in the following form: D = (n - t -li)A, 
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where n is an integer which depends on the initial condi­
tion and Ii is a small number compared to unity. In Sec. 
III we present numerical data on the periodic potential 
trailed by energy-absorbing solitons and the data on the 
coupled solitons with the same screw sense propagating 
with a constant velocity. In Sec. IV we discuss the na­
ture of the trailed ripple structure created in tails of 
solitons, the short-range repulsive force acting between 
two solitons propagating with a constant velocity, the 
physical meaning of the entire potential for a following 
soliton, and the distance between coupled solitons. 

II. COMPUTER SIMULATION 

We study the behaviors of two solitons obeying the 
following nonlinear partial differential equation1S,19: 

a2 ef> ~ aef> . 
ax2 - at2 -raT=sm<p-y. (1) 

Equation (1) describes a Josephson-junction transmis­
sion line which includes the effect of losses associated 
with normal electrons tunnelling through the junction and 
a distributed bias current source. 10.13 Equation (1) also 
describes approximately a mechanical transmission line 
which we have constructed and reported. lS The solitons 
given by Eq. (1) correspond to the flux quanta in a 
Josephson-junction transmission line and the kinks on a 
mechanicalline. ls The following finite difference equa­
tion (2)19 is used to calculate Eq. (1) using a NEAC 
2200/700 digital computer in the computer center of 
Tohoku University: 

(2) 

We chose Eqs. (3) and (4)1 as initial conditions for the 
calculation of Eq. (2). 

<P I,o=4tan-l exp[(-x
j 

+q)(1_u'2)-1/2] 

+ 4 tan-1 exp[(- XI + q')(l - U'2)-1/2] + sin-II'; (3) 

<Pl,l = 4 tan-l exp[ (- Xl + u' ~t + q)(l - U'2)-1/2] 

+ 4tan-l exp[(- Xl +u' at + q')(1- U'2)-1/2] + sin-1y. 
(4) 

Equation (3) would correspond to a superposition of two 
free solitons of a velocity u' located at x=q and q' for 
t = 0, which are biased with a trivial solution <p = sin-ly. 
A cyclic boundary condition is used such that the end 
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r =0.1 y= 0.95 

o stable distance 

I:. unstable equiLibrium distance 

0(1=50) 

-, 

FIG. 1. Small change in the distance between two propagating 
solitons for 1'= 0.95 from t= 50 to t= 300 as a function of the 
distance measured at t= 50, ~/~t= [D(t= 300)-D(t= 50)l!250. 
(Computer-simulated results, Ax= 0.1, ~t= O. 05). 

effect should not disturb the results of calculation. The 
dimensionless small increment of space ~x and time 
~t used in most cases are 0.1 and 0.05, respectively. 
The number of iterations in our calculations varies from 
4000 to 24 000. 

III. RESULTS 

In the case of 1'= r=o, from Eqs. (2)-(4) it is shown 
that the two solitons with the same screw sense begin to 
propagate down with initial velocity u', and that the dis­
tance between the two solitons becomes greater with in­
creasing time, owing to the repulsive force l acting be­
tween the two solitons. This result agrees with that 
given by Scottl2 and Hirota. 24 Therefore the total wave­
form of a two-soliton system changes with time, and 
thus the permanent profile of a two-soliton system does 
not exist. 

In our numerical calculations under the conditions of 
1 > I' > 0 and r = 0.1, the distance D between the centers 
of two solitons with the same screw sense increased 
with time for the value of I' smaller than a critical value 
('Ye - 0.4). For a value of I' greater than 'Ye the distance 
between the two solitons tends to a constant value, and 
they apparently form a stable coupled state. We study 
in detail the propagation of coupled solitons with the 
same screw sense in the case of 1'=0.95, 1'=0.7, and 
r = 0.1. To see the time dependence of the distance D 
between two propagating solitons with the same screw 
sense, we calculated the positions of two solitons for 

r=Q.1 ,(=0.7 
o stable distance 

A unstable equilibrium distance 

0(1=50) 

-, 

FIG. 2. Small change in the distance between two propagating 
solitons for I' = O. 7 from t = 50 to t = 300 as a function of the 
distance measured at t=50, ~/~t=lD(t=300)-D(t=50)l!250. 
(Computer- simulated results, Ax = O. I, ~t = O. 05). 
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r=O.1 Y=O.95 

+ repulsive region 

- attractive region 

FIG. 3. Waveform of the tail of propagating soliton for 
1'= 0.95, r= 0.1, Ax= 0.1, and ~t= O. 05 as a function of di­
mensionless distance!; measured from the center of the 
soliton. Attractive (-) and repulsive (+) regions, which are ob­
tained from the analyses of Fig. I, are also marked. 

various values of initial distances D j • The distance be­
tween two solitons become almost stable after t= 50, 
but still they adjust themselves slightly to settle down 
at the most favored distance taking a long time. The 
small change of the distance from t = 50 to t = 300 as a 
function of the distances measured at t= 50 are shown 
in Figs. 1 and 2 for I' = 0.95 and I' = 0.7, respectively. 
Figures 1 and 2 show the existence of attractive and re­
pulsive regions for the force acting between two solitons 
depending upon their distance D. The region which has 
positive value of IlD/ Ilt corresponds to a repulsive. re­
gion, the region for negative IlD/ Ilt corresponds to an 
attractive region, and stable and unstable equilibrium 
points are alternatively situated at the boundaries be­
tween repulsive and attractive regions. In order to un­
derstand these attractive and repulsive regions, it is 
necessary to examine carefully the waveforms of soli­
tons obeying Eq. (2) in the presence of y. Figures 3 and 
4 show the waveform of the tail of propagating solitons 
for 1'=0.95 and 1'=0.7, respectively. From Figs. 1 
and 2, the regions of attractive and repulsive forces 
acting on the following soliton are marked by + and -
regions in Figs. 3 and 4. In Fig. 4 we try to separate 

+ repulsive region 

- aUractive region 

C soliton core 

R ripple structure 

S. soliton core (1' = r = 0) 

r =0.1 1'"= 0.7 

FIG. 4. Waveform of the tail of propagating soliton for I' = O. 7, 
r= 0.1, Ax=O.l, and ~= O. 05 marked by (C+R) are sepa­
rated into soliton core C and ripple structure R. Soliton So 
for 1'= r= 0 and, for reference, the function of the ripple struc­
ture are also drawn. Attractive and repulsive regions analyzed 
from Fig. 2 are marked. 
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FIG. 5. Waveform of two propagating solitons obtained numer­
ically from Eq. (2) with 'Y=O. 7, r= 0.1, ax= 0.1, and At= O. 05 
as a function of dimensionless distance!;. 

the complex structure of propagating soliton into "soli­
ton core" C and "ripple structure" R. It can be seen 
from Figs. 3 and 4 that the attractive and repulsive re­
gions are approximately periodic. This periodicity cor­
responds well to the periodicity of the oscillation in the 
tail of the soliton. This trailed ripple structure of the 
soliton is not included in the initial waveforms. As an 
example, in Fig. 5 a waveform of two propagating soli­
tons is shown which are obtained numerically from Eq. 
(2) with 1'= O. 7 and r = 0.1. It can be seen from Figs. 
4 and 5 that the center of the following soliton is situated 
at the boundary between the attractive and repulsive 
regions. From these results it seems reasonable to as­
sume that the trailed ripple structure of the soliton gen-

6 5 
FIG. 6. Envelope lines of waves of ripple structures as a 
function of dimensionless distance !; measured from the center 
of the soliton for various values of 'Y with I= 0.1, ax: 0.1, 
and At= O. 05. 
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erates the attractive and repulsive regions for the fol­
lowing soliton. Figure 6 shows the envelope lines of 
waves of ripple structures as a function of dimension­
less distance t measured from the center of the soliton 
for various values of I' with r = 0.1, Ax=O.l, and At 
= 0.05. It can be seen from Fig. 6 that the amplitude of 
these oscillations decays with t and an envelope is ap­
proximated as Ro exp(- O! t). Figure 7 shows the wave­
length A, the attenuation constant o!, and the wave height 
Ro of this oscillation of ripple structure as a function of 
the dimensionless bias I' for r = 0 .1. The wavelength A, 
the attenuation constant o!, and the wave height Ro in­
crease with increasing 1'. The value of Ro is nearly zero 
at 1'=0.4 for this calculation. This result is consistent 
with our calculation that the coupling of two solitons 
cannot occur at the value of I' smaller than 0.4. It can 
be seen from Figs. 1, 2, and 7 that the stable distance 
D between two propagating solitons is described as D 
= (n-~ -O)A (n is an integer), where 0 is a small value 
compared to unity. 

IV. DISCUSSION 
For two solitons with the"'Same screw sense which are 

in static state, it has been reported that each soliton is 
affected by the repulsive force from the other soliton. 1 ,2 

But in the case of propagating solitons, each soliton is 
affected not only by the short-range repulsive force 
from the other soliton but also by :l disordered field 
brought about by the motion of the other soliton. In the 
present work it is found that two solitons propagating 
nearby satisfying Eq. (2) can coupled in the presence of 
the bias Y. The propagation of coupled solitons under the 
existence of I' suggests that the stationary ripple struc­
tures created by the motions of leading and following 

r= 0.1 

1.0 

0.5 

1.5 

ex 

1.0 

3 

Ro 0.5 

2 

FIG. 7. Wavelength A, attenuation constant ex, and wave height 
Ro of the ripple structure as a function of dimensionless bias 
'Y for r= 0.1, ax= 0.1, and At= O. 05. 
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solitons bring about an attractive force between two 
solitons which overcomes the short-range repulsive 
force. The trailed ripple structure R is empirically de­
scribed as Ro::Roexp(-al;')sin(27TI;'/x-h). The wave­
form of the propagating soliton of Eq. (2) in the pres­
ence of y and r is found to be approximated as a super­
position of a ripple structure and a bare soliton (soliton 
core C). We discuss the whole interaction between two 
moving solitons as a sum of core-core interaction, 
core-ripple interaction, and ripple-ripple interaction. 
These three parts of forces are investigated in detail 
using a computer. 

A. Waveform of soliton in presence of bias and loss 

A propagating soliton in Eq. (1) with y=r=o is de­
scribed as cJ> = 4 tan- l exp[± (x - ut)(1 - U2)-1/2] (= So) .1,10 

But in the presence of the relatively large value of y and 
r, it is obvious that So no longer represents a propagat­
ing soliton. It can be seen from Figs. 3 -5 that a prop­
agating soliton obtained from Eq. (2) in a system of 
finite y and r trails a ripple structure R. To understand 
the coupling mechanism, we assume that the waveform 
of the propagating soliton (S) in the presence of y and r 
is a superposition of the soliton core (C) and the ripple 
structure (R), S = C + R. In Fig. 4 we tried to separate 
the propagating soliton into C and R. C is approxi­
mately equal to So, except for the most curving part. 
R is drawn in the same figure and is numerically ap­
proximated as 

R(I;') O::Ro exp(- a 1;') sin(2lT1;'/X - h), 1;' > 0 (5) 

where I;' is the dimensionless distance measured from 
the center of propagating soliton in the direction oppo­
site to the propagation. The ripple structure param­
eters x, a, and Ro in Eq. (5) depend on y as shown in 
Fig. 7. And they also depend slightly on the mesh inter­
val of computer calculation for space and time, Ax and 
At. Thus we consider that the shape of this oscillatory 
wave might have some relevance to those which appear 
after the shock-wave front 26 and after the moving dislo­
cation. 27 The ripple structure treated in the present 
paper is fundamentally different from the so-called 
small-signal oscillation given by the dispersion relation 
- k2 + w2 = 1. The ripple structure is trailed stationary 
by the soliton core, while small-signal oscillation 
propagates with a velocity which is greater than the 
limiting velocity of the soliton core. The phYSical ori­
gin of the ripple structure is not completely understood 
at the present time and is the subj ect for future study. 

B. Core-core interaction (C-C interaction) 

Although we are interested in this section in the re­
pulsive force acting between two soliton cores C which 
are obtained from the waveform of propagating soliton 
drawn in Fig. 4 in the presence of yand r, we as­
sume that the repulsive force is not very different 
from the force acting between two soliton cores So(u) 
which are the analytical waveform of the propagating 
soliton in absence of y and r, (C 0:: So). The repulsive 
force acting between two standing solitons [So(u = 0) 
- So (u = 0) interaction] was investigated by Rubinstein / 
Seeger et al. ,2 and Perring et al. 22 But the repulsive 
force acting between two solitons having a certain veloc­
ity has not been investigated. There is no analytical 
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form for two solitons propagating in the same direc­
tion. However, it is known22 that exact analytical form 
for two-soliton systems is given by cJ>1 = 4tan-l u{exp[x(1 
- U2)-1/2] _ exp[ - x(l _ U2)-1 /2J}/{ exp[ut/(1 _ U2)-1/2] 
+exp[-ut(1-u2 )-1/2J}, where u is an arbitrary value 
smaller than unity, which represents two solitons prop­
agating with equal but opposite velocities in static co­
ordinate. Thus we first try to understand the empirical 
repulsive force between two solitons given by cJ>2' car­
rying out subsequent calculations. We obtain numerically 
the distance 2r between two solitons as a function of 
time. And by using the obtained 2r(t), we numerically 
calculate the repulsive force F= a[mor(1 - r2)-1/2]/at 
where mo is a rest mass of the soliton. 1 Figure 8 shows 
the repulsive force F acting between two propagating 
solitons with the same screw sense and oppositely 
propagating directions as a function of their distance 
2r for two values of u. It can be seen from Fig. 8 that 
as the distance 2r increases, F increases first and 
reaches its maximum value, and decreases exponential­
ly. It is interesting to notice that from Fig. 8 for 2r 
» 1, the repulsive force can be written in the form 

(6) 

The abnormal behavior of F at 2r < 1 in Fig. 8 seems to 
have originated from an incorrect definition of r when 
two solitons are too close. The factor (1_U2)-1/2 repre­
sents the effect of a Lorentz contraction. By an analyti­
cal treatment in the case of two solitons running either 
in opposite directions or in the same direction (Appen­
dix A), F can be written 

8(1 +u2
) ( 2r ) 

Fo(u)o:: 1-u2 exp -(1_U2)1/2 for2r»(1-u2)1/2. 

(7) 

If we set u = 0, formula (7) agrees with the repulsive 
force between two static solitons treated by Rubinsteinl 

except by a factor of t. The repulsive force decreases 
sharply with increasing the distance 2r of two solitons 

'00 

F 

'0 

0,'0:------~------,';;tOC---.. 2r::--~--~~-------". 

FIG. 8. Repulsive force F acting between two solitons propa­
gating with equal but opposite velocities in static coordinate. 
which is obtained from an analysis of CPt = 4 tan-tu{exp[x(1 
- u2)-1/2] _ exp[ - x(l - !?)-1I2J}/{exp[ut(1 - u2)-1/2] + exp[ - ut(l 
- u2)-U2]}. as a function of their distance 2r for two values of 
u. 
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aq, 
as 
1.5 

10 

0.5 

-0.5 

leading soliton following soliton 

r=o.1 1"=07 

FIG. 9. First derivative 8cp/8t; for a propagating coupled pair 
of solitons as a function of dimensionless distance t; for 
,),=0.7, r=O.l, ~=O.l, and~t=0.05. 

which are separated from each other by a distance of 
more than unity. 

C. Ripple-core interaction (R-C interaction) and 
ripple-ripple interaction (R-R interaction) 

As shown in Figs. 3 and 4 that the attractive and re­
pulsive regions for the following soliton are formed be­
hind the leading soliton in the presence of y. The at­
tractive and repulsive regions are alternate, and the 
periodicity coincides with the periodicity of R. The 
attractive regions correspond to the negative value of 
acp/al: (=aR/al:), where I:==-x+ut, and the repulsive 
regions correspond to the positive value of aR/al:. By 
way of example, acp/al: for a propagating coupled pair 
of solitons is shown in Fig. 9. The following soliton 
core is at the boundary of the positive and negative re­
gions of aR/al: brought about by the leading soliton. The 
min(aR/al:) of the following soliton are found to be ap­
proximately at the point which corresponds to max(aR/ 
a 1:) of the leading soliton. As discussed in Sec. IV B, the 
repulsive force F between two soliton cores is a short­
range force. Therefore it is considered that the follow-

r =0.1 Y·0.7 

Ds empirically stable distance 

R-R ripple structure - ripple structure Interaction 

R-C ripple structure- soliton core interaction 

o 

FIG. 10. Interaction energies between two ripple structures 
marked by R-R are shown as a function of their distance D. 
Interaction energies between the ripple structure and the core 
of a following soliton R-C are also drawn. In the lower part, 
a summation of these two interaction energies are shown as a 
function of D. Arrows correspond to the distances at which two 
solitons are empirically found. 
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ing soliton is hardly affected by the short-range repul­
sive force F except in the vicinity of the leading soliton 
core. In order to investigate the interaction between the 
ripple structure R and the soliton core C, we have 
numerically calculated the interaction energy defined by 
the following expression: 

f aR ac 
HRC = af af dl:, 1:= -x+ut. (8) 

This expression is an approximation derived from the 
energy density for the sine-Gordon equation (Appendices 
A and B). H RC as a function of distance D between two 
solitons is shown in Fig. 10. This figure also shows the 
numerical results of the interaction energy between two 
ripple structures [HRR =J(oR/o1:)(oR/a1:)d1:] and the 
sum of R-C and R-R interaction energies. In this figure 
the empirical positions Dn of the following soliton which 
are obtained from Eq. (2) are also marked by arrows. 
It can be seen from Fig. 10 that considering R-C inter­
action only, the pOint of minimum energy should be 
situated at a distance greater than Dn. while considering 
R-R interaction only, the point of minimum energy 
should be located at a distance slightly smaller than Dn' 
As one can see from Fig. 10, the minimum pOints of 
R-R + R-C agree well with the empirically obtained dis­
tances between the two running solitons. The interaction 
energy obtained by Eq. (8) includes only terms (ac/>/ax)2 
and (acp/at)2. It seems reasonable to conclude that the 
term (1- cosc/» in the energy density is not important in 
understanding the interaction of two solitons in this case. 

It is interesting to point out that the ripple-ripple in­
teraction plays a more important role than the ripple­
core interaction, contrary to our initial expectation that 
the ripple-core interaction should dominate. We believe 
this result originates from the finite size of the soliton 
core. In Appendix B it is verified analytically that R-C 
interaction energy is greater than R-R interaction ener­
gy, if the core is localized to a point. 

D. Total interaction between two solitons with 
ripple structure 

It is considered that as a whole a following soliton is 
repelled by the short-range repulsive force of the lead­
ing soliton which is shown in Fig. 8, and is simulta-

r ·0.1 ~= 0.7 

(C -C}+(R -C)+(R - R) interaction 

o 

t t 
n::3 n=4 n=5 

empirically stable distance 

FIG. 11. Total interaction energy between two solitons with 
ripple structures as a function of their distance D. 
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r = 0.1 y= 095 

4 

n 

6 8 q' 10 

FIG. 12. Empirically obtained values of n for '}'= O. 95, u' = v 
= O. 99, and q = 6. 0 as a function of q' where q, q', u', and v are 
the parameters in the initial waveform rpl I =4 tan-I exp[- (xI 
- u' At- q)(l- v2)-V2] + 4 tan-I exp[- (xI - U' M- q')(l- v2)-V2) 
+ sin-I'}'. (Computer-simulated results Ax= 0.1 and At= 0.05). 

neously affected by the potential created by the ripple 
structures brought about by running solitons. It can be 
seen from the discussion in Sec. IV C that the term (1 
- coscf» in energy density is considered to contribute 
negligibly to the total interaction. In Sec. IV C we cal­
culated R-C and R-R interactions for a system of two 
solitons with ripple structures obtained independently 
from Eq. (2). In this section we calculate numerically 
the total interaction energy between the two solitons ob­
tained directly from Eq. (2). Figure 11 shows the ob­
tained results as a function of the distance D using the 
following equation: H= r[aS(l;)/at][aS(t,D)/at] dt, where 
S is obtained from Eq. (2) for 1'=0.7 and r =0.1. It 
can be seen from Fig. 11 that the point of minimum 
energy is located at D= (n -! -li)A, n is an integer. The 
reason that the point corresponding to n = 1 is not a min­
imum energy point in this figure is that the potential 
created by the ripple structure is overcome by the 
short-range repulsive force F. But if 1'=0.95 and r 
= 0.1, it is supposed from Fig. 3 that the point for n 
= 1 cOO'responds to a minimum energy. The larger I' 
becomes the nearer the two solitons are allowed to 
come, because Ro increases with increasing y. Although 
the point for n = 2 in Fig. 11 corresponds to a minimum 
energy, no soliton can be found there as one can see 
from Figs. 2 and 4. The reason for this is considered 
to be an effect of initial conditions, since it is supposed 
that the formation of ripple structure takes a relatively 
long time but the repulsive force acts between two soli­
tons from the beginning. 

E. Dependence of the distance of coupled solitons 
on the initial condition 

The position of the following soliton coupled to the 
leading soliton is located at one of the minimum energy 
points. If two solitons separate enough not to be affected 
by F, the position of coupled solitons is determined by 
the potential created by the ripple structures. In this 
case the spacing of two solitons is described as (n -! 
- Ii)A. n is decided by initial conditions. Figure 12 
shows the value of n for I' = 0.95 as a function of q' and 
Fig. 13 shows the value of n for I' = O. 7 as a function of 
u' and v where q', 28 u', 29 and v 80 are the parameters 
in the initial value cf>1.l = 4 tan- l exp[ - (Xi - U' At - q) 
X(l- V2)-l/2]+ 4 tan-l exp[- (Xi - u' At - q')(1 _ V2)-l/2] 
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+ sin-ly. As discussed before, >t is a function of I' as 
shown in Fig. 7. Ii depends on the waveforms and dis­
tortions of soliton core and ripple structure, but in gen­
eral it is negligibly small compared with unity. From 
these figures we observe that the equilibrium distance 
between two solitons are influenced by the initial con­
ditions, such as initial waveform, initial time deriva­
tive, and initial distance, while the equilibrium velocity 
are uniquely determined by the bias I' and the loss r. 

V. CONCLUSION 

By computer Simulation, the propagating two solitons 
with the same screw sense of the sine-Gordon equation 
with dimensionless loss r and bias I' terms can be 
stationary coupled, if I' is greater than a critical value. 
Physical bases for the coupling mechanism are examined 
in detail. In spite of the short-range repulsive force 
acting between two solitons with the same screw sense, 
two propagating solitons can be coupled through the 
periodic potentials which are produced by the ripple 
structures created by a leading and a following soliton. 
This ripple structure can, in general, be described as 

R "'Ro(Y) exp[ - a (y)t] sin[27Tt/>t(y) -!7T]. 

The interaction energy is dominanted by ripple-ripple 
interaction, not by ripple-core interaction. The repul­
sive force acting between two propagating solitons with 
the same screw sense have been calculated also. The 
spacing of coupled solitons ate found to be expressed as 

D=(n-!-lih, n is an integer, 

where>t is a wavelength of the ripple structure, n is de­
termined by an initial value of velocities, positions, and 
waveforms. A small number Ii depends upon the wave 
distortion of a propagating soliton. It is interesting to 
note that this type of coupling is an example of a forma­
tion of macroscopic ordering structure in an energy 
diSSipating system. 
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APPENDIX A: ANALYTICAL CALCULATION AND 
PHYSICAL ORIGIN OF REPULSIVE FORCE BETWEEN 
TWO PROPAGATING SOLITONS 

In order to understand Eq. (6) analytically, we car­
ried out the following calculation. The energy density 
for the sine-Gordon equation can be written in the form1 

(A1) 

The force F acting between two solitons has been writ­
ten for static solitons in the following form by Seeger 
et al. 2: 

F~-o~:!.)' H=j:HDdX, (A2) 

where 2r is the distance between the two solitons. 
Therefore we apply this formula for the moving soli­
tons. In our case, 

--1~ oHD ax 
- _~ (2r) (A3) 

= - f: (et>% :(~~) + et>t o~:;) + sinet> 0~2~)) dx. 

If 1 - u « 1, the analytical solution et> = et> 1 with 1 - u « 1 
can be approximated as et> '" 4 tan-1 exp[ (x - ut)(l _ U2)-1/2] 
- 4 tan-1 exp[ (- x - ut)(l - U2)-1/2]. Since the centers of the 
two solitons are located at x = ut and x = - ut respective­
ly, 0/0(2r)",0/0(2ut). Therefore 

(
e-p - eP)(e-20 + e20 - 6) (e-2P + e'l9 - 6)(e-O _ eO)) 

x (e-P + eP}(e-O + eO)2 + (e-P + eP)2(e-Q + eO)2 ax, 
(A4) 

where p = (x - ut)(l- U2)-1/2 and Q = (- x - ut)(l _ U2)-1/2. 
Since 1 - u« 1, sech(p) and sech(Q) may be replaced in 
zeroth approximation by 1T(1 - U2)1/25 (x - ut) and 1T(1 
- z(!)1/25 (- x - ut), respectively. Therefore the repulsive 
force acting between two oppositely running solitons 
with the same screw sense is approximated as 

(A5) 

where 2r is the distance between two solitons. It can 
also be verified that the exact result is obtained if one 
uses superposition of two solitons with the same screw 
sense running in the same direction, although it is not 
an exact solution of the sine-Gordon equation. Let us 
consider the physical origin of F in the So-So interaction o 

It is considered that F consists of Fu F2 , and F3 where 
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Fll F 2 , and F3 are derived from terms ~et>;, ~et>;, and 
1- coset> in the energy density of Eq. (A1), respectively. 
And it can be shown from Eqs. (A3) and (A4) that Fu F 2 , 

and F3 are written 

81T ( 2r ) 
Fl = 1 _ z(! exp - (1 _ u2)1/2 , (A6) 

(A7) 

and 

(A8) 

Therefore the term 1 - coset> in the energy denSity does 
not contribute to the So-So interaction in the zeroth ap­
prOXimation. In a Josephson-junction transmission line 
Fl and F2 are related to magnetic and electric field 
potentials, because et>r is equal to (2e/h) dJlHy' and et>t' 
is equal to (2e/h)V, according to the Josephson equa­
tions where H y • is a magnetic field parallel to the layer 
of insulator, V is a transverse voltage, d is an effective 
thickness of the layer of insulator, Jl is the permeabili­
ty, x' is the distance measured in meters, and t' is the 
time measured in seconds. From the above discussion 
it is considered that the So-So interaction is mainly acted 
through magnetic and electric fields in the case of the 
Josephson line. For a standing soliton F2 vanishes be­
cause u = 0, therefore it is considered that the inter­
action between two standing solitons is acted through a 
magnetic field only. 

APPENDIX B: ANALYTICAL CALCULATIONS OF 
RIPPLE-CORE AND RIPPLE-RIPPLE INTERACTIONS 

Let us carry out approximate analytical calculations 
of R-C and R-R interactions. We assume that the soli­
ton core and the ripple structure are expressed as 

C"'4tan-lexp[(~-D)(1-u2tl/2], D>O, (B1) 

and 

R "'-Roexp(- a~) COS(21T~/A), ~> 0, (B2) 

respectively. The R-C interaction energy H RC can be 
written 

( 
21T 21T. 21T) ( ) x a cos-I:+- sm-I: exp -al: dl:. 
.\ .\ .\ 

In the zeroth approximation in which we assume that the 
core is localized to a point, HRC may be written as 

f. 41T2)1/2 
HRC "'21T(1 + u2 )Ro\a 2 +~ exp(- aD) 

x ( sin 2: D Han-1 ~: ). 

(B4) 

On the other hand the R-R interaction energy H RR can be 
written 

(<<> a ( 21T ) a 
HRR = JD 01: -Roexp(-al:)cos""i"1: 01: 

x (_ Ro exp[ - a (I: - D)] cos 2: (/: - D)) dl: 
(B5) 
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2 [21T;\.2Q12+ 8,r. 21T 
=Roexp(-QlD) 4Q1 2;\.3+161T2;\. Sln"i"D 

( 
41T2Q1 + Ql3;\. 2 QI 1T2 ) 21T ~ 

+ 4Q12;\.2+161T2+"4+QI;\.2 cos"i"DJ. 

Usingtheparameters;\.=0.7, QI=0.82, Ro=0.6, and 
u = 0.98 of ripple structure numerically obtained for i' 
=0.7, 

H RC ~ 67 exp(- QlD) sin[(21T/;\.)D + O. 09], (B6) 

H RR ~9 exp(- QlD) sin[(21T/;\.)D + 1.48]. (B7) 

These forms of energies coincide very well with the 
real interaction energy shown in Fig. 10. However the 
ratio H RC to HRR is greater than unity in this calcula­
tion, contrary to the results shown in Fig. 10. Further 
from Eqs. (B6) and (B7) we note that the phase ob­
tained in this model calculation is always a little greater 
than the real value. This small discrepancy we attri­
bute to the deformation of the interacting cores and 
ripple structures of running solitons from Eqs. (B1) 
and (B2). 
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