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Implementation of a New Neurochip
Using Stochastic Logic

Shigeo Sato, Ken Nemoto, Shunsuke Akimoto, Mitsunaga Kinjo, and Koji Nakajima

Abstract—Even though many neurochips have been developed
and investigated, the best suitable way for implementation has not
been known clearly. Our approach is to exploit stochastic logic for
various operations required for neural functions. The advantage
of stochastic logic is that complex operations can be implemented
with a few ordinary logic gates. On the other hand, the operation
speed is not so fast since stochastic logic requires certain accumula-
tion time for averaging. But huge integration can be achieved and
its reliability is high because all of operations are done on digital
circuits. Furthermore, we propose a nonmonotonic neuron realized
by stochastic logic, since the nonmonotonic property is efficient for
the performance enhancement in association and learning. In this
paper, we show the circuit design and measurement results of a
neurochip comprising 50 neurons are shown. The advantages of
nonmonotonic property and stochasticism are shown clearly.

Index Terms—Boltzmann machine (BM), large-scale integra-
tion (LSI) implementation, nonmonotonic neuron, simulated
annealing, stochastic logic, traveling salesman problem.

I. INTRODUCTION

I T is expected that a neural network is applicable in the fields
such as pattern recognition and classification problems. It is

not easy to estimate the suitable size of a network for practical
use since it depends on a target problem very closely. However,
rough estimation indicates that networks, comprising about 10
neurons, are necessary for practical applications [1]. Even by
using modern large-scale integration (LSI) technology, it is not
easy to implement such a large number of neurons. In addi-
tion, difficulties related to downscaling devices due to quantum
effects have been reported. Then it is important to consider a
high-performance neural network with limited resources. It has
been reported that the performance both for association and
learning are improved with nonmonotonic neurons rather than
with monotonic neurons [2]–[9]. These results indicate that it is
possible to solve various problems with less neurons. Since the
major area of a neurochip is occupied by synapse circuits, the
increasing area caused by incorporating nonmonotonic neurons
is not serious in general case.

Various hardware neural networks have been proposed until
now. They are categorized into two groups roughly, which are
digital and analog circuits. Though analog implementations of
artificial neural networks (ANNs) present the advantage of re-
duced silicon area as compared to their digital counterparts, its
noise immunity is low and reliability is poor. On the other hand,
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though digital implementations present high reliability, the chip
area is larger than analog implementations generally. This is be-
cause a large number of transistors is required. Therefore, mar-
ginal solutions utilizing pulse sequence have been proposed in
order to overcome these disadvantages [10]–[17]. A neural-net-
work utilizing stochastic logic, which has been proposed by
Kondoet al. [13], is one of the pulse neural networks. One can
convert analog quantity to pulse firing rate by stochastic logic,
and various complex operations can be done with basic logic
gates. For example, multiplication is done with a singleAND

gate. Also, nonmonotonic functions are realized by choosing
suitable random number used for stochastic operation. There-
fore, the number of transistors in a chip can be reduced greatly
while the reliability is high. We show both circuit design and
measurement results of a new stochastic logic neurochip com-
prising nonmonotonic neurons.

II. DESIGN OF A STOCHASTIC NEUROCHIP WITH

NONMONOTONIC NEURONS

A. Nonmonotonic Neurons

The advantage of a nonmonotonic neuron model was
first suggested by Morita [2] in order to improve network
performances of associative memory. It has been examined
by numerical simulations and studied analytically by several
researchers. Association property is improved compared
with ordinary monotonic models, and the memory capacity
increases. Yoshizawaet al. [3] reported that a certain piecewise
linear nonmonotonic neuron can store memory patterns.
Fukaiet al. [4] evaluated the enhancement of memory capacity
for several nonmonotonic neurons by SCSNA. Yanai and
Amari [5] also investigated memory capacity by statistical
neurodynamics. Also the enhancement of learning property of
nonmonotonic neurons has been studied by several researchers.
Morita [7], [8] reported that nonmonotonic property is effective
for storing sequential patterns. Usually, synaptic weights for an
associative memory are obtained from correlations of desirable
patterns. However, the modified patterns after applying non-
monotonic property to original patterns are superior to original
patterns in terms of memory capacity of a nonmonotonic
network. Kinjoet al. [9] studied the learning ability of a DBM
network comprising nonmonotonic neurons by numerical sim-
ulations. They reported that the nonmonotonic DBM network
requires less neurons for the parity problem. Since it is not
easy to implement 10neurons, utilization of nonmonotonic
property is an important subject for practical applications.

Stochastic logic realizes pseudo analog operations using
stochastically coded pulse sequence [13], [17], [18]. A coding
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Fig. 1. (a) Nonmonotonic coding circuit, (b) uniform noise distributions, and
(c) split noise distributions.

circuit, which is a simple digital comparator, encodes a digital
input value in a stochastic pulse sequence. Let us consider
a nonmonotonic neuron using stochastic logic as shown in
Fig. 1(a). It comprises two ordinary coding circuits and an
XOR gate. is the membrane potential of a neuron and
and are noises required for coding. The XOR gate outputs
low if both two inputs are high. Therefore, the output firing
probability decreases where is sufficiently large.
The circuit is compact enough, though two mutually inde-
pendent uniform random numbers and are required.
Since , then is given in a
quadratic form as

(1)

where is the maximum value of or as shown in
Fig. 1(b). Then the expectation valueand the variance of

after accumulation are given as follows:

(2)

(3)

where is accumulation time and is a normalization
constant.

It is useful to change the nonmonotonic characteristic. For
example, the second threshold valuewhere falls to zero,
and the gain around and are both important parameters.
These parameters should be tuned for a target application. Next,
let us consider the case of two random noises having a same split
distribution, as shown in Fig. 1(c). The probability distribution
of random noises is given as follows:

(4)

Fig. 2. Nonmonotonic function generated with a nonmonotonic
coding circuit and two random numbers having the split distribution
(a = 0:2; b = 0:6; U = 0:8;N = 1000).

where . The output firing probability of the
upper coding circuit is given as follows:

(5)

where . Since equals , the final output
firing probability of theXOR gate is obtained as follows:

(6)

When is symmetrical and its maximum
value equals 0.5. Here, we add a sign bit to the system in order
to implement negative values. The system counts pulses up or
down according to the sign bit. Then the entire characteristic re-
quired as a nonmonotonic neuron, which outputs, has been
obtained in a stochastic case as shown in Fig. 2. The character-
istic, which takes zero when is above , is called end cutoff
(ECO) characteristic. By changing parameters such as the max-
imum value and the distribution widths and , one can
obtain proper gain and threshold value. Furthermore, if either

or is set to the maximum, the monotonic characteristic is
obtained also. Various functions not restricted to the ECO func-
tion can be obtained with the combination of logic gates and
suitable noises.

We design a neural network on the basis of the system which
was proposed by Kondoet al. [13]. The discrete-time dynamics
of a neural network is given by

(7)

(8)
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Fig. 3. Block diagram of a neuron circuit comprising a nonmonotonic coding circuit.

where is the synaptic weight from theth neuron to the
th neuron, is the th neuron output, is the membrane po-

tential, is an activation function, and is the number of
neurons. Fig. 3 shows the block diagram of the neuron circuit.
The synaptic weight stored in a register is changed to a sto-
chastic pulse sequence and multiplied by the output of theth
neuron . The up/down counter counts the pulses up or down
according to the sign of resulting the averaged product

. In one time step, only one neuron output is broadcasted
to all other neurons. Therefore, time steps are required for the
summation . The accumulated value in the counter,
which corresponds to in (7), is changed to a pulse
sequence by the nonmonotonic coding circuit in a proper time
step. Thus, the discrete-time dynamics defined by (7) and (8)
has been introduced. Please note that the state update should be
done simultaneously to achieve the fastest calculation. However,
some networks require asynchronous updates, and it is possible
by updating a single neuron randomly in a time step though the
computation power decreases in inverse proportion of.

B. Learning Circuit

We incorporate Boltzmann machine (BM) learning [19] in
the stochastic neural network since it has been confirmed the
learning ability is enhanced with nonmonotonic neurons [9].
BM learning can be easily implemented with a simple stochastic
logic circuit. Main idea related to Hebbian learning by stochastic
logic, which is discussed in the following study, has been pro-
posed by Kondoet al.[13]. We have modified the circuit in order
to perform signed arithmetic. The synaptic weight update rule
is given by the following equation:

(9)

where is a learning rate, is a gain parameter, is the index
of desired patterns, and cl and uncl mean clamp and unclamp
phases, respectively. The circuit realizing these operations are
implemented with stochastic multipliers and up/down counters,
in the same manner discussed in the above. Fig. 4 shows the
block diagram of a new learning circuit. The simultaneous firing
probability is obtained with theAND gate. A control pulse
sequence is applied externally in order to obtain proper updating
rate as the third input to theAND gate. Counting up or down
is selected by the output of theXOR gate according to the phase
(0:clamp/1:unclamp) and the sign of .

Fig. 4. Block diagram of a learning circuit.

Fig. 5. Photograph of a stochastic neurochip. It has been fabricated through
VDEC, in double-polysilicon, triple-metal, and 0.6�m rule CMOS technology.
The chip size is 4.5 mm� 4.5 mm.

III. H ARDWARE IMPLEMENTATION

Fig. 5 shows a photograph of the stochastic neurochip which
has been fabricated through VDEC 0.6m rule CMOS tech-
nology. Fifty neurons have been integrated with 5 M-sequence
random number generators. Each random number generator
outputs the 200-bit M-sequence. The bit length of a random
number required for neuron operation is 20. Therefore, one
random number generator is shared by ten neurons. This
configuration was chosen after numerical simulations in which
we confirmed that the correlation of noises was sufficient small
for stochastic logic neural operation. The occupied silicon area
by random number generators is 6.2% of the total chip area.
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The bit lengths of and are 14 and eight, respectively.
Memories which store synaptic weights are provided externally.
Fig. 6 shows the multichip configuration of the proposed chips.
All neurons are connected together via thebus. The neurons
broadcast their outputs in order under the control of the host PC.
The size and topology of the network can be defined externally.
Though the synaptic weights and the memory size should be
chosen properly, this architecture keeps good scalability. The
fabricated chip has been tested using the host PC which gener-
ates the required control signals. We have confirmed that the
neurochip operates successfully. A rather low clock frequency
of 100 kHz was used for the measurements. This was limited
by the interface card of the PC. However, we confirmed the
chip can operate with over 30 MHz by Verilog simulations, in
which propagation delay was considered. The CPS and CUPS
of the proposed chip are estimated as follows:

(10)

where and are the clock frequency, and the number of the
state update until the network finds a certain fixed point, respec-
tively. Other coefficients are related to the operations such as
synaptic weight loading or counting neuron output pulses for
learning. Supposing typical values MHz,
(20 chips), , and , we obtain
1.37 GCPS and 6.67 MCUPS. The power consumption per chip
is 330 mW at 30 MHz.

A. Learning Results

The learning performance as a Boltzmann machine has
been evaluated. Parity problem, in which the output required
is if the input vector contains odd/even number of

’s, else, is considered. Fig. 7 shows the learning
results for the four-parity problem obtained with either non-
monotonic neurons or monotonic neurons. The networks have
the same three layers, and nonmonotonic neurons are placed
only in the hidden layer. The monotonic function is obtained
by setting either or to the maximum. The number of
required neurons for achieving successful learning decreases
by the use of nonmonotonic neurons. We have confirmed
that the stochastic nonmonotonic neurons operated properly.
Please note that the results have been given by the discrete time
dynamics. However, they agree well with the previous results
obtained in the continuous time dynamics by Kinjoet al. [9].
A monotonic neuron can divide its input space by a certain
plane perpendicular to its weight vector. On the other hand,
a nonmonotonic neuron has three dividing hyperplanes. Thus
a nonmonotonic network can obtain desirable input–output
relation with less neurons.

B. Application to an Optimization Problem

Another advantage of the stochastic neurochip is to generate
coding noises as shown in (3). When is small, the circuit
shows stochastic behavior influenced by coding noises. The
steepest descent method of the energy function of a Hopfield

Fig. 6. Multichip network controlled by a host PC. Each chip comprises 50
neurons and one control unit (CU). Synaptic weights are stored in external
SRAM’s.

Fig. 7. Probability of successful learning as a function of the number of
neurons in the hidden layer.� and+ denote the nonmonotonic and monotonic
cases, respectively. The split distribution in Fig. 1(c) is used. The parameters
for the circuit operations area = 200; b = 300;U = 500;N = 1000;
and"=T = 0:048.

TABLE I
PROBABILITY OF THE BEST SOLUTION OF THE FIVE-CITY TSP

TABLE II
COMPARISON OFDIGITAL NEUROCHIPS

network [20] works well for retrieving memorized patterns
together with simulated annealing as demonstrated by Geman
et al. [21]. One can achieve simulated annealing by coding
noises with scheduled . The five-city traveling salesman
problem (TSP) [20] was solved either with or without simulated
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annealing. The scheduling of noises was done by changing
as follows [13]:

(11)

where is the initial value and is the time constant of
the scheduling. Note that the gain of the activation function
increases with . Therefore, the sharpening effect is also
expected together with the annealing. The results have been
obtained by asynchronous updating. This is because we avoid
oscillatory behavior caused by synchronous updating on a
Hopfield network. Table I shows the probability of the best
solution. Both cases with and without simulated annealing have
been evaluated with the parameters,

, and . We chose 600 as the maximum
in order to avoid the overflow of registers. The deterministic
case was evaluated by numerical simulations. No significant
difference between monotonic and nonmonotonic neurons has
been found except for the case of simulated annealing. It can
be seen that simulated annealing works well especially for
nonmonotonic neurons. Also, even in the case of and
without the scheduling, the probability is high. This is because
there exists stationary noise. The probabilities increased for
both cases greatly in comparison with the deterministic case.
We have confirmed the coding noises work efficiently for the
optimization problem.

IV. DISCUSSION

Let us discuss the advantage and disadvantage of the pro-
posed chip. The various arithmetic circuits can be implemented
with less transistors by the stochastic logic. It is possible to inte-
grate more neurons in a chip than a conventional digital circuit.
Our rough estimation indicates that ten times integration can be
achieved [22]. The comparison between the proposed chip and
other digital neurochips is shown in Table II. The proposed cir-
cuit is suitable for a neural network requiring a large number
of neurons on a single chip. On the other hand, the processing
speed is not so fast due to pulse accumulating operation. With
same clock frequency, the conventional digital circuit operates

times faster. However, we can control the amplitude of the
noise by adjusting , and the coding noise is helpful for im-
proving the network performance. Furthermore,can be de-
creased in inverse proportion of the number of neurons, since
the variance of the neuron output is in proportion of .
This is a suitable feature for implementing a huge number of
neurons.

Another interest should be considered here is the continuous
time operation by the stochastic logic, which has not been dis-
cussed in previous sections. Kondoet al.have suggested that the
stochastic logic can realize pseudocontinuous-time dynamics by
implementing the following updating rule of [13]:

(12)

where is the decay time constant and is time step. This
equation has been obtained after time discretization of the
original equation under the condition . It is not difficult to

implement this rule since all the operations appeared in (12) are
familiar for the stochastic logic. The continuous time dynamics
is much important for associative memories with nonmonotonic
neurons [2]–[6]. The improved retrieving characteristic of stored
patterns are obtained with nonmonotonic neurons in continuous
time operation. We have tested the updating rule by numerical
simulations. However, we have not confirmed any improvement.
This is because decay process is omitted in (12), and such decay
is crucially important for a nonmonotonic neuron to find fixed
points. It is clear that increases continuously even over the
fixed point given by the original continuous time dynamics. In
the monotonic case, this is not a problem since such behavior
of does not affect to the output if is sufficiently large.
On the other hand, the improvement of the memory capacity
given by nonmonotonic characteristic is related closely to the
decay of . A new circuit including decay process should be
studied for the application to associative memories.

V. CONCLUSION

We have designed and fabricated the stochastic neurochip
comprising nonmonotonic neurons. The nonmonotonic func-
tion has been obtained with the new circuit including two
coding circuits and anXOR gate. The network having Boltz-
mann machine learning ability has been integrated using 0.6m
CMOS technology. We have confirmed that the fabricated chip
including 50 neurons operates successfully. The advantages
of the new neurochip are easy integration with less transis-
tors, implementation of the nonmonotonic function, and the
stochastic operation. Networks composed of over 10neurons
are necessary in order to be applied to practical applications.
Such a network is achieved by connecting multichips together.
The proposed chips are easy to be connected since the global
control signals are given by the host PC, and the size and
topology of the network can be defined externally.
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