

Thin Film Tape Media with Multilayers by Sputtering

doi: 10.1109/20.281116

Thin Film Tape Media with Multilayers by Sputtering

Junji Numazawa, Kiyoshi Kuga, **Hideaki** Yoshimoto

Science and Technical Research Labs., NHK(Japan Broadcasting Corp.)

Masahiko Naoe

Department of Physical Electronics Tokyo Institute **of Technology**

Abstract- **Magnetic tape with Co-Cr/Ni-Fe multilayer has been prepared by using facing targets sputtering system and** 10 μ m thick polyimide sheet as a substrate. Read/write **characteristics of** this **tape have been investigated using conventional VTR equipped with highly sensitive single-pole head. It has been proven that even tape with total thickness** of magnetic layers of 0.33μ m should be highly efficient in **recording and reproducing performance.**

I. INTRODUCTION

The perpendicular magnetic recording system using disk and tape media with Co-Cr/Ni-Fe bilayered **film** and singlepole head is ideal for high density recording because the perpendicular component of the head field has a "sharp" distribution pattem in the direction of **both** the head running and the track width. This has been verified through **high** density recording and reproducing operations using the drive systems for both flexible and rigid disks. In those operations, the thickness more than 0.5μ m of Ni-Fe soft magnetic layer was required to adequately perform the high density recording/reproducing for the bilayered media^[1]. However, the total thickness of the magnetic layers $\delta_{\rm M}$ in the conventional media were too thick and **the** tapes were too inflexible to be used **as** tapes for VTRs. In order to resolve these problems, δ_M has to be reduced to the value below 0.4 μ m. A 0.20 μ m thick Ni-Fe layer and a 0.13 μ m thick Co-Cr layer were deposited on a 10μ m thick polyimide long sheet using a roll coating machine of **a** facing targets sputtering(FTS) system. The recording and reproducing characteristics of the bilayered *tape* were investigated using a VTR equipped with a highly sensitive single-pole head incorporated with the transverse return path core(TRC) in its rotary head drum.

II. **EXPERIMENTS**

Figure 1 shows the arrangement of targets and substrate in the facing targets sputtering (FTS) system as the roll coating machine for preparing **the** magnetic tape with *Co-*Cr/Ni-Fe multilayered film $[2]$. The total thickness of magnetic layers δ_M in the *Co-Ni-Fe multilayered* film is preferably smaller than 0.4μ m holders as cathodes in the deposition chamber and had five kinds of composition: $Ni_{80}Fe_{20}$, $Co_{67}Cr_{33}$, $Co_{90}Cr_{21}$, so that it should retain sufficient mechanical flexibility.

 $Co_{79}Cr_{17.7}Ta_{3.3}$ and $Co_{76.9}Cr_{16.7}Ta_{6.4}$. The 10μ m thick and 100mm wide polyimide (Upilex 10SX) long sheet was used as the substrate. The specifications of this sheet were as follow; tensile strength, 623 kg/mm²; hygroscopic expansion coefficient, $1.5x10^{-5}$ cm/cm/%RH; thermal expansion coefficient, $0 \sim 0.4 \times 10^{-5}$ cm/cm/°C in the range of 50-100°C; surface roughness, R_{max} =10.3nm, R_{n} =2.0nm on the sputterdeposited side and $R_{\text{max}}=13.1 \text{nm}$, $R_{\text{a}}=2.1 \text{nm}$ on the back side. The tension on the substrate sheet during the run was controlled at 1.6kg/mm² by adjusting the difference of revolution speeds of the motors between supply and take-up reels. The roll coating machine can drive substrate sheet in either of forward or reverse sense. The sheet was outgassed on the can roll at the temperature of 130 "c. [Table](#page-2-0) **1** lists the deposition conditions and the saturation magnetization M, of each layer in the multilayered films for the magnetic tape. The layer thickness **6** was controlled **through** the adjustment of sheet supply speed. The crystallinity was examined by X-ray diffractmetry(XRD). The magnetic characteristics such as M_r and the coercivity H_{el} were determined on the M-H loops measured perpendicularly to the **film** plane by vibrating sample magnetometer(VSM). The initial permeability μ_i of the multilayered films was estimated on the basis of the gradient in the in-plane initial magnetization curve. The recording and reproducing characteristics of the magnetic tape with substrale sheet which was slit into the 1/2"-wide strip rolled onto cassettes were investigated by using a conventional VTR equipped with a single-pole type of head incorporated the transverse return path core(TRC) which is called the transverse return flux(TRF) head. In the VTR, the **drum** rotation speed was 1,800 rpm and the tape/head relative speed was 7.1 m/sec.

111. DESIGN PROCEDURE

A. Relationship between Magnetic Characteristics of Backlayer and Readback Signal and Noise

At first, it is necessary for reduction of δ_M to reduce the

0018-9464/93\$03.00 $@$ 1993 IEEE

Ni-Fe layer thickness $\delta_{\text{Ni-Fe}}$, because this accounts for the great percentage of $\delta_{\mathbf{M}}$ in the conventional flexible disks. It has been reported that there are close relationships between the magnetic characteristics of Ni-Fe backlayer and the readback sensitivity and noise level, since this layer provides a path for recording and readback magnetic flux[3]. The recording and reproducing characteristics have been investigated for the flexible disk with Co-Cr/Ni-Fe bilayered film in which the uniaxial magnetic anisotropy of the Ni-Fe layer was in-plane. In this investigation, a singlepole type of head and the flexible disk with the bilayered film were used, driving the disk at a relative speed of 5.4m/sec. Figure 2 shows the relationship between (a)the readback signal and (b)the noise envelope. This figure indicates also that two signal peaks and bottoms occur in the readback signal envelope at **6** MHz during one revolution of disk. While there are two peaks in **AC** erase noise at about 0.5 **MHz.** Such cyclic manifestations of signal and noise seem to be synchronized with disk revolutions and may result from the magnetic characteristics of the recording layer. Then, the full one revolution of disk was divided into eight equal angles and the M-H loop in

Fig.1 A schematic diagram of the FTS system.

the head running direction was measured at each disk angle position using a **VSM. As** shown in Fig.2, the initial permeability μ_i at disk angle positions 1 and 5 was found to be below 200 which coincides with the easy magnetization axis parallel to the head scanning direction, while the initial permeability at disk angle positions 3 and 7 was found to be above 500 which coincides with the hard magnetization axis parallel to the head scanning direction. This may explain why the readback signal at **6** MHz dropped at the positions 1 and *5,* so that the decrease of μ_i and output may be attributed to the coincidence in the direction between the easy magnetization axis and the head scanning at these positions. Likewise, the abovementioned sharp increase in **AC** erase noise at these positions may **be** attributed to the Barkhausen noise because

of the direction of the easy magnetization axis of the Ni-Fe layer coincided with that of magnetic field in head. The Barkhausen noise is different from the Co-Cr layer noise, but will emerge **as** temporal fluctuation in magnetization during readback. Therefore, in order to attain large output and low noise, it is necessary to design the Co-Cr/Ni-Fe bilayered film **so** that the tape running direction should coincide with that of the hard magnetization axis of the Ni-Fe layer. μ_i of the Ni-Fe layer would drop with the decrease of $\delta_{\text{Ni-Fe}}$ if it were deposited together with a Co-Cr layer for bilayer construction.

Figure 3 shows the changes in μ , of the Ni-Fe layer with the saturation magnetization M, of Co-Cr layer in **the** bilayered film. As seen clearly in this figure, μ_i would eventually reduce to approximately one quarter of the intrinsic value as M, increases to 600 (emu/cc). In order to prevent this decrease of μ_i , it is effective to insert the $Co_{67}Cr_{33}$ thin layer as M_s of 51 (emu/cc) between the $Co_{79}Cr_{21}$ and $Ni_{80}Fe_{20}$ layers. Figure 4 shows how μ_i would vary in relation to the changes in the thickness of a Co₆₇Cr₃₃ interlayer δ_1 . As implied herein, μ_i of the Ni-Fe layer would be nearly the same **as** that of the single layer Ni-Fe film for δ_1 above 30nm. Taking all these factors into account, a prototype of **the** magnetic tape with the bilayered film has been designed so that (1) δ _r may be **3Onm** and **(2)** the uniaxial magnetic anisotropy of Ni-Fe layer may be in-plane and, in addition, the direction of hard magnetization axis may coincide with the direction **of** the tape running.

Fig.3 Relationship between saturation magnetization M, of Co-Cr layer and **initial** permeability μ_i of Ni-Fe layer.

Fig.4 Dependence of initial permeability μ_i on Co₆₇Cr₃₃ **interlayer thickness 6,.**

B. Relationship between Backlayer Thickness and Readback Sensitivity

In the conventional flexible disk media with Co-Cr/Ni-Fe bilayered films, $\delta_{\text{Ni-Fe}}$ is much larger than $\delta_{\text{Co-Gr}}$. To remodel the version from disk to tape, $\delta_{\mathcal{M}} = \delta_{\mathcal{C}_0 - \mathcal{C}_1} + \delta_{\mathcal{N}_1 + \mathcal{P}_0}$ must be reduced. However, the reduction of δ_{N+Fe} below 0.5μ m would increase the magnetic resistance of the Ni-Fe layer and decrease the readback sensitivity when the tape is running on the conventional single-pole head. One of the remedies for these shortcomings is to increase μ_i , as mentioned in the previous section, or to reduce the magnetic path length. The magnetic path can be shortened by modifying the construction of the single-pole head. Figure *5* shows the primary structure of **the** transverse return flux(TRF) head, one of the single-pole **heads** suitable for shortening the magnetic path[4]. In this head, the **flux** return path core is aligned in the direction of the track width of a W-shaped single-pole head in an effort to shorten the magnetic path in Ni-Fe layer. Using a threedimensional finite element method, the reproduction of **the** TRF head has been simulated on the computer to see how much $\delta_{\text{Ni-Fe}}$ could be allowed to be reduced. The algorithmic parameters used in **this** simulation are listed in Table **2.** Figure *6* shows the dependence of the normalized values of the calculation readback output V_R on the pole-tocore distance $d_{P,C}$, which is defined as the distance between the main pole in TRF head and the return path core in track width direction. Here, "Without TRC" in the figure denotes a **W-shaped** single-pole head. In **this** figure,

reference output 0 dB is defined the results of simulation on the readback output generated in the disk with bilayered film at $\delta_{\text{Ni-Fe}}$ of 0.5μ m using a W-shaped head. The simulation clarified that the value of V_R equivalent to the above-mentioned reference output 0 dB can be attained using TRF head with $d_{P,C}$ below 35μ m for the tape medium with the bilayered film at $\delta_{\text{Ni-Fe}}$ of 0.1 μ m. Consequently, it was concluded from this simulation that $\delta_{\text{Ni-Fe}}$ could be 0.2μ m.

-
- Slider (Ceramics, Vickers Hardness=1600) *C* Side Core(Ferrite)
- @ Silder(Ceramics, vickers hardness-1000)
@ Side Core(Ferrite)
@ Transverse Return-path Core(TRC)(Ferrite)
- *0* Coil

Fig.5 Perspective view of transverse return flux(TRF) head.

Table 2 Values of parameters used in calculation.

Head	Main Pole	thickness tw	(μm)	0.2
		length l _M	(μm)	10
	initial permeability μ .			1000
	Yoke		μ_i	1000
	Ferrite		$\mu_{\,i}$	1000
Tape		Co-Cr layer thickness δ co-cr	$(\mu$ m)	0.15
		μ_i		1
		Ni-Fe layer thickness δ _{Ni-Fe}	(μm)	$0.1 - 0.5$
		μ_i		1000
Interface	Head-media spacing SH-M		(μm)	0.02

w. **RESULTS AND DISCUSSION**

A. Relationship between Crystallinity and Magnetism of Co-Cr Layer

In order to obtain the adequate recording/readback

characteristics at short wavelength and small domain size, it is necessary to minimize the dispersion in the perpendicular coercivity H_{c1} of Co-Cr layer. Figure 7 shows how to determine the H_{el} dispersion ΔH_{el} from the **M-H** hysteresis loop of Co-Cr layer[5]. Using the values of H_{c1} , ΔH_{c1} and the magnetic anisotropy field H_k determined thereby, the dispersion amount σ_{hk} was evaluated according to the relation equation as follow $\sigma_{hk} = \Delta H_{el}$ *'H_P*(1.35 *'H_e*). For the minimization of σ_{hk} it is recommended to attain the perfect c-axis orientation of Co-Cr crystallites normal to the layer plane as possible.

[Table 3](#page-5-0) **lists** the sputtering conditions and the saturation magnetization M, of $Co₆₇Cr₃₃$ underlayer for assisting c-axis orientation for Co-Cr-(Ta) recording layer. Figure 8 shows the dependence of the ratio σ_{hh}/H_k on $I_{(002)}$. σ_{hh}/H_k became below 0.15 for $I_{(002)}$ above 5 kCPS. On the base of this result, the $Co_{79}Cr_{21}/Co_{67}Cr_{33}/Ni_{80}Fe_{20}$ triple-layered tape media have been prepared.

B. RecordinglReadback Characteristics of Bilayered Tape

Figure 9 shows the comparison in the cross-sectional structure between (a) the conventional bilayered flexible disk medium and (b) the $Co_{79}Cr_{21}/Co_{67}Cr_{32}/Ni_{80}Fe_{20}$ triplelayered tape prepared in **this** study. **The** magnetic layer thickness $\delta_{\mathbf{M}}$ ($\delta_{\mathbf{C}o\mathbf{G}} + \delta_{\mathbf{N}i\mathbf{F}o}$) in the tape medium was

Fig.7 Definition of ΔH_c represented by distribution width of **Substrate particle's** critical **field** *I&*

Fig.8 Dependencies of ratio $\sigma_{hh}H_k$ **of standard deviation of** H_k σ_{hk} to H_k on $I_{(002)}$ of Co-Cr-Ta recording layer.

 0.33μ m, almost half of that in the disk. Table 4 lists the specifications of Co-Cr/Ni-Fe bilayered tape and the parameters of the TRF head used for a **series** of recording/readback tests. The pole-to-core distance in the TRF head was 28μ m. The tests were performed using a 1/2" industrial VTR driven at the relative **speed** of 7.1

Table 3 Deposition **conditions of CeCr layer**

Layer name		Underlayer	Recording layer
Target composition	$(at, \%)$	Co _s Co ₁	$Co_{79}Cr_{21}$, $Co_{76}Cr_{24}$ $Co_{20}Cr_{122}Ta_{33}$ Co _{76.9} Cr _{16.7} Ta _{6.4}
Argon pressure PAr	(mTorr)	1.0	1.0
Input power Pr	(kW)	0.5	1.0
Substrate temperature T.	(°C)	130	130
Laver thickness δ c.c.	(nm)	$0 - 30$	100
Bias voltage Va	∞	0	150
Saturation magnetization Ms (emu/cc)		51	$250 - 514$

Fig.9 Structure of (a)disk and (b)tape media with Co-Cr/Ni-Fe bilayer.

m/sec.[6] Figure 10 shows the dependencies of the reproduced output $V_{\text{Rep.}}$ on the linear bit density $D_{\text{LB.}}$ and the magneto-motive force $F_{M,M}$. The normalized value of the calculated V_{Rep.} of a prototype of Co-Cr/Ni-Fe bilayered tape was $100[nV_{O-P}](\mu m \cdot T \cdot m/s)$ at lower $D_{L,B}$. This value was at the same level as that of the flexible disk **tested** using the same head. Furthermore there is no sharp increase in AC erase noise because of the Barkhausen noise.

V. **CONCLUSION**

Tape media with 0.33μ m thick $Co_{79}Cr_{21}/Ni_{80}Fe_{20}$ bilayered films have **been** prepared by using the facing targets sputtering(FTS) system and the 10μ m thick [Table](#page-5-0) 4 Parameters of TRF head **and** Co-Cr/Ni-Fe bilayered

Rig.10 Dependencies of reproducing output V_{Req}. on linear bit density D_{LB} Magnetism and Magnetic Materials, 54-57, pp1588-1590, 1986. and magneto-motive-force F_{MM}

polyimide sheet **as** a substrate. The obtained results are as follow ;

1) me easy magnetization axis in the Ni-Fe backlayer must **be** normal to the head scanning direction to suppress the noise and increase of the readback sensitivity.

3) The normalized dispersion value σ_{h}/H_{k} of H_{k} and the perpendicular coercivity H_{c1} of the Co-Cr recording layer were 0.15 and 1400 *Oe,* respectively.

4) The recording/readback characteristics of a prototype of **1/2"** wide tape media were tested using the VTR system equipped with the TRF head. The normalized value of the reproducing output V_{Rep} of the tape media were 100 nV_{O-P} $/(\mu \, \text{m} \cdot \text{T} \cdot \text{m/s}).$

Consequently, it has been confirmed that the very flexible tape media having a Ni-Fe layer as thin as 0.2μ m took sufficient value of V_{Rep} using a novel type of TRF head developed in this study.

ACKNOWLEDGEMENTS

The authors would like to express **thanks** to Mr. Hideo Oshima, director of the Recording & Mechanical Engineering Research Division, Science **and** Technical Research Laboratories of NHK for their helpful advice in our current studies. *Our* heartfelt thanks also go to Mr. Yuji Fujita of Sankyo Seiki Mfg. Co., **Ltd.** for **his** cooperation in preparing suitable single pole heads.

REFERENCES

- [l] S.Yamamoto,H.Muraoka and Y.Nakamura,"High **Areal** Bit Density Perpendicular Magnetic Recording on Hard *Disk,"IEEE Trans.* **on** *Magn.* **Vo1.27.No.6,pp5292-5294,1991.**
- [2] K.Kuga, H.Yoshimoto, Y.Yoneda and Numazawa, "Preparation of Co-Cr/Ni-Fe films for magnetic recording tape, "Journal of Magnetic **Society** *of Japan,* Vo1.15 Supplement, No.S2, pp507-512, 1991.
- [3] J.Numazawa, Y.Yoneda and K.Yokoyama, "Underlayer induced **noise** and carrier to noise ratio in a double-layer medium,"Journal of
- [4] J.Numazawa, Y.Yoneda, F.Aruga and T.Horiuchi, "High Sensitivity Single-Pole Head with Transverse Return-Path core of **flux,** *"IEEE Trans.* **on** *Magn.* Vo1.23, No.5, pp2476-2478. 1987.
- [5] LTagawa, Y.Nakamura, "Computer analysis of perpendicular magnetic recording medium for ultra-high density recording, "IECE *TechRep.,* Vol.90, No.30, MR90-13, pp23-30, 1990.
- [6] H.Yoshimoto, K.Kuga and J.Numazawa, "Recording characteristics of Co-Cr/Ni-Fe double layered tape, "Digest 15th Annual Conf. *Magnetics Japan,* p.270, 1991.