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Abstract—The role of nonlinearity on quasi-linear pulse trans-
mission in strongly dispersion-managed systems with loss and am-
plification is analyzed. The spectral characteristics of the pulse evo-
lution are strongly dependent on the relative position of the ampli-
fier in the dispersion map. The results agree well with direct nu-
merical simulations and recent experiments.

Index Terms—Dispersion management, optical fiber communi-
cation, optical fiber nonlinearity.

I N RECENT YEARS return-to-zero (RZ) optical pulse trans-
mission in strongly dispersion-managed fibers has become

a crucial technology. By suitably employing strong dispersion
management, researchers have been able to suppress certain
nonlinear effects [1]. In this case, the RZ pulses are often re-
ferred to as quasi-linear RZ or chirped RZ (CRZ) pulses, as
distinguished from solitons where nonlinearity balances disper-
sion. In this letter, we provide an analytical framework, which
is effective in describing quasi-linear transmission in realistic
strongly dispersion-managed systems with loss and amplifica-
tion. The suppression of nonlinear effects is found to be depen-
dent on large values of the map strength[a definition of map
strength for two-step maps is given below (3)]. Indeed future
systems with channel bit rates of 40 Gb/s and beyond may well
depend on large values of map strength [2].

Based on our analysis for large map strengths, we find that the
spectral structure of the pulse evolution depends significantly on
the relative position of the lumped amplifiers within a dispersion
map period. When the amplifiers are located at the discontinuity
point of the dispersion map, the nonlinear phase shift in the fre-
quency is found to preserve the spectral intensity in a manner
similar to that found in the lossless case [3]. On the other hand,
the nonlinearity is responsible for significant spectral reshaping
when the amplifiers are positioned in the middle of the anoma-
lous or normal dispersion segments. Our results compare favor-
ably with direct numerical simulations and recent experimental
observations [4]–[6].

The analysis begins with the nonlinear Schrödinger (NLS)
equation in the presence of dispersion variation, loss, and
lumped amplifcation. We introduce dimensionless variables

, , , and
with characteristic parameters denoted by the subscript,
where and are the retarded time and the propagation
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distance, respectively, and denotes the slowly varying
envelope of the optical field. With typical choices of, ,
and with being the nonlinear coefficient
(which yields ), we have the nondimensional
perturbed NLS

(1)

The functions and describe the dispersion variation
of the fiber and the variation of power due to loss and lumped
amplification, respectively, which are both periodic with pe-
riod , being the nondimensional amplifier distance which
is assumed small . As is standard, is given by

,
, ,

where , , and is the dimensionless
loss coefficient. To model strong dispersion management, we
assume that takes the form
where the constant represents the path-average dispersion
and describes the rapid variation of group-velocity dis-
persion (GVD) with zero average. An appropriate multiscale
expansion of the perturbed NLS equation yields the following
averaged equation [7], referred to as dispersion-managed NLS
(DMNLS) equation (see also [8]). In the frequency domain we
have

(2)

where ,
, and with

an arbitrary constant . The kernel defined as

(3)

represents the structure of the map. In what follows we consider
a symmetric two-step dispersion map as shown in Fig. 1, com-
posed of fiber segments of equal length with positive and neg-
ative constant values of GVD , respectively. The
origin is fixed to be the middle point of an anomalous
GVD segment with (the chirp-free point). It is con-
venient to introduce a parameter
as a measure of the map strength of this profile. Note that the
map strength is usually defined in terms of dimensional quan-
tities [9]. We introduce a parameter to
describe the relative location of the amplifier within one disper-
sion map period. When , the amplifiers are positioned

1041-1135/01$10.00 © 2001 IEEE

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 02,2010 at 01:11:12 EST from IEEE Xplore.  Restrictions apply. 



ABLOWITZ AND HIROOKA: NONLINEAR EFFECTS IN QUASI-LINEAR DISPERSION-MANAGED PULSE TRANSMISSION 1083

Fig. 1. Schematic diagram of two-step dispersion map.

in the middle of the anomalous GVD segment. From Fig. 1, we
see that can be restricted in the range .

We look for the asymptotic behavior of the nonlinear term in
DMNLS equation for large map strength(see also [3] and [10]
where lossless cases are discussed). The kernel in the
symmetric two-step dispersion map is obtained by a straightfor-
ward integration of (3). In a system including loss and lumped
amplification (namely when ), the kernel depends
not only on but also on . In the following, we study four cases
where amplifiers are positioned (i) in the middle of anomalous
GVD segments , (ii) in the middle of normal GVD
segments , (iii) at the boundary between anomalous and
normal GVD segments , and (iv) at the boudary between
normal and anomalous GVD segments .

When (i.e., and ), from (3)
the kernel is found to be

(4)

Assuming that depends only weakly on, an asymp-
totic expansion of the nonlinear term in (2) for yields

(5)

where

(6a)

(6b)

(6c)

and . The constants
, , and are defined as

,
, and , where

, , and
is Euler’s constant. In the limit of , (5)

reduces to the result obtained in [3] ( , ,

and ). From (5), the evolution of the intensity is
described as

(7)

where . Since
is large, the solution of (7) can be approximated by

(8)

for moderate values of.
When , from (3) the kernel is found to be

(9)

In this case, (2) when is written as

(10)
where the constants and are defined as

,
. Ne-

glecting terms, we find from (10) that the spectral in-
tensity is preserved during pulse propagation. Corre-
spondingly, the solution of (2) is

(11a)

(11b)

where is given above. After the linear phase shift
is removed by means of pre- or post-trans-

mission compensation, the averaged dynamics of the
quasi-linear pulse transmission is characterized only by
the nonlinear phase shift as in the
lossless limit [3] ( and ).

In order to test the above analysis, we compared our results
with direct numerical simulations of (1) with , ,
and (namely ). The incident pulse is given by a
Gaussian . With the choice of ps,

W km , and mW (i.e., km and
ps /km), the pulse has the path-average peak power

of 1 mW and the FWHM of 3.7 ps (at minimum). The fiber loss
is 0.2 dB/km and the amplifier period is 45 km.

In Fig. 2, we show comparison of the spectral pro-
file of the quasi-linear pulse for (corre-
sponding to ps /km), after a propagation of

km , as well as the initial profile with
(a) and (b) . The analytical result is obtained by
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Fig. 2. The spectrum of the quasi-linear Gaussian pulse fors = 50. (a)� =
0. (b) � = �1=2. The solid curve is the pulse atz = 20 (i.e., 9000 km)
obtained from the direct simulation, and the dashed curve shows the analytical
result obtained from (5). The dotted curve is the initial profile, which is below
the final profiles in (a) and above in (b).

solving (5) numerically. We see that the nonlinearity yields
spectral compression and broadening when and ,
respectively. Remarkable agreement between the analysis and
numerical results is obtained, which confirms the validity of
our model. Since the spectral evolution is a consequence of the
nonlinearity, considerable spectral reshaping may be observed
by increasing the launch power. Note, however, that the nonlin-
earity is mitigated for large, by and the spectral
reshaping effect is . We also note that when or

, since the spectral reshaping is not associated with phase
modulation, the observed spectral compression/broadening
accompanies pulse broadening/compression, respectively, in
the time domain. This implies the possibility of transform-lim-
ited temporal or spectral compression of laser pulses, once
the nonlinear phase shift, which can be estimated from (5), is
removed. The analysis presented here is consistent with the
recent experimental and numerical observations of spectral
compression of RZ pulses in strongly dispersion-managed lines
[4]–[6].

Fig. 3 shows the evolution of the spectral peak amplitude
for , with , , , and ,

obtained from the direct numerical simulation and the analyt-
ical approximation (8). Since energy is conserved during prop-
agation, the increase and decrease of the peak amplitude when

and demonstrates the spectral compression and
broadening, respectively. On the other hand, with
and the spectrum is still conserved, namely nonlinearity is
responsible only for a phase shift. The deviation of the analytical
approximation from the numerics for largeis a consequence
of the growth of the term in (8). To be valid,

should be small. We also plot a rea-
sonable upper limit for the validity of the asymptotics (namely

).
In conclusion, we have studied the effect of nonlinearity on

quasi-linear pulse transmission. The effective nonlinearity de-
creases for large, as . The periodic perturbation
due to loss and lumped amplification modifies the averaged

Fig. 3. The evolution of the spectral peak amplitudejû(z; ! = 0)j for several
values of� . Solid lines are the results obtained from the direct simulation, and
the dashed lines show the analytical approximation obtained from (8). Dotted
line shows a reasonable upper limit of the validity of (8), i.e., in the direction of
the arrow.

dynamics of quasi-linear transmission depending on the rela-
tive position of the lumped amplifiers. When the amplifiers are
placed at the locations where the dispersion changes, the spec-
tral intensity is found to be preserved in the evolution. Other-
wise the spectral intensity varies as and spectral com-
pression/broadening is obtained. We have quantified the phase
shift and the amount of spectral reshaping due to nonlinearity.
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