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Implementation of a New Neurochip
Using Stochastic Logic

Shigeo Sato, Ken Nemoto, Shunsuke Akimoto, Mitsunaga Kinjo, and Koji Nakajima

Abstract—Even though many neurochips have been developed though digital implementations present high reliability, the chip
and investigated, the best suitable way for implementation has not area is larger than analog implementations generally. This is be-
been known clearly. Our approach is to exploit stochastic logic for 4 ;se g large number of transistors is required. Therefore, mar-

various operations required for neural functions. The advantage . | soluti tilizi | h b di
of stochastic logic is that complex operations can be implemented 9!N&! SOIULIONS Ulilizing pulSe Sequence have been proposed In

with a few ordinary logic gates. On the other hand, the operation Order to overcome these disadvantages [10]-[17]. A neural-net-
speed is not so fast since stochastic logic requires certain accumula-work utilizing stochastic logic, which has been proposed by

tion time for averaging. But huge integration can be achieved and Kondoet al.[13], is one of the pulse neural networks. One can
its reliability is high because all of operations are done on digital convert analog quantity to pulse firing rate by stochastic logic,

circuits. Furthermore, we propose a nonmonotonic neuron realized nd vari molex ration n be done with basic logi
by stochastic logic, since the nonmonotonic property is efficient for a arious complex operations can be done asic logic

the performance enhancement in association and learning. In this gates. For example, multiplication is done with a single
paper, we show the circuit design and measurement results of a gate. Also, nhonmonotonic functions are realized by choosing

neurochip comprising 50 neurons are shown. The advantages of syjtable random number used for stochastic operation. There-
honmonotonic property and stochasticism are shown clearly. fore, the number of transistors in a chip can be reduced greatly
Index Terms—Boltzmann machine (BM), large-scale integra- while the reliability is high. We show both circuit design and

tion (LSI) implementation, nonmonotonic neuron, simulated measurement results of a new stochastic logic neurochip com-
annealing, stochastic logic, traveling salesman problem. prising nonmonotonic neurons.

. INTRODUCTION Il. DESIGN OF A STOCHASTIC NEUROCHIP WITH

T is expected that a neural network is applicable in the fields NONMONGTONIC NEURONS

such as pattern recognition and classification problems. ItAs Nonmonotonic Neurons
not easy to estimate the suitable size of a network for practical-l-l,]e advantage of a nonmonotonic neuron model was
use since it depends on a target problem very closely. Howe\ﬁgt suggested by Morita [2] in order to improve network
rough estimation indicates that ne-tworks, C_OmP“Si”Q abotit 1 erformances of associative memory. It has been examined
neurons, are necessary for practical applications [1]. Even gy \merical simulations and studied analytically by several
using modern large-scale integration (LSI) technology, it is NPlsearchers. Association property is improved compared

easy to implement such a large number of neurons. In adgi, orginary monotonic models, and the memory capacity
tion, difficulties related to downscaling devices due to quantuf.reases. Yoshizavet al. [3] reported that a certain piecewise
effects have been reported. Then it is important to considemear nonmonotonic neuron can stéréN memory patterns.
high-performance neural network with limited resources. It hﬁkaiet al.[4] evaluated the enhancement of memory capacity
been reported that the performance both for association qu several nonmonotonic neurons by SCSNA. Yanai and

learning are improved with nonmonotonic neurons rather thﬁ%ari [5] also investigated memory capacity by statistical

with monotonic neurons [2]-[9]. These results indicate that it ﬁeurodynamics. Also the enhancement of learning property of

pos.smle to solve varlous.pr.oblems \,N'th less neurons. Slnce Hhmonotonic neurons has been studied by several researchers.
major area of a neurochip 1S occup|e.d by synapse urcuns, tM?)rita [71, [8] reported that nonmonotonic property is effective
increasing area caused by incorporating nonmonotonic NeUrgliSssring sequential patterns. Usually, synaptic weights for an
IS not.senous in general case. associative memory are obtained from correlations of desirable
Various hardware neural networks have been proposed uBté terns. However, the modified patterns after applying non-

now. They are categorized into two groups roughly, which afg.sonic property to original patterns are superior to original
digital and analog circuits. Though analog implementations gk .o ns in terms of memory capacity of a nonmonotonic

artificial neural networks (ANNSs) present the advantage of r etwork. Kinjoet al. [9] studied the learning ability of a DBM

duced silicon area as compared to their digital counterparts, g ork comprising nonmonotonic neurons by numerical sim-
noise immunity is low and reliability is poor. On the other hanqjlations. They reported that the nonmonotonic DBM network
requires less neurons for the parity problem. Since it is not
Manuscript received September 15, 2002. easy to implement FOneurons, utilization of nonmonotonic
The authors are with the Laboratory for Electronic Intelligent SVStemﬁroperty is an important subject for practical applications.
Research Institute of Electrical Communication, Tohoku University, Sendal Stochastic loqi l d | . .
980-8577, Japan (e-mail: shigeo@riec.tohoku.ac jp). tochastic logic realizes pseudo analog operations using

Digital Object Identifier 10.1109/TNN.2003.816341 stochastically coded pulse sequence [13], [17], [18]. A coding

1045-9227/03$17.00 © 2003 IEEE

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on May 20,2010 at 05:53:36 UTC from IEEE Xplore. Restrictions apply.



SATO et al. IMPLEMENTATION OF A NEW NEUROCHIP USING STOCHASTIC LOGIC 1123

il

R(U)

D_’ Pr(U) 0:2

P (U) L T

@ 02 | |
P(R) P(R) |
a - -0.4
oy
-0.6 L L L L L L L L L
> R > R -1 -08 -06 04 -02 0 02 04 06 038 1
0 Umax 0 a b Umax U

(b) (© )
_ ] o ] o Fig. 2. Nonmonotonic function generated with a nonmonotonic
Fig. 1. (a) Nonmonotonic coding circuit, (b) uniform noise distributions, angoding circuit and two random numbers having the split distribution
(c) split noise distributions. (a=10.2,b = 0.6,Unax = 0.8, N, = 1000).

circuit, which is a simple digital comparator, encodes a digitginereC = U, + a — b. The output firing probability of the
input value in a stochastic pulse sequence. Let us considgher coding circui?, (U) is given as follows:
a nonmonotonic neuron using stochastic logic as shown in

Fig. 1(a). It comprises two ordinary coding circuits and an U

XOR gate.U is the membrane potential of a neuron aRd P(U) = /0 P(R)dR

and R, are noises required for coding. The XOR gate outputs ' u/c (0<U < a)

low if both two inputs are high. Therefore, the output firing _ a/Cf (a<U <b) ®)

probability P(U) decreases wher& is sufficiently large.
The circuit is compact enough, though two mutually inde-
pendent uniform random number#, and R, are required. whereD = a — b. SinceP,(U) equalsP,(U), the final output

Since Pi(U) = P2(U) = U/Unax, thenP%(U) is given in a firing probability of thexor gateP:(U) is obtained as follows:
quadratic form as

(U+D)/C, (b<U < Upax)

Pe(U
P(U) = PU)(L — Py(U)) + (1 — P,(U))Ps(U) r( )2U(O—U)/Cz7 0<T<a
_ (1_ U ) 1) =1 20(C—a)/C?, (a<U<b) 6)
Umax Umax —2(U + D)(U + D — O)/C2, (b <U«< Umax)~

whereU,,.x is the maximum value of2; or Ry as shown in
Fig. 1(b). Then the expectation valieand the variancé” of
X after accumulation are given as follows:

Whena = Upax — b, Pr(U) is symmetrical and its maximum
value equals 0.5. Here, we add a sign bit to the system in order
to implement negative values. The system counts pulses up or
E[X] — (1/N.)N.P:(U) = P(U) ) d0\_/vn according to the sign bit. Then th_e entire characteristic re-
o 5 quired as a nonmonotonic neuron, which outphts has been
VIX] = (1/Na)"NaPr(U)(1 = Pr(U)) obtained in a stochastic case as shown in Fig. 2. The character-
_ 1 (l . ( U 1>4> 3) istic, which takes zero whefi is aboved, is called end cutoff
TN, \4 Upox 2 (ECO) characteristic. By changing parameters such as the max-
imum valueU,,.. and the distribution widths andb, one can
where N, is accumulation time and/N, is a normalization obtain proper gain and threshold valud=urthermore, if either
constant. R; or R, is set to the maximum, the monotonic characteristic is
It is useful to change the nonmonotonic characteristic. Fobtained also. Various functions not restricted to the ECO func-
example, the second threshold vafuehereP;(U) falls to zero, tion can be obtained with the combination of logic gates and
and the gain around = 0 andf are both important parameterssuitable noises.
These parameters should be tuned for a target application. Next\Ve design a neural network on the basis of the system which
let us consider the case of two random noises having a same spiis proposed by Kondet al.[13]. The discrete-time dynamics
distribution, as shown in Fig. 1(c). The probability distributiorof a neural network is given by
of random noise®(R) is given as follows:

N
1/C, (0<R<a) wit+1) =Y wijz;(t) @)

P(R) =<0, (a < R<D) (4) j=1
1/C, (b < R < Upax) zi(t) = f(uqi(t)) (8)
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Fig. 3. Block diagram of a neuron circuit comprising a nonmonotonic coding circuit.

wherew;; is the synaptic weight from thgth neuron to the To a coding circuit W;; write
1th neuronyz; is theith neuron outputy; is the membrane po- <: register

tential, f(x) is an activation function, andy’ is the number of
neurons. Fig. 3 shows the block diagram of the neuron circuit.

The synaptic weightv;; stored in a register is changed to a sto- load
chastic pulse sequence and multiplied by the output ofithe X; —

neuronz;. The up/down counter counts the pulses up or down Xj —:)—v EN
according to the sign of;;z; resulting the averaged product /T — Up/Down
w;;x;. In one time step, only one neuron output is broadcasted sign X; X; —\ Counter
to all other neurons. Therefor®, time steps are required for the clamp/unclamp D—v) UD

summation) _ ; w;;z;. The accumulated value in the counter,
which corresponds ta;(t + 1) in (7), is changed to a pulse i
seqguence by the nonmonotonic coding circuit in a proper time”
step. Thus, the discrete-time dynamics defined by (7) and (8)
has been introduced. Please note that the state update should be
done simultaneously to achieve the fastest calculation. However,
some networks require asynchronous updates, and it is possible
by updating a single neuron randomly in a time step though the
computation power decreases in inverse proportioN of

4. Block diagram of a learning circuit.

5

TESEE55

B. Learning Circuit

We incorporate Boltzmann machine (BM) learning [19] in
the stochastic neural network since it has been confirmed the
learning ability is enhanced with nhonmonotonic neurons [9].
BM learning can be easily implemented with a simple stochastic
logic circuit. Main idea related to Hebbian learning by stochastic o rinirsingningng i

. . . . . . 5 fl e Hﬂ \mlu
logic, which is discussed in the following study, has been pro- ,,,.,,.,... ...... it ?’.\t“.m\u
posed by Kondet al.[13]. We have modified the circuitin order l//’ 3jis

to perform signed arithmetic. The synaptic weight update rule

is given by the following equation: Fig. 5. Photograph of a stochastic neurochip. It has been fabricated through
VDEC, in double-polysilicon, triple-metal, and Qu6n rule CMOS technology.

The chip size is 4.5 mm 4.5 mm.

&
Awij = T Z (:E?x?)cl - (x?:v?)uncl (9)
o I1l. HARDWARE IMPLEMENTATION

wheree is a learning rateT’ is a gain parametety is the index Fig. 5 shows a photograph of the stochastic neurochip which
of desired patterns, and cl and uncl mean clamp and unclahgs been fabricated through VDEC Quén rule CMOS tech-
phases, respectively. The circuit realizing these operations agtogy. Fifty neurons have been integrated with 5 M-sequence
implemented with stochastic multipliers and up/down countergndom number generators. Each random number generator
in the same manner discussed in the above. Fig. 4 shows tliputs the 200-bit M-sequence. The bit length of a random
block diagram of a new learning circuit. The simultaneous firingumber required for neuron operation is 20. Therefore, one
probabilityz;z; is obtained with thenD gate. A control pulse random number generator is shared by ten neurons. This
sequence is applied externally in order to obtain proper updaticgnfiguration was chosen after numerical simulations in which
rates /T as the third input to thenD gate. Counting up or down we confirmed that the correlation of noises was sufficient small
is selected by the output of th®R gate according to the phasefor stochastic logic neural operation. The occupied silicon area
(0:clamp/1:unclamp) and the sign ofz ;. by random number generators is 6.2% of the total chip area.
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The bit lengths ofu; andw;; are 14 and eight, respectively.

Memories which store synaptic weights are provided externally
Fig. 6 shows the multichip configuration of the proposed chips
All neurons are connected together via théous. The neurons

broadcast their outputs in order under the control of the host P(
The size and topology of the network can be defined externally
Though the synaptic weights and the memory size should b
chosen properly, this architecture keeps good scalability. Th
fabricated chip has been tested using the host PC which gene
ates the required control signals. We have confirmed that th
neurochip operates successfully. A rather low clock frequenc
of 100 kHz was used for the measurements. This was limite
by the interface card of the PC. However, we confirmed the
chip can operate with over 30 MHz by Verilog simulations, in
which propagation delay was considered. The CPS and CUF
of the proposed chip are estimated as follows: :

Host PC

Contrdl signals

SRAM

SRAM

CPS = f7N7 Fig. 6. Multichip network controlled by a host PC. Each chip comprises 50
12+ N, neurons and one control unit (CU). Synaptic weights are stored in external
CUPS — fN (10) SRAM's.
© 2(T(N, +12) + (24 + 512¢/T))
1 N Z& N N Z)
where f andr are the clock frequency, and the number of the
state update until the network finds a certain fixed point, respec- 0.8
tively. Other coefficients are related to the operations such as >
synaptic weight loading or counting neuron output pulses for = 0.6 |
learning. Supposing typical valugs= 30 MHz, N = 1000 § i
(20 chips),r = 100,¢/T = 0.05, and N, = 10, we obtain S04 |
1.37 GCPS and 6.67 MCUPS. The power consumption per chip A
is 330 mW at 30 MHz. 021 |
: X
A. Learning Results 0%+t
The learning performance as a Boltzmann machine has 2 4 6 8 10 12 14
been evaluated. Parity problem, in which the output required Number of hidden neurons

is +1/—1 if the input vector contains odd/even number of. . , _
Fig. 7. Probability of successful learning as a function of the number of

+1/-1's, —1/+1 else, is considered. Fig. 7 shows the learming;.ons in the hidden layex. and+ denote the nonmonotonic and monotonic
results for the four-parity problem obtained with either noreases, respectively. The split distribution in Fig. 1(c) is used. The parameters
monotonic neurons or monotonic neurons. The networks h&d@gthe circuit operations are = 200,b = 300, Umax = 500, Na = 1000,

the same three layers, and nhonmonotonic neurons are pla%réddc/T = 0048

only in the hidden layer. The monotonic function is obtained TABLE |

by setting either?; or R, to the maximum. The number of PROBABILITY OF THE BEST SOLUTION OF THE FIVE-CITY TSP

required neurons for achieving successful learning decreases

. . N, Monotonic  Non-monotonic
by the use of n_onmonotonlc neurons. We have confirmed 350500 39.5% 65%
that the stochastic nonmonotonic neurons operated properly. 600 (no scheduling) 28.7% 26.0%
Please note that the results have been given by the discrete time oo(deterministic) 16.0% 17.5%
dynamics. However, they agree well with the previous results
obtained in the continuous time dynamics by Kimjoal. [9]. TABLE I
A monotonic neuron can divide its input space by a certain COMPARISON OFDIGITAL NEUROCHIPS
plane perpendicular to its weight vector. On the other han- 0 o T T o~ o
a nonmonotonic neuron has three dividing hyperplanes. Th P b Consimption
. . . . . .5em i @30 3.2W
a nonmonotonic network can obtain desirable INPU—OULD Tamt comm oo S iMoo 4w
relation with less neurons. Proposed Chip 0.41mm*< 0.6pum Hebb 14 bit TM@30Mhz 330mW

B. Application to an Optimization Problem network [20] works well for retrieving memorized patterns

Another advantage of the stochastic neurochip is to genertdgether with simulated annealing as demonstrated by Geman
coding noises as shown in (3). Whé#, is small, the circuit et al. [21]. One can achieve simulated annealing by coding
shows stochastic behavior influenced by coding noises. Theises with scheduledv,. The five-city traveling salesman
steepest descent method of the energy function of a Hopfigddbblem (TSP) [20] was solved either with or without simulated

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on May 20,2010 at 05:53:36 UTC from IEEE Xplore. Restrictions apply.
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annealing. The scheduling of noises was done by chanyjing implement this rule since all the operations appeared in (12) are
as follows [13]: familiar for the stochastic logic. The continuous time dynamics
is much important for associative memories with nonmonotonic
Na(t) = Nao(1 + t/7,)? (11) neurons[2]-[6]. The improved retrieving characteristic of stored

: - . . patterns are obtained with nonmonotonic neurons in continuous
where Nag IS the initial value andfs is the tlmg cqnstant Of, time operation. We have tested the updating rule by numerical
the scheduling. Note that the gain of the activation funCt'Oé]mulations. However, we have not confirmed any improvement.

increases withV,. Therefore, the sharpening effect is aISGfhis is because decay process is omitted in (12), and such decay

expected together with the annealing. The results have bng_ rucially important for a nonmonotonic neuron to find fixed

obtained by asynchronous updating. This is because we avis it is clear that,; increases continuously even over the

aSCIIfI.atI(C)iry behal\(/lo_lr_ ct;?usl,edh by s;;}nchror;)om;fl. updfa'ur:\g bonfi%d point given by the original continuous time dynamics. In
ophe network. Ta 'e 1 shows the proba lity of t '€ D€She monotonic case, this is not a problem since such behavior
solution. Both cases with and without simulated annealing haye =~ as not affect to the output if u; is sufficiently large
been evaluated with the parameters,= 100, a = 200,b = 5 the gther hand, the improvement of the memory capacity

,4Na_200’ and[_]max = 4N,. We chosg 600 asthe maxim_uv_?g ._given by nonmonotonic characteristic is related closely to the
in order to avoid the overflow of; registers. The deterministic decay ofu;. A new circuit including decay process should be

case was evaluated by numerical simulations. No significali{, jiad for the application to associative memories
difference between monotonic and nonmonotonic neurons has

been found except for the case of simulated annealing. It can
be seen that simulated annealing works well especially for
nonmonotonic neurons. Also, even in the cas&/pf= 600 and We have designed and fabricated the stochastic neurochip
without the scheduling, the probability is high. This is becaus®mprising nonmonotonic neurons. The nonmonotonic func-
there exists stationary noise. The probabilities increased fiwn has been obtained with the new circuit including two
both cases greatly in comparison with the deterministic cageding circuits and axor gate. The network having Boltz-
We have confirmed the coding noises work efficiently for thenann machine learning ability has been integrated using®.6
optimization problem. CMOS technology. We have confirmed that the fabricated chip
including 50 neurons operates successfully. The advantages
IV. DISCUSSION of the new neurochip are easy integration with less transis-
ors, implementation of the nonmonotonic function, and the

Let us discuss the advantage and disadvantage of the 6 . .
posed chip. The various arithmetic circuits can be implementgé)(:haStIC operatlon. Networks composed of gvé’*rr]ﬁjrpns_
re necessary in order to be applied to practical applications.

with less transistors by the stochastic logic. It is possible to int . . : .
y g P uch a network is achieved by connecting multichips together.

grate more neurons in a chip than a conventional digital circ 6 broposed chips are easy to be connected since the alobal
Our rough estimation indicates that ten times integration can Q Propt ps a y €9
d‘ntrol signals are given by the host PC, and the size and

achieved [22]. The comparison between the proposed chip a )
other digital neurochips is shown in Table II. The proposed Cigc_)pology of the network can be defined externally.

cuit is suitable for a neural network requiring a large number
of neurons on a single chip. On the other hand, the processing ACKNOWLEDGMENT

speed is not so fast due to pulse accumulating operation. Withrhe authors wish to thank Y. Kondo, H. F. Yanai, Y. Haya-
same clock frequency, the conventional digital circuit operatggwa, and Y. Sawada for fruitful discussions, K. Sugawara for
N, times faster. However, we can control the amplitude of thgchnical assistance, and T. Haga for programming asistance.
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This is a suitable feature for implementing a huge number of
neurons.

Another interest should be considered here is the continuous
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