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Profiles in Photonic Crystal Fibers
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Abstract—We propose using the least square method for
approximating the electrical field distribution of the fundamental
mode in photonic crystal fibers (PCFs) by using a Gaussian and a
hyperbolic-secant (sech) function. It is shown that the mode field
can be fitted closely to a Gaussian for large � values (i.e., for
strongly guiding structures). For small � values (for weakly
guiding structures), a sech function fits the mode field well because
the field gradually extends into the cladding region, implying that
the analogy of PCFs with step index fibers is not applicable in this
regime.

Index Terms—Least square approximation, mode field diameter
(MFD), photonic crystal fiber (PCF), spot size.

I. INTRODUCTION

PHOTONIC crystal fibers (PCFs), which have a silica core
and air holes in their cladding, guide light by total internal

reflection caused by the effective index difference between the
core and the cladding [1]. In such PCFs, the effective refrac-
tive index of the cladding can be varied by changing the
hole pitch and the hole diameter . This offers a number of
unique properties that cannot be achieved in standard step-index
fibers (SIFs). For example, the effective value (normalized
frequency) is saturated against , where is the wave-
length, resulting in single-mode operation over an ultrawide
bandwidth [2]. A small change in and also enables flex-
ible control of the waveguide dispersion and the effective mode
area, which yields attractive features such as ultraflattened dis-
persion [3], zero dispersion at visible wavelengths [4], and low
or high nonlinearity [5], [6].

Afundamentalparameter thatcharacterizesthemodefieldpro-
file of fibers is the mode field diameter (MFD). The MFD indi-
cates how widely the mode field is distributed in the radial direc-
tion against the core diameter, which is an important factor in es-
timating the splice loss, the source-to-fiber coupling efficiency,
and reflection. For a simple evaluation of the MFD, the mode
field profile is approximated by a specific function. In SIFs, it is
well known that the field distribution of the fundamental mode
is approximated by a Gaussian with high accuracy [7]. In PCFs,
however, it is reported that an analytical expression based on the
analogy with SIFs may not always be valid [8]–[11].

In this letter, we propose a simple method for approximating
the electrical field distribution of the HE mode in PCFs that
uses Gaussian and hyperbolic-secant (sech) functions. The least
square approximation method was used to obtain the analytic ex-
pressions. In PCFs with a large air-filling fraction in the cladding,
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Fig. 1. Field distribution of the fundamental mode of PCF with
(a) d = 0:46 �m (d=� = 0:2), (b) 0:92 �m (d=� = 0:4),
(c) 1:38 �m (d=� = 0:6), and (d) 1:84 �m (d=� = 0:8). The inset
shows the air hole structure of the PCF and the mode field distribution when
d=� = 0:4.

the mode field is still found to be a Gaussian. However, in PCFs
with a small air-filling fraction, such as those used for achieving
ultraflattened dispersion [3] and large mode area [5], the tail of
the mode field extends well into the cladding. In this regime, the
field distribution is much closer to a sech function, which decays
more slowly in the tail than a Gaussian.

II. ANALYSIS

We used the semivector beam propagation method to
compute the field profile of the HE mode of PCF [12].
Fig. 1 shows the mode field profile for the wavelength

m, the hole pitch m, and the hole
diameters [Fig. 1(a)] m , [Fig. 1(b)]

m , [Fig. 1(c)] m , and
[Fig. 1(d)] m . It should be noted that, in
this figure, the field is strongly confined in the core when
is large, whereas, for a small , the tail of the confined field
extends further into the cladding and decays slowly. The inset
of Fig. 1 shows the air-hole geometry of the PCF and the field
distribution when , in which the field extends into
the cladding avoiding the air holes. In this regime, the mode
field is expected to be closer to a sech function than a Gaussian.

Here, the least square approximation is used to fit the actual
PCF mode field to Gaussian and sech functions, and analyze
which function provides better fitting of the mode field distri-
bution for different values. Let us assume that a PCF mode
field is approximated by a Gaussian

(1)
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where so that the optical power is normalized
to one. The least square approximation of by
is obtained when the least square error

(2)

is minimized with respect to . From the condition ,
we find the following:

(3)
in which the parameter minimizes . Since (3) contains
on both sides, we solve this equation iteratively starting from a
proper initial value . Note that the thus obtained cor-
responds to the spot size (MFD) of the mode field . By
substituting into (1), we finally obtain the Gaussian approxi-
mation .

Approximation by a sech function can be similarly formu-
lated. When is fitted to a sech function

(4)

by the least square approximation, where , the least
square error involved with the approximation

(5)

must be minimized with respect to . The value of that mini-
mizes is obtained as a solution of (6), shown at bottom of
page. As with (3), (6) is solved iteratively.

III. NUMERICAL RESULTS

We carried out a least square approximation for mode field
distributions of PCFs with and , shown in
Fig. 1(d) and (b), respectively. In this case, the mode field of
PCF with is approximated by a Gaussian
by using (3). The result is shown by thick and thin solid curves
in Fig. 2, corresponding to and , respectively.

Fig. 2. Comparison of the actual PCF field distribution (thick solid curve) with
the fitted Gaussian (thin solid curve) and sech (dotted curve) profile for d=� =

0:8. Linear (above) and log (below) scales. The mode is plotted along (a) x and
(b) y axis.

In this figure, we plot the mode field on linear and log scales
along [Fig. 2(a)] the axis and [Fig. 2(b)] the axis

of the inset of Fig. 1, respectively. The grid lines
plotted along the horizontal axis in Fig. 2(a) and (b) denote the
location of the air hole centers on the and axes, respectively.
These results show that the mode field is confined strongly in
the core and, hence, the Gaussian approximation is accurate.
Indeed, fitting the mode field to the sech function ,
shown as dotted curves, does not describe the mode profile
correctly.

Fig. 3 shows the result when . We note in this
figure that the tail of the mode field (thick solid curves)
distributed in the cladding fits less closely to a Gaussian pro-
file (thin solid curves). The mode field is then approx-
imated by a sech profile by using (6). The result is
shown as dotted curves in Fig. 3, in which a tail of the mode
field is now found to fit well with a sech function. It should be
noted that, because of the mode field dips, which may be called
“modulation,” caused by the presence of the air holes, only the
envelope of the mode field is fitted by a sech function. This ap-
proximation is valid for small values.

Fig. 4 shows the mode field profile when the wavelength is
1.0 m, for [Fig. 4(a)] and [Fig. 4(b)]. Fig. 4(a)
and (b) fit well to a Gaussian and sech function, respectively.
By comparing these results with the results for m
(namely, comparing Fig. 2(a) and Fig. 4(a) for , and
Fig. 3(a) and Fig. 4(b) for ), we note that the same
approximation function can be applied for both wavelengths
( and 1.0 m) although the actual MFD is different.
That is, the field is concentrated more in the silica with less field
intensity entering the air holes when m.

(6)
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Fig. 3. Comparison of the actual PCF field distribution (thick solid curve) with
the fitted Gaussian (thin solid curve) and sech (dotted curve) profile for d=� =
0:4. Linear (above) and log (below) scales. The mode is plotted along (a) x and
(b) y axis.

Fig. 4. Acutual PCF distribution for � = 1:0 �m when (a) d=� = 0:8
and (b) 0.4 (solid curves), compared with the fitted Gaussian and sech profile,
respectively (dotted curves). The mode is plotted along x axis.

Fig. 5. Least square error in the Gaussian and sech approximations (� =
1:55 �m).

Fig. 5 summarizes the relationship between values and
the least square error occured in Gaussian and sech ap-
proximations, which are evaluated from (2) and (5) when

m. When , a Gaussian profile gives a better
approximation of the mode field, whereas, for ,
sech yields a better approximation. It is interesting to note that
the regime where the mode field is better fitted to a sech func-

tion overlaps with the endlessly single-mode operation regime
[13]. This implies that a mode field in the end-

lessly single-mode regime cannot be described by a Gaussian
function and, hence, the analogy with SIFs is not applicable in
this regime. The large error seen in is due to weak
field confinement, where there are many mode field dips that
are not taken into account in the present approximation.

IV. CONCLUSION

We proposed least square Gaussian and sech approximations
for the fundamental mode field profile in PCF. The mode field
distribution in PCF depends strongly on the the air hole structure
in the cladding. For large values of , i.e., strongly guiding
structures, the mode field is fitted well by a Gaussian. In this
regime, the properties of PCF can be described by analogy with
the equivalent SIF, whose refractive index in the cladding is
given by the effective index of the cladding mode. However, for
small values, i.e., weakly guiding structures, a sech func-
tion describes the mode field more accurately, especially in the
tail of the field. This implies that the analogy with SIF is no
longer valid in this region. The approximation described here
allows us to obtain the overlap integral analytically resulting in
the easy evaluation of the coupling efficiency, splice loss, and
reflection.
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