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Design and Implementation of Stochastic
Neurosystem Using SFQ Logic Circuits

Taizo Kondo, Masayuki Kobori, Takeshi Onomi, and Koji Nakajima

Abstract—We propose a stochastic neurosystem using SFQ logic
circuits and design the main components with the following func-
tions: carrying out the multiplication of an input to a neuron on a
synaptic weight value, integrating pulses to generate a membrane
potential, and generating the output of a neuron. We simulate some
circuits by JSIM and confirm their correct operation. We compare
two methods of multipliers: using a comparator and using a di-
vider. The multiplication using the divider is effective with respect
to integration, and reduces the accumulation time required
for higher precision operations. We designed a 4-bit up/down
counter assuming the NEC 2.5 kA cm

2
Nb AlO

X
Nb stan-

dard process. We show that it is possible to compose the activation
function circuit using a comparator.

Index Terms—Neural network, single flux quantum, stochastic
logic, up/down counter.

I. INTRODUCTION

APPLICATIONS of a neural network are expected in fields
such as the pattern recognition and combinational opti-

mization problems, tasks that conventional computers are not
good at. A simple neural network is realizable in software sim-
ulation. However, it is not realistic with respect to calculation
time and network scale when a neural network is used for appli-
cations in real-time processing. Although the number of neurons
for the practical application is not obvious, the more the number
of neurons increases, the higher the information processing a
neural network can carry out. Therefore, it is necessary to inte-
grate a neuron by implementing it as hardware.

A neural network using stochastic logic, which has been pro-
posed by Kondo et al. [1], is suitable for this integration. The
stochastic neurochips, including dozens of neurons, have been
designed and fabricated using CMOS technology [2]–[4]. In sto-
chastic logic, one can convert an analog value to occurrence
probability of a pulse and carry out operations using the proba-
bility. A comparator is used for the conversion. The pulse se-
quence is generated when a value is more than a random
number (Fig. 1(a)). The relationship between the probability
of the pulse sequence generated and is shown in Fig. 1(b).
The pulse sequence has noise, which originates in the coding
(coding noise). In some kinds of problems, the performance of
the stochastic neural network is improved by the coding noise as
compared to the deterministic neural network [1]. Encoding is
performed by accumulating the pulse sequence for a certain pe-
riod of time. This logic has merit in that complex operations are
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Fig. 1. (a) Coding and encoding circuits. Comparator outputs a pulse ifX >

R. (b) Relationships between the probability of the pulse sequence generated
and X .

realizable with basic digital logic gates. For example, the multi-
plication of the pulse sequences is carried out with a single AND
gate. Nemoto et al. have reported that the number of transistors
for a neuron in stochastic logic is 1/5 of that in deterministic
logic [2]. We require synapses in the full-connection neural
network including neurons. The synaptic circuit in stochastic
logic requires 1300 Josephson junctions (JJs) at a rough esti-
mate. This number is about half of that in deterministic logic.
However, it has demerit as operation becomes slow, because it
is necessary to increase accumulation time for more precise op-
eration.

Hence, we propose a stochastic neural network using
single-flux-quantum (SFQ) logic circuits [5], [6]. SFQ logic
circuits use a single flux quantum as an information carrier
and are attractive because of their high speed operation and
low power dissipation. Therefore, SFQ logic circuits are the
candidates for the main data processor in the next generation.
We expect to cancel the demerit of slow operation in stochastic
logic with SFQ logic circuits, and SFQ logic circuits have good
characteristics for stochastic logic because both are pulse logic.

In this paper, we report the design of necessary circuits in
order to compose a stochastic neuron using SFQ logic circuits.
We designed the circuit generating membrane potentials as-
suming the NEC 2.5 standard process.
We investigate the difference between the performance and
consumption area of a multiplier circuit using a comparator and
that using a divider.

The numerical simulation is carried out by JSIM [7] and
SCOPE [8] assuming the NEC 2.5
standard process.

II. STOCHASTIC NEURON

We design a stochastic neuron on the basis of the system that
has already been proposed [1]–[4]. Fig. 2(a) shows the model
of a neuron. The discrete-time dynamics of a neural network
are given by

(1)

(2)
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Fig. 2. (a) A neuron model, (b) sigmoid function, and (c) sign function.

Fig. 3. Multiplication using comparator.

where is the synaptic weight from the th neuron to the th
neuron, is the neuron output, is the membrane potential,

is an activation function, and is the number of neurons.
The activation function is a sigmoid function, or a sign function,
etc. (Fig. 2(b) and (c)). In order to realize a neuron which carries
out such operations, we require the following circuits: one car-
rying out the multiplying of the output of a neuron by a synaptic
weight value, one accumulating a pulse to generate membrane
potential, and one generating the output of a neuron.

A. Multiplier

We require a circuit for multiplying the synaptic weight
on the output of a neuron. Two methods are able to
realize this. One method is a multiplier using comparators; the
other is one using dividers.

1) Multiplier Using Comparator: Fig. 3 shows multiplica-
tion using a comparator. The comparator outputs a pulse when

is larger than a random number. In other words, the com-
parator converts to a pulse sequence generated in a prob-
ability proportional to the value. Multiplication is realized by
implementing the logical AND operation between the pulse se-
quence and the output from another neuron. There-
fore, the occurrence probability of the output
is given as follows:

(3)

where is the maximum value of the synaptic weight
and the random number. This circuit requires a comparator and
a random number generator.

a) Random number generator: We use M-code as a random
number even though it is only pseudo random number be-
cause it can be composed of simple circuits. Some M-code
generators were designed and fabricated using SFQ logic
circuits [9], [10]. We design a 4-bit M-code generator
using XOR, Inverter, and 2 DFFs (D Flip-Flops). This
circuit has the feature that no start signal is required and
the operation margin is securable (Fig. 4). According to

Fig. 4. 4-bit M-code generator.

Fig. 5. (a) 1-bit comparator and (b) 4in-2out comparator.

Fig. 6. 4-bit pipelined comparator.

the simulations by JSIM, bias margins are ranged from
32.5% to 35.6% at 10.0 GHz and the maximum oper-

ating speed is 18.9 GHz.
b) Comparator: A multi-bit pipelined comparator can be as-

sembled using 1-bit comparators (Fig. 5(a)) and 4in-2out
comparators (Fig. 5(b)). When a 1-bit comparator com-
pares with , it performs the following operations:
• If is more than , the output pulse is generated.
• If is equal to , the output pulse is generated.
• If is less than , no output pulse is generated.

When is compared with , each
bit is compared using a 1-bit comparator. Then, by using
the outputs of two 1-bit comparators, a 4in-2out com-
parator carries out the following operations:
• If is more than , the output pulse is generated.
• If is equal to , the output pulse is generated.
• If is less than , no output pulse is generated.

Fig. 6 shows a 4-bit pipelined comparator. The correct
operation is verified by simulation, JSIM. The simulated
upper and lower margins are 25.0% and 22.2% at 5.0
GHz, respectively.

2) Multiplier Using Divider: The multiplier (Fig. 7) is also
realizable by using dividing circuits including T Flip-Flops and
NDROs (Non Destructive Read Out) [6]. The input
is divided into 1/2, 1/4, by TFFs. We can change the
ratio of the input and the output by
shifting the internal states of NDROs. When this circuit is used
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Fig. 7. Multiplication using divider.

Fig. 8. and denote the multiplier using the comparator and that using the
divider cases, respectively. (a) Comparison of the estimated number of JJs of
both methods. In case of multiplier using comparator, CLK line is not included.
(b) Comparison of the average RMS errors of the outputs of both methods.

as -bit multiplier, the occurrence probability of the output
is obtained as follows:

(4)

where is th bit of . This circuit is a sequential circuit,
and has internal states.

3) Comparison of Two Circuits: The comparison of esti-
mated number of JJs is shown in Fig. 8(a). The consumption
area of a circuit is proportional to the number of JJs. Thus
the multiplier using dividers has an advantage for integration
over that using comparators. However, the multiplier using
dividers is an asynchronous circuit making it difficult to adjust
the timing, particularly when the bit length increases. On the
other hand, the multiplier using comparators has a constant
throughput regardless of the bit length since it is a pipelined
circuit.

Fig. 8(b) shows the comparison of average root-mean-square
(RMS) errors of the outputs of both methods.

Fig. 9. Adder cell. (a) Circuit diagram, (b) Moore diagram, and (c) symbol.

The average RMS error is obtained by numerical simulation on
the three following conditions. First, the error is defined as the
difference between deterministic outputs. Second, each trial is
carried out 10 000 times in each accumulation time . Third,

and are given at random in each trial. The output
is more precise with increasing . Infinite

means deterministic. Therefore, the average RMS error is
almost inversely proportional to in both cases. The mul-
tiplier using the comparator has two coding noises, one from
the input , and one from the pulse sequence .
The two coding noises influence the output . In
contrast, the multiplier using the divider has coding noise only
in . Since the coding noise influences the output a little,
the average RMS error of the multiplier using the divider is less
than that using the comparator. 8 bits in general is required as
operation accuracy for dealing with practical applications. In the
case of the multiplier using the comparator, is few ten thou-
sands; in case of that using the divider, is approximately half.
Therefore, the performance of a neural network using dividers
may improve with respect to the operation speed because the
required is reduced for higher precision operation.

B. Up/Down Counter

The membrane potential is generated by accumulation of
the pulse sequence from other neurons. An
up/down counter, which satisfies this function, is designed using
an adder cell [11], [12]. An adder cell is a serial input adder
(Fig. 9) achieved by improving an ICF gate, which is the fun-
damental device of the Phase-Mode logic proposed by Naka-
jima et al. [5]. The up/down counter is easily assembled by con-
necting adder cells serially (Fig. 10(a)). This circuit has two in-
puts (Up, Down), several outputs , and a reset
input (Re).

Incrementing the value of the up/down counter occurs by
sending a signal to the Up input. The signal to the Up input
propagates only to the input of the adder cell which is the least
significant bit (LSB) of the up/down counter. Thus, the value of
the up/down counter is set to 1.

On the other hand, decrementing the internal state of the
up/down counter occurs by sending a signal to the Down
input. The signal to the Down input propagates to the inputs of
every adder cell. In other words, the up/down counter receives
“111 1” input. “111 1” is expressed as 1 by two’s com-
plement. Hence, the value of up/down counter is set to 1.

The value of the up/down counter can be read out by sending
a signal to the Re of every adder cell. The outputs of the multi-
plier are brought to Up or Down according to
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Fig. 10. (a) Block diagram of up/down counter. (b) Simulation result of the
4-bit up/down counter. When Re is applied, the output is +5, +1,�2, and �5
sequentially form a left, respectively.

Fig. 11. Activation function circuit. (a) Block diagram. (b) Simulation result.
The bit length of the membrane potential and that of random number are 9
bits and 7 bits, respectively. N is 50 and the trial is repeated 10 times. The
membrane potential and the output x are normalized by 2 and N ,
respectively.

the sign of . The membrane potential is gener-
ated by the signal to the input Re after the up/down counter has
counted the pulses for .

We confirm the correct operation of a 4-bit up/down counter
by JSIM simulation (Fig. 10(b)). We also designed the 4-bit
up/down counter consisting of 337 JJs by the NEC 2.5

standard process. The designed total bias cur-
rent is 40.01 mA.

C. Activation Function

The activation function circuit is required to generate the
outputs corresponding to the membrane potential. This circuit
is assembled by applying the above-mentioned comparator

(Fig. 11(a)). The bit length of the comparator must correspond
to the maximum value of the membrane potential. Here, the bit
length of a random number is shorter than that of the membrane
potential and sets up the threshold value. Fig. 11(b) shows the
activation function, which is a monotonic increasing function.
It is obtained when the bit length of the membrane potential
and the random number are 9 bits and 7 bits, respectively. The
noise decreases, and the stochastic output is close to
the deterministic with increasing .

III. CONCLUSION

We propose the stochastic neuron using SFQ logic circuits
and design the main components required for that. We simulate
some circuits by JSIM and confirm their correct operation. We
compare the comparator multiplier with the divider one. The
divider multiplier has an advantage with respect to integration,
and reduces the accumulation time required for higher
precision operations. We designed the 4-bit up/down counter
assuming the NEC 2.5 standard
process. The activation function circuit can be assembled by
using a comparator.
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