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due to Intrachannel Dispersion-Managed

Pulse Interactions
Toshihiko Hirooka, Member, IEEEand Mark J. Ablowitz

Abstract—Transmission impairments due to nonlinear intra-
channel crosstalk in strongly dispersion-managed systems are
investigated. Analytical expressions to estimate timing and am-
plitude jitter due to intrachannel pulse interactions are provided.
Timing jitter is found to be a dominant limiting factor for small
values of map strength, whereas amplitude jitter is responsible
for system performance degradation especially for large map
strength. The analysis agrees with direct numerical simulations of
the full system.

Index Terms—Dispersion management, optical fiber communi-
cation, optical fiber nonlinearity.

I. INTRODUCTION

NONLINEAR intrachannel crosstalk between adjacent
pulses is one of the major limiting factors in disper-

sion-managed return-to-zero (RZ) pulse transmission with
channel bit rate over 40 Gb/s and beyond [1], [2]. Strong
overlap of the neighboring pulses due to large pulsewidth
breathing within a dispersion management period induces
nonlinear mixing and leads to serious transmission penalties
such as timing jitter and amplitude fluctuations. Timing jitter
arises from intrachannel cross-phase modulation (XPM),
where interacting pulses shift the mean frequency of a signal,
resulting in a shift in its temporal position through fiber
dispersion [3]–[5]. On the other hand, intrachannel four-wave
mixing (FWM) generates a new component at the location

in the presence of three pulses centered at
, , and , yielding ghost pulse generation at when the

bit is zero and amplitude fluctuation whencoincides with an
occupied bit slot [6]–[8].

In this letter, we provide analytical formulae to estimate
timing and amplitude jitter induced by intrachannel pulse
interactions in a transmission system with strong periodic
dispersion management (an analytical model for constant and
strong dispersion fibers without periodic dispersion compen-
sation was discussed in [9]). To compute jitter, a statistical
analysis is applied to the formulae for timing shifts and energy
transfer obtained in [5], [8]. The analytical model developed

Manuscript received September 13, 2001; revised January 3, 2002. This work
was supported in part by the National Science Foundation under Grant ECS-
9800152, by the Air Force Office of Scientific Research, and by the Air Force
Materials Command under Grant F49620-00-1-0031. T. Hirooka was supported
by JSPS Research Fellowships for Young Scientists.

The authors are with the Department of Applied Mathematics, University of
Colorado, Boulder, CO 80309-0526 USA (e-mail: hirooka@colorado.edu).

Publisher Item Identifier S 1041-1135(02)03350-5.

here is used to evaluate system performance for a wide range
of dispersion map strengths.

II. THEORY

Propagation of optical pulses in dispersion-managed fibers in
the presence of loss and amplification is described by the per-
turbed nonlinear Schrödinger equation. We introduce dimen-
sionless variables , , ,

with the characteristic parameters denoted by the
subscript , where and are the retarded time and the
propagation distance, respectively, anddenotes the slowly
varying envelope of the optical field. With a particular choice
of , and where is the nonlinear co-
efficient (which yields ), we have

(1)

The functions and describe the dispersion variation
of the fiber and the variation of power due to loss and ampli-
fication, respectively, which are both periodic with period.
As is standard, is given by ,

, where
and is the dimensionless loss coefficient.

The timing shift and energy change of a signal centered at
due to nonlinear intrachannel interactions with adjacent

pulses can be analyzed by writing in (1),
where denotes a pulse centered at with
integers and the bit interval. Substituting this into (1), we find
the equation which describes the evolution ofperturbed by
one of the nonlinear terms

(2)

Among the perturbation terms on the right hand side of (2),
phase-independent terms bring about a timing
shift of due to intrachannel XPM with all the other nonzero
bits [5], whereas the phase-dependent terms

are responsible for the energy change of
as a result of intrachannel FWM among nonzero bits,
and [8]. It is convenient to introduce the following inte-

grals in order to calculate the timing shifts and energy exchange:
the energy and the mean temporal position

.
Explicit formulae to compute the timing shift at the chirp free

points ( ) and the energy change ( ) are obtained by as-
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suming that average disperion is negligible and a signalis
periodic in . When is written as a Gaussian pulse of the
form

(3)
where is constant and , we find the equa-
tions for total amount of timing shift and energy change

[5], [8]

(4)

(5)

(6)

Im

(7)

where represents encoded binary data of the bit at
which takes either one or zero andis the total number of the
interacting pulses.

Because of a random sequence of bits, and
are random variables and thus (4) and (6) allow us to com-
pute the mean value and the variance of and , which
yields timing and amplitude jitter. Timing and amplitude jitter
are given by the variance of the mean temporal position of pulses
and the normalized energy variance, respectively

(8)

Since takes the value one and zero with probability 1/2, from
(4) and (6) we have

(9)

(10)

Fig. 1. (a) Timing jitter� and (b) amplitude jitter� versus transmission
distance fors = 30. The solid lines are results of direct numerical simulation
of (1) with 2 � 1 PRBS bit pattern and the dashed lines are the analytical
results obtained from (9) and (10) with (5) and (7).

where all sums are taken from to and
or 1/16 if for each combination ( ) there are three
or four distinct elements, respectively, among the sequence

and or 1/64 if for
each ( ) there are four or five distinct elements,
respectively, among .

III. N UMERICAL RESULTS

In order to verify the analysis above, we compare the obtained
analytical result with direct numerical simulation of (1). The
parameters used in the calculations are as follows: ,

, , , and . With the choice
of ps, W km and mW (i.e.,

km and ps km), they corre-
spond to the full-width at half-maximum (FWHM)

ps (minimum), the initial peak power 2.31 mW, the bit in-
terval ps (i.e., the bit rate 40 Gb/s), the fiber loss
0.22 dB/km and period 50 km. The dispersion map is given by
a symmetric two-step profle composed of fibers having posi-
tive and negative dispersion ( ) with equal length . The
dimensionless map strength for this profile is defined as

. The number of interacing pulses are estimated as
where [6].

Fig. 1 shows plots of (a) timing jitter and (b) amplitude
jitter versus transmission distance when , corre-
sponding to ps km. As predicted from the model,
both timing and amplitude jitter grow linearly with respect
to distance. As a simple estimate, in order to achieve the
bit error rate 10 , , and must satisfy the condition
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Fig. 2. Normalized growth rate of (a) timing jitter� =z and (b) amplitude
jitter �=z versus map strengths, obtained from (9) and (10) with (5) and (7)
calculated numerically.

Fig. 3. Eye diagrams after 5000-km transmission when (a)s = 10 and (b)
s = 80.

ps and by assuming
that and follow Gaussian statistics [10]. The threshold
required for error free transmission is also plotted in this figure.

The analytical model allows us to study how system perfor-
mance is limited by intrachannel pulse interactions depending
on the value of map strength. Fig. 2 shows the normalized
growth rate of (a) timing and (b) amplitude jitter for various
values of map strength obtained from (9) and (10) with (5) and
(7). Both timing and amplitude jitter takes the largest value
for moderate values of – . For larger , timing jitter
decreases whereas amplitude jitter still remains to be a domi-
nant cause of transmission penalty. This is also seen in Fig. 3,
where we plot eye diagrams when (a) and (b)
after 5000-km transmission. Major degradation is caused by
timing jitter when , whereas for large amplitude
fluctuation of nonzero bits and ghost pulse generation at zero
bits are observed, resulting in a main source of eye closure.

IV. CONCLUSION

We have studied system impact of nonlinear intrachannel
interactions on high-speed dispersion-managed RZ pulse trans-
mission. Explicit formulae to estimate timing and amplitude
jitter caused by intrachannel crosstalk have been presented.
Timing and amplitude jitter grows linearly with respect to
distance. Based on the analytical model, we found that timing
jitter is a major limitation in system performance for smaller
values of map strength, whereas for larger map strength ampli-
tude jitter causes significant transmission impairments. Timing
and amplitude jitter are expected to be suppressed considerably
by employing distributed Raman amplification with the same
value of path-average power [11].
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