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Resonant Intrachannel Pulse Interactions in
Dispersion-Managed Transmission Systems

Mark J. Ablowitz and Toshihiko HirookaMlember, IEEE

Abstract—Nonlinear intrachannel interactions in a transmis- As we show in Sections IIl and IV, periodic dispersion man-
sion system with strong periodic dispersion management are in- aggement with small average dispersion [and further extended
vestigated. An analytical model that describes the fluctuation of in Section VIl toO(1) average dispersion] results in a resonant

the temporal position and amplitude of the main signal and ghost . . ; - . - .
pulse generation at zero bits due to intrachannel crosstalk is de- situation, so that the evolution of timing and amplitude jitter is

veloped. Intrachannel nonlinear effects are found to be a resonant Significantly different from those discussed in [13], [14]. The
process which is induced by periodic forcing due to lumped ampli- strong resonance is introduced by the periodic forcing due to
fication assisted by temporal phase matching. Explicit formulae to  Jumped amplification whose period is synchronized with that of
estimate transmission impairments such as timing and amplitude dispersion management. The resonant condition is determined

jitter are provided based on the analytical model. The role of dis- by the t | it f the int i | hich
tributed amplification to suppress intrachannel nonlinear effects is y the temporal position ot the interacting puises, which cor-

also discussed. A more fundamental analytical framework which ésponds to phase matching in the frequency domain. Indeed,
enables one to evaluate intrachannel crosstalk over a wide regime in the absence of amplification, the intrachannel crosstalk is

of system configurations is also presented. found to be reduced substantially. In [8], [9], a set of ordinary

Index Terms—Dispersion management, optical fioer communi- differential equations (ODEs) were obtained for calculating
cation, optical fiber nonlinearity. frequency and amplitude change due to intrachannel crosstalk

in periodically DM systems, and then numerically integrated

|. INTRODUCTION to compute the timing shift and energy change for a fixed bit

pattern. Here, we show that the change of the mean frequency,
T RANSMISSION of return-to-zero (RZ) pulses in strongltemporal position, and energy of the main signal as well as
dispersion-managed (DM) fibers is a key technology ithe amplitude of the ghost pulse grows linearly with respect to
high bit rate optical communication systems. Strong dispersigistance. The growth rate is obtained as an explicit formula,
management is found to manage fiber nonlinearity and SUpprggsich allows us to estimate timing and amplitude jitter in pseu-
certain nonlinear effects such as self-phase modulation [1], #}random bit sequences without need to solve large systems of
and interchannel crosstalk in wavelength-division-multiplex@pEs. The analytical results compare favorably with the results
(WDM) systems [3]-[5]. Such a system is, hence, commont direct numerical simulation of the full system. Furthermore,
referred to as quasi-linear. In quasi-linear transmission, howe will outline a multiple scale analysis from which the above
ever, residual nonlinearity induces intrachannel crossthfeory follows. The multiple scale analysis allows one, in
between adjacent pulses such as their frequency modulaighciple, to integrate over longer distances. The analytical
and energy exchange [6], [7]. This is because of their stroRgmework based on multiple scales covers a wide variety of
overlap due to large pulsewidth breathing, associated W%es of dispersion management including highly dispersed
a significant variation of local dispersion within a period ogystems [13], [14] and such as those in long-haul dense WDM
dispersion management. Nonlinear intrachannel interacti%tems with suitable predispersion and/or postdispersion
lead to serious transmission penalties such as fluctuation ofggﬁnpensation, where the average dispersion is nonzero in
temporal position and amplitude of the main signals (the qs@eneral because of dispersion slope [5], [15].
[8]-[11] and ghost pulse generation at O bits [12]. SuppressionThe remainder of this paper is organized as follows. The per-
of intrachannel crosstalk is a key issue to overcome in ordery{@ped nonlinear Schrédinger (NLS) equation in DM systems on
increase the channel bit rate to 40 Gb/s or beyond. which the analysis of intrachannel crosstalk is based is summa-
In this paper, we present an analytical model that describgge in Section Il. We provide an analytical model to describe
intrachannel nonlinear effects in quasi-linear transmission wigynlinear intrachannel interactions and obtain explicit formulae
strong dispersion management where the local dispersiondscompute energy transfer of “1s” and ghost pulse growth in
varying periodically and the average dispersion is close 495 (Section Il) and timing shifts (Section 1V) in a fixed bit
zero. Analysis for large and constant dispersion fibers withoHéttem_ Analytical expressions to estimate timing and ampli-
periodic dispersion compensation was discussed in [13], [1§}de jitter are derived in Section V based on the results in Sec-

tions Il and IV. In Section VI, we discuss the suppression of
Manuscript received February 8, 2002; revised March 13, 2002. This waditktrachannel interactions by means of distributed amplification.
was supported in part by the National Science Foun_dation under Grant E@GSmore genera| analytical approach is presented in Section VI,
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Il. PERTURBEDNONLINEAR SCHRODINGEREQUATION Whenuy = 0 at > = 0, nonlinear mixing among;, «,,,, and

Propagation of optical pulses in DM fibers in the presence 8f* can induce the ghost pulse generation at 0. Assuming

loss and amplification is described by the perturbed NLS eqt{é—: g+ i+ + un, Whereq is the ghost pulse at= 0 and
tion q] < 1, we find a similar equation as (2.4), but linearizedjn

which describes the evolution of the ghost pulse

Ou  D(z) 0%u 9
5.t gr TBu=0 D) .00 D() &
Oz 2 0ot?

= —g(2)uf umitn. (2.5)
where all the quantities are expressed in dimensionless units: . . -

t = tret/ter 2 = Z1an/2, u = E/\/gP,, D = E'/E” with  The integerd, m andn must satisfy a certain condition to sup-
the characteristic parameters denoted by the subsgrigiere POrt ghost pulse generation, as we show below.

et @Ndzyy, are the retarded time and the propagation distance,

respectively, and denotes the slowly varying envelope of the Ill. ENERGY TRANSFER AND GHOST PULSE GENERATION

optical field. The normalizing variables are determined so that |, this section, we study the nonlinear interactions due to a
2 = 2L = 1/vP, andk! = —t2/2x1 wherev is the non- phase-dependent forcing ter@fu,,u, ( # m, n; m,n #
linear coefficien_t. We Wr_itg the signal pglse ce_ntered atkT 0), which yields ghost pulse generatignwhen the bit is zero
asuy,, whereT" is the bit interval and: is the integer repre- 4ng amplitude fluctuation ofiy when the bit slot is occupied
senting the location of the bit slot. The functiab%z) andg(z) py a signal. They are commonly referred to as intrachannel
describe the local group-velocity dispersion (GVD) of the fibgg ;- \wave mixing (FWM). It should be noted that the phase-in-
and the variation of power due to loss and amplification, reSP&gspendent terms such s, |?uo (n # 0) do not contribute to
tively, which are both periodic im (with periodz; andz,, ré-  the ghost pulse growth or energy exchange, since they maintain

spectively; in this paper, we consider the case= zq Unless gnergy. They are instead responsible for frequency and timing
otherwise mentioned), an@) = 1 ({-) denotes the path-av- ghifts "which will be discussed in Section IV.
erage ovee,) so that the path-average peak power of pulses is

fixed. The nonlinear coefficient(z) for lumped amplification A phase-Matching Condition

based bium-doped fib lifier (EDFA) is given b
ased on erbium-doped fiber amplifier ( ) is given by The integer$, m, n representing the bitlocation of the signals

9(2) = ge exp[—20(2 —n2a)], Nz < 2 < (n+1)7a (2.2) participating in the intrachannel FWM must satisfy a condition
in order to induce nonlinear mixing withor w. This is similar

whereg. = 4G/[1 — exp(—4G)] so that(g) = 1, " is the tothe phase-matching conditionin WDM systems [16], but now
dimensionless loss coefficient, addl = I'z,/2. We write the the frequency matching is replaced by temporal matching.

accumulated dispersion in the form To obtain the condition in the time domain, let us first con-
B sider the simplest case, where the signal pulses are approxi-
D(z) = / D(#)d? = O(z) + (D)2 (2.3) mated _by delta functi_onsk(o, t) =6(t — kT), correspondi_ng
0 to continuous waves in the frequency domain. Then at a distance

: : . . . z, we have
where(D) is the average dispersion over a period é1{d) is a

periodic function with period, having zero averagé’(z)) =

0, which also represents the chirp. Whi) is not negligible

1 oo
ur(z, t) = o / exp[—ikTw — iC(2)w” /2 + iwt] dw

but small, the accumulated dispersion can still be approximated -
by D ~ C(z).Inwhat follows, we consider the case{d?) = 0 _ 1 e 2
unless otherwise mentioned. An analytical model({fd) # 0 V 2rC(2) explilt = KT)"/20()] S
is introduced in Section VII.
In order to study nonlinear intrachannel interactions betwe&mploying the Fourier transformFlu] = 4(w) =

the main signaliy and the adjacent pulses, u,,, ©,., we write ffooo u(t) exp(—iwt)dt of the nonlinear forcing term
u = up + w + U + u, and substitute this into (2.1) to find Fo(z, t) = —g(2)u;umu, in (2.4) or (2.5) implies that
the evolution ofug perturbed by one of the nonlinear terms_

U Uy Uy Ly(z, w) =—-G(z) exp[—i(m +n—DwT — iC’(z)wQ/Q]
 Oug . D(z) 8*u . __9(2) T2 02 g2 2
¢ 870 ; ) atQO +g(z)|u0|2u0 = _g(z)ul Um Un - (24) G(Z) 27?0(2) eXP{L[(m o l ) (m T l) ]

_ _ _ x T?/2C(z)} . (3.2)
The perturbation terms on the right-hand side (RHS) of (2.4)

takes two forms, which are either phase-dependgnt,.u,  Thisindicates that the forcing terffy (z, ) has a temporal shift

(I # m, n; m, n # 0) or phase-independeft,[*uo (n # 0).  of (m + n — [)T". When this coincides with = 0, namely if

As we discuss in Sections Ill and IV, phase-dependent terms

are responsible for the energy change:gfas a result of non- l=m+n (3.3)
linear interactions with nonzero bitg, «,,, andu,,, whereas

phase-independent terms bring about a timing shifi;adue to thenF; induces the ghost pulse growth or the energy change of
interaction with other nonzero b, . the signal at = 0. When the information bit at = 0 is zero,
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the ghost pulsg is generated at this location; when the bit i€),,, , = (1/z,) o “(dWo/dz) dz yields linear growth of the

one,uo exchanges the energy wih, w,,,, andu,,. energy change and the other terms in the Fourier series are re-
The extension to more general signal shapes such as Gaonsible only for residual oscillations and do not amount to

sians follows similar lines. If we assume that a signal is givenajor contributions. As a resulf), . , ~ is the dominant cause

rnn

by a Gaussian pulse of the form for the growth of the energy cha_nge namelyv, grows lin-
early with respect to distance an,, ,, represents the growth
_ L2 rate
w(z, ) = —— exp [_%—kﬂ}
aré(z) L 2() AWo(2) = Gy (37)
&z)=pB+iC(z) (3.4)
] Thus, we have a resonant growth situation. This does not occur
wherej is constant, we have in the large and constant dispersion fiber configuration [13],
[14].
. 7 > (w+ib(2)T)? In general, when the period 8f(z) andg(=) is different,g(z)
oz, w) =—A(2) a(z) P —c(2)T" - da(7) andh(z) = [7°_(uhuitmu, — c.c.) dt on the RHS of (3.6) are

individually represented as a Fourier series with peripand

3
ga 1 < 1 2) zq (#2,), respectivel
Al2) = L oalx)=>(=+2 2d (#%a), T€SP y
= ey 97 alE T
l + 1/ 2 4?2 W [« .
b(z) = = I mS n7 olz) = 5 <£_* + %) ) 2, =i j;oogj exp(2mijz/zq)
(3.5)

A(z), a(z), b(z), andc(z) are periodic complex functions with . < Z hi eXp(%ikz/zd))
period z,. For strong dispersion managemeét, > 1 and h=—co
hence, the forcing term has the temporal shiify2a ~ (m + R o
n — I)T. This is the same phase-matching condition as for the =i > ghkexp2mi(j/7a + k/2)2).  (3.8)
delta functions. 3, k=—o0

This phase-matching condition (3.3) is the same as the oRe

foundin [13], [14] for large and constant dispersion fibers. How Wiced from the terms where the phase[2ri(j /7o + k/za)?]
ever, the periodic nature of dispersion management mtroduce sa

iS canceled, namely
further resonance condition, as will be seen in the next subsec-

tion.

mong the products on the RHS of (3.8), a resonance is pro-

jza+kz, =0. (3.9)
B. Energy Transfer This is the general condition which yields the resonant growth of
Here, we analyze the energy change of the siggalue to energy chang@&W,. Hereafter in this paper, we consider only
nonlinear mixing withu,, u,., w, (I = m + n). Differentiating the casex, = 2, (namelyj + k& = 0).
the energyVy = ffzo |uo|? dt with respect toz, from (2.4) we So far, no particular restrictions on the form of the pulse shape

have an equation fdiy due to the perturbatiofy(z, t) have been imposed in the analysis. In order to obtain explicit
formulae to compute the energy exchange, in the following we
AW oo . . assume that a signal is given by a Gaussian pulse (3.4). After

5 =t / OO(Fouo — Fguo) dt substituting (3.4)to (3.6), the mean tefpy, ., is found to be

Energy chang& Wy (z) = Wy(z)—Wo(0) is computed by inte- [ 9(2) ex < me+ )+ iLmnC( ?) T2>

gration of (3.6). Note that we computelV;, for all the possible [£(=)] 28 (=)]

integerd(= m-+n), m, ninagiven bit pattern and sum them in _ C_C} dz. (3.10)

order to take into account the energy exchange betwgeamd

all the other nonzero bits. The formulae to estimate amplitude

jitter in a random data sequence will be presented in Section\p" Strong dispersion management, sii¢e> 1 and hence,
Since the average dispersi¢R) is small and the pulses; §(2) ~iC(2) in (3.10), Qm » Can be approximated by

are periodic ire because of the periodicity @b(z), andg(z) is

varying periodically with the same period, the functibivy /d= \/7 /

is also periodic irz and thus it can be expanded in a Fourier se o 47f Za \ 28

ries of the formdWy /dz = Q,,, , +3° 20 Qj exp(2ijz/ 2a). y {

Integrating this with respect to, we note that the mean term

< imnT?

C(z) )- c.c} dz. (3.11)

oG P
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Fig. 1. Schematic diagram of a two-step dispersion map. 0 5 10 15 20

Distance, z

To model a dispersion map, we consider a symmetriig. 2. Growth of energy change of the signals in a 111 bit pattern in a lossy

_ : : ; i ~ease ' = 10). The solid curves are results of direct numerical simulation of
two-step proflle Composed of fibers with positive and negati (2.1) and the dashed curves are the results obtained from (3.7) with (3.10). The

dispersion written as the periodic extension of dotted curve shows the energy chang#’, whenG = 0 obtained from direct
numerical simulation.

A, 0 < |z| < (8/2)2,
—[0/(1 = OJA, (8/2)z, < |2| < (1/2)2a When (D) # 0, (3.7) must be modified accordingly. Nev-
(3.12) erthelessAWy(z) is found to grow with distance whefD)
is not negligible butD(1). In fact, the analysis of Section VII
with period z, (see Fig. 1). In this profile, the dimensionles§hows that the above result s easily modified by replacitg)
map strength [1] is defined as= Az,0/2. When§ = 1/2, in (3.4) by C(z) + (D)z + Cp where we assumg’| > 1,
(3.11) can be simplified to the following: (Dy = O(1), where( is the initial chirp. Furthermore, we
note that if(D) > 1 (cf. [13], [14]), then the resonant condi-

zZ

m@:{

_ atge [w tion (3.9) is violated.
Qm.n =352 \/;/3 [1 — exp(=2G)Lm, n (3.138)  Fig. 2 shows plots of the energy change of the bitsu:, and
uo for the bit pattern“111"k = 0, 1, 2; see the inset) and 0 else-
I, =2 /Oo {exp<_£> + exp(—26) exp<§>} where, obtained from (3.7) with (3.10) calculated numerically
” ST ST

s J1s and from direct simulation of (2.1). The parameters that are used
sin(mnT?r) in the calculation arex = v/27, 8 = 1.0,7 = 8.3,I" = 10,
X — —dax. (3.13b) .. — 0.1, ands = 22 in dimensionless units. With the choice

oft, =3ps,y =2.5WL-km™!, P, =1 mW,i.e.2nr, = 400

In the limit of G — 0 [i.e., g(z) = 1], we note that,,, , — 0. km and&/(=—13/zx1) = —2.25 x 102 ps’/km, they corre-
This implies that in a lossless system the energy change is $pond to the transmission of the pulses with the path-average
duced substantially. This observation also holds true for genepalak power 1 mW, the full-width at half-maximum (FWHM)

6 (where the formulae are more complex). This result suggestsyuy = 5 ps (minimum), and the bit interval,;, = 25 ps

the possibility of improving transmission performance by enfeorresponding to the bit rat8 = 40 Gb/s), in a DM fiber with
ploying distributed amplification to suppress intrachannel pul$kee period 40 kmg” = £20 ps’/km, and the loss 0.22 dB/km.
interactions, which will be demonstrated in Section VI. (Se@/e note thalW, = AW, andAW; = —2AW, from sym-

also [17], where the amplitude jitter is found to be suppressetetry and the conservation of total energy. In this case, the only

by introducing symmetry in power profile wheéh= 1/2.) combination of integers satisfying the phase-matching condi-
Finally, the integral (3.13b) can be asymptotically approxionis(l, m, n) = (2, 1, 1). Good agreement between the an-
mated by the following formula: alytical and the numerical results can be seen. It should be noted

that over longer distance, as the energy transfer increases, other

7 1 1 aem (™ 1 effects become important and the assumptions in the model must
m,n ™ (1+ exp(-26G)) 2 2\G be modified. We also show the energy changegih a lossless
case obtained from direct simulation. As predicted from (3.13),
log A\G : .
- (1—exp(—2G)) whenG — 0 suppression of the energy change is observed even

with the same value of path-average signal power as in the lossy

J% (Jo + J_ exp(—2G) — K(1 — exp(=23)] | case, which further confirms the analysis.

C. Ghost Pulse Growth

We now solve (2.5) to compute the growth of ghost pulse
where\ = s/mnT?G (i.e., we allow larges and moderate due to nonlinear mixing among, w,., u, (I = m + n). The
values ofmnT?), and J, = fOG[exp(—a:) — 1+ z]/«?dz, Fourier transform of (2.5) yields

G 1,.
J_ = fOQ [exp(x)oo— .1 - 1]2/372 drandK = [ (sinz — 2 + 9G D(z) . 7 315
23/6) /22 dz + [ sina/z? dx — 1/12 are constants. iy, ~ oy W=tz w) (3.19)

A1 (3.14)
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which is solved as

4(z, w) = iexp[—iC(z)w’ /2] /OZ R(#,w)d?  (3.16)

where R(z, w) =
of the periodicity of each function inR(z, w), this can
be expanded in the Fourier series of the foffz, w) =

R n(w) + 2220 Bj(w) exp(2mijz/z,). We note that the

mean termR,,, »(w) = (R(z, w)) = (1/z4) f;" R(z, w)dz

is responsible for the resonant growth of the ghost pulse. The

energy of the ghost pulse increases in proportiogto

1 [ . 22 [ = 2
o [ i Pao =2 [ Rt do.
(3.17)

Wo(z) =

We note that even if the dispersidp(z) contains an average __

—Fy(z, w)expliC(z)w?/2]. Because

607

0.025
L Uy U )
0.02f &
2
5 .
00151 = /\
2T -T 0 T

0.01

0.005

Ghost pulse energy, #(z)

0 5 10 15 20 25
Distance, z

Fig. 3. Growth of ghost pulse energy at the zero bit in a 1101 bit pattern;
schematically shown in the inset. The solid curve is a result of direct numerical
simulation of (2.1); the dashed curve is the result obtained from (3.17).

Note that, unlike the growth rate of energy char@g, ,,,

term(D) # 0, we still find resonant-like growth whefD)z < £tm,» does not vanish in the lim& — 0. WhenG = 0, we
C(z) in the map. However, the ghost pulse growth is expect@ﬂd

to be suppressed with sufficiently larg®) such that{ D)z =
C(z).

In the following, we assume a signal given by a Gaussian

pulse (3.4). For strong dispersion management, sif{eg > 1
and hence(z) ~ iC(z), R(z, w) can be approximated by

R(z, w)
[m 1\ w? VT b2r?
= A — 7 _ — —_— = — — T2 —_—
a exp{(LC 2a> 2 2T C + 4a
~ M exp(—3pw?/2 — imnT?/C) . (3.18)
2m|C(2)]

The path averagg,,, , of (3.18) in a dispersion map given by

(3.12) is

3

R, n(w) = 5 exp(=36w”/2) Junn

_1 e
= ;

From (3.16) and (3.19), the ghost pulse for lasgs, therefore,
approximated by a Gaussian of the form

(3.19a)

9(2)
|C(2)]

I n exp(—imnTQ/C) dz. (3.19b)

@32’

G(z, w) ~i o I exp[— (38 + iC)w? /2] (3.20a)
Lotz exp(—t?/2¢") . )
Q(zv t) NL%‘]m,,nW, 5 :3/3+LC(Z)

(3.20b)

Whené = 1/2in (3.12),J,, » is simplified to the following:

- g—F/ [exp(—imnT?x)+exp(—2G) exp(imnT?x)]
1

wn = 4s /S

oo € ) -0y €)=

(3.21)

e "% cos (mnTQa:)

da (3.22)

']rn, n =

S 1/s x

independently ob. Thus, there still remains ghost pulse gener-
ation in a lossless system. However, since (3.22) is asymptot-
ically approximated for large and moderate values afn1>

by

s> 1

(3.23)
(v = 0.5772 is the Euler's constant), and for largen7? and
small or moderate values 6f by

Jrn,n ~ % [IOgS — (’y—i—log(mnTQ)) -+ - ] ,

cos A mnT?
+ - A=

ge | sinA
B A2 ’ s

~ —

m,n
s A

>1

(3.24)
the ghost pulse growth is decreasing for lasga A.

Fig. 3 shows the ghost pulse growth of the 0 slotin a “1101”
bit pattern £ = —2, —1, 0, 1; see the inset) due to interac-
tion amongu_», u_1, andu;. The energy of the ghost pulse is
calculated from (3.17) and direct simulation of (2.1). The pa-
rameters are the same as in Fig. 2. The combinations of the
integers responsible for the ghost pulse standing -at0 are
(lv m, 7’L) = (_27 _17 _1)7 (_17 17 _2)' and(_17 _27 1)'

IV. FREQUENCY AND TIMING SHIFTS

In this section, we study the nonlinear interactions due to a
phase-independent forcing tetm, |>uo (n # 0), which yields
the mean frequency shift of a signal, resulting in a shift in its
temporal position through fiber dispersion. This is commonly
referred to as intrachannel cross-phase modulation (XPM). (See
Appendix A for the frequency shift due to intrachannel FWM,
which turns out to be negligible.)

The frequency and timing shift ofy due to intrachannel
XPM with w,, is calculated from the equation

D(z) 8%y

. Oug
i
ot?

0 S S (ol = ~20(2)unPuo. (4.)
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It is convenient to introduce the following integrals: the meaNote that, for strong dispersion manageménty> 1 and hence
frequencyly = Im[[”_(duo/dt)uf dt]/Wo, and the central £(z) ~ iC(z). Thus the linear growth rate 6t§f)(z) is written
temporal positiorty, = ffooot|u0|2dt/Wo, whereW, is the as

energy ofug defined in the previous section. Differentiatifyg

: : — 2BnT % C(2)g(z) pAn?1?
andt, with respect toz, from (4.1) we find P, = _ot / exp <_ ) dz
Vorze Jo o 1E(2)P 21¢(=)?
00 lun|? 80T (% g(2) Bn21?
Ay 20(2) J70 [uol? gl dt — M/ 9=) <__> J
_ 00 ~ —sgn exp Z.
dz J72 uol? dt (4.2) ) V2rze Jo  C3(2) 2C%(z)
- (4.9)
0 = D)0 (2) @.3)
dr O GR0E ' In a dispersion map given by a symmetric two-step profile as

o ) ) ) ] shown in Fig. 1, wherd = 1/2, (4.9) can be simplified to the
The timing shiftAty(z) = to(2) — #,(0) is obtained by inte- following:

gration of (4.2) with2,(0) = 0 and using (4.3). Note that, in

general, we computét, corresponding to all the possible in- p 9
tegersn in a given bit pattern and sum them in order to evaluate =~ " 4
the total amount of timing shift of,, due to interaction with 1 [ a a
all the other “1s.” The analytical expressions to estimate timing I =~ / {exp<—§> + exp(—2G) eXP(g)}

S 5
jitter in a random data sequence will be presented in Section IV. Y

[1 —exp(—2G)]|AnL, (4.10a)

. . . . Bn2T? 9
Interchanging the order of integration yields X exp —— dr (4.10b)
Ato(z)z/ZD(z’) /Z dS2o d" | ds vyhere A, = —a?pnT// 2. _In the IimiF Of. G.—> 0
0 o dz [ie., g(z) =1], we note thatP, — 0, which implies a

¢ 40 N significant reduction of the timing shift in the lossless case.
:/ 0 U D(¥) dz’} dz"’ This also holds true for generdl.
dz" S Finally, the integral (4.10b) can be asymptotically approxi-
mated by the following formula:

= /OZ gl (D(z) — D(z")) dz"

dZ//
G JTA 1
=6t (2) + 6t (2) (4.4) bh~5 {(1 + exp(—2G)) < 2 5)
' _7
where (1 — exp(—2G)) (log()\G) 2)
o, . = + T+ eXp(—2G)J_} . A1 (411)

&ty " (2) = D(2)20(2) (4.5)

&(()2)(2) _ /Z <_@> D(")dz". (4.6) wherel = ﬁs/(G\//?|n|T) (i.e., we allow larges and mod-
0 dz" erate values ofT), v is the Euler's constant, and, and.J_

) o o are the constants defined below (3.14).
Thus the intrachannel timing shift is composed of two terms: Fig. 4 shows plots of the timing shift of the bits_», u_:

55 and 6. We note that wherD(z) = 0, the timing andu, for the bit pattern “1101"% = —2, —1, 0, 1), obtained
shift is given byéty’ (=) alone in (4.4). In the case of zerofrom (4.7) with (4.9) calculated numerically and from direct
average dispersion, this condition correspond§’te) = 0, simulation of (2.1). In order to compute the timing shift.of,
namely at chirp-free points. Furthermore whél) = 0, & £ 0 using (4.7), we need to shift the bit pattern by7" so

D(z) = C(z). When the pulse is also periodicinthe function  that the central position afj, is moved tot = 0, and relabel
(—df20/dz)C(z) can be expanded in the Fourier series of thgll the bit slots correspondingl¢_,, for instance, is given by
form (—dS20/dz)C(2) = P+ ;40 Py exp(2mijz/za). Itfol- - Atg(n = 1) + Ato(n = 3). Once again good agreement be-
lows that the mean term®,, = (1/z,) O‘a(—dﬁo/dz)O(z) dz tween the analytical and the numerical results can be seen. We
is the dominant cause for the growth of the timing shift; froralso show the timing shift af_, in a lossless case obtained from

(4.4) and (4.6), the timing shift grows linearly: direct simulation. As predicted, a significant suppression of the
timing shift is observed even with the same value of path-av-
(%2)(2) —P, 2 (4.7) erage power as in the lossy case.
In the following, we assume a signal given by a Gaussian V. TIMING AND AMPLITUDE JTTER

pulse (3.4). Substituting (3.4) to (4.2), we have Explicit formulae to compute the timing shift at the chirp-free

points (Atp) and the energy chang@&i¥,) were obtained by
dQ  g(z)a’pnT exp [ — Bn>T? (4.8) assuming that average dispersion is small and a sigpas
o ) ' periodic inz. Whenuy is written as a Gaussian pulse (3.4), from

Az~ Varlé(e)P

201¢(=)?
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08 (here(X) denotes the mean value of the random variab)e
0.6 Sinceb;, takes the value 1 and 0 with probability 1/2 from (5.1)
< 04 and (5.2) we have
£ 02 )
2 2 2 _~# 52
2 O of =((At)?) = (Atg)* = = > P; (5.5)
= 4
‘g 0.2 n
= 1 2 2
=04 - 2 _ {(AW0)?) — (AWo)
06 p W2
-0.8
0 5 10 15 20 5
Distance, z _Z 3 2 roRrs)
¢ - W2 1_62( n,n+Qn,nQ2n,2n)
0 n
Fig. 4. Growth of timing shifts of the signals centered at —27" (At_3), - —9 — —
t = =T (At_;)andt = T (Aty) in a 1101 bit pattern in a lossy cade & + 6_/4 Z Qm,n + Z plin,nl sz,nz
10). The solid curves are the results of direct numerical simulation of (2.1) and m,n n1, M2, N2
the dashed curves are the results obtained from (4.7) with (4.10). The dotted mEn m2FEne
curve shows the timing shifs¢ _, whenG = 0 obtained from direct numerical
simulation. — —
+ Z p2le,n1 sz,nz (56)
my, Ny, M2, N2
(4.7) with (4.9) and (3.7) with (3.10), the total amount of timing N, me g

shift and energy change for a general bit pattern are given by, . . .« o1l sums are taken fromN/2 to N/2, andp; = 3/16

or 1/16 if for each combinatiofn;, m2, n2) there are three
or four distinct elements, respectively, among the sequence

N/2 _ {711, 2n1, ma, N9, mo + 712}, andp, = 3/64 or 1/64 if for
Ato(z) = Y baPpz (5.18) each(my, n1, ma, ns) there are four or five distinct elements,
n=—N/2 respectively, amon@m,, ni, my +ny, ma, na, mo + na}.
o 2B [ O(2)g() Bn2T? Calculation ofc, and_p gllows one to_ estirqate thg bit error
Pp=- /2 EOE €xp —W Z rate (BER) caused by timing and amplitude jitter without noise
T#a JO ’ ” (5.1b) in the following way. Assuming that, and¥,, follow Gaussian
' statisticsg; andp are individually related to BER through [18]
N/2 N/2
AWO(Z) = Z Z bm+nbmbnam,n,z (52a) atbit
n=—N/2m=—N/2 BER =erfc 20—3 (57)
— N 9(2) |
O =335 ), k& ser = yere (1)
2 2 7
X ex — (m +n )/3 - 2LmnC(z) T2 dz _ Ione - Izero ~ Ione _ WO _ 1
1% 2 Q= ~ = — = - (5.8)
2|£(2) CTone T Ozero Oone ow P .

(5.2b)
wherea (=0.2-0.4) measures the time-acceptance window size
in the receiver/one (Lzero) aNdoone (0,6r0) are the mean value

whereb, represents encoded binary data of the bit at &7 and standard deviation, respectively, in the level of one (zero) bit
which takes either 1 or 0, anl is the total number of the in- iN the received eye diagram, andc(-) is the complementary

teracting pulses. This is estimatedMs= (2/M)\/1 + (s/3)2 €rror function. In (5.8), we assumeég., = 0 ando ., = 0 by
whereM = t /Trwin = 5. neglecting ghost pulse growth in the “0s.” Based on this simple

) estimate, in order to achieve BER10~?, &, andp must satisfy
Because of a random sequence of Bits Atg, and AWo e conditiono; < 0.06t,; = 1.5 ps fora = 0.35 andp =

are random variables and thus, (5.1) and (5.2) allow us to coin/-Q < 1/6 = 0.167.
pute the mean value and the varianceNsf, and AW,, which
yields timing and amplitude jitter. Timing and amplitude jitter
are given by the variance of the mean temporal position of pulses
and the normalized energy variance, respective|y It was found in Sections Il and IV that in a DM system with
GVD profile shown in Fig. 1, the growth rate of timing shift
and energy chang®, = Q = 0 wheng(z) = 1. This

VI. SUPPRESSION BYDISTRIBUTED AMPLIFICATION

m,n

implies a substantial reduction of timing and amplitude jitter

2 2y 2

o ={to) = (to) (53) due to the intrachannel pulse interactions in a lossless system.
o _ gy _ (W5) — (Wo)? (5.4) This suppression is attributed to the absence of amplification,

r= wg wg ' which introduces periodicity into the system and in turn brings
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Fig. 5. Power variation of a pulsg(z) within one dispersion management )

eriod with EDFA and Raman amplifiers. The dotted linégs. X
p p &gk BER=10°

0.15

about strong resonance. It is impossible in practice to fabricate
a lossless fiber; instead, employing distributed amplification is
intuitively expected to be effective in reducing the intrachannel
interactions since it can provide a nearly lossless transmission
line by compensating loss more uniformly. Similar results are
found when{D) is small but nonzero.

We compare two amplification models: lumped amplifica-
tion based on EDFA (2.2) and distributed amplification based
on backward Raman amplifiers. The nonlinear coefficigad
for Raman amplifier is given by

Amplitude jitter

0 2000 4000 6000 8000 10000
Distance . km

®)

Fig. 6. Timing jitter o, (a) and amplitude jittep (b) versus transmission

_ _ _ _ _ distance fors = 30. The solid and dotted lines are the results of direct
9(z) = gr exp{=20(z — nza) + g1fexp(2p (2 — nz0)) — 1]} numerical simulation of (2.1) with® — 1 PRBS bit pattern in an EDFA and
NZg < 2 < (n + 1)2,,,, (6.1) Raman system, respectively, and the dashed lines are the analytical results for

an EDFA system obtained from (5.5) and (5.6) with (5.1) and (5.2).

whereg; = 2z, exp(—2T2,)/[1 — exp(—2T,2,)], T, rep-

resents fiber loss at the pump wavelength, anis determined The analytical model obtained so far allows us to study how

so that{g) = 1. The model (6.1) is obtained by solving couSystem performance is limited by intrachannel pulse interac-

pled equations which describe the interaction between sigs depending on the value of map strength. Fig. 7 shows the

and pump power and neglecting the effect of pump depletié‘ﬁrmalized growth rate of (a) timing and (b) amplitude jitter for
yarious values of map strength obtained from (5.5) and (5.6)

[21]. The two functions are plotted in Fig. 5. As can be seer, ; ]
Raman amplification provides a more uniform distribution of/ith (5.1) and (5.2) in a EDFA system. Timing jitter takes the

power and effective nonlinearity than EDFA. We remark that tHa"9est value for moderate values:0{~15-20). For larges,
path-average peak powd,|2,.. ) is assumed to be the samdiming jitter decreases whereas amplitude jitter still remains to

for EDFA and Raman amplifﬁl:aéxtion. be a potential dominant cause of transmission penality.

Fig. 6 shows plots of (a) timing jittes; and (b) amplitude
jitter p versus transmission distance in an EDFA and a Rama!!- GENERALIZED ANALYTICAL MODEL: MULTIPLE SCALE
system wherz, = 0.125 ands = 30, corresponding to the APPROACH
period 50 km and” = +21.6 ps*/km. The initial peak poweris  |n this section, using the multiple scale method, we unify the
2.72 mW for an EDFA system and 1.7 mW for a Raman syste@malytical framework which has been presented so far and show
Note that the comparison is made with the same value of patbw to extend the previous results to more general situations
average power (1 mW) in both systems. The fiber loss at tere (D) # 0 and/or the pulse is prechirped. The key idea
signal and pump wavelength is 0.22 dB/km and 0.28 dB/kmsehind multiple scale approach is to introduce fast and slow
namelyl’ = 10 andl’, = 12.5 respectively. Other parametersscales and thus, eliminate fast pulse dynamics due to large and
are the same as in Fig. 2. As predicted from the model in theriodically varying dispersion [19]. The leading order multiple
previous section, both timing and amplitude jitter grow linearl¥cale approximation is found to agree with the analytical model
with respect to distance in an EDFA system. A Raman systenpigsented in Sections Il and IV.
especially effective in suppressing timing jitter. The insufficient we start the analysis with the perturbed NLS equation of the
suppression of amplitude jitter is due to the residual growth gfym
ghost pulses [see (3.22)], which are generated from the signals,
resulting in the leakage of their energy. The threshold requireduo | D(2) *uo
for error-free transmission based on the simple estimate [ (5.?)8/:« 2 o2
(5.8) and below] is also plotted in this figure. = —g(2)|uoPuo — 29(2)[u;Puo — g(2)ufumu,  (7.1)
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0.03 the linear solution. Equation (7.4) can be solved by the Fourier
transform and the solution is given by
3%
002 a;°>(¢, 2, w) = Up(z, w) exp[—iC(C)w? /2] (7.5)
=
pe where C(¢) = [ A(C)dC!, and Up(z, w) = Up(z, w)
; 0.01 exp(iwkT) is the integration constant in terms ©fand repre-
© sents the slowly evolving amplitude @ﬁo), whose exact form
is determined from the higher order in the expansion.
0 At O(1) in the expansion, fouél) we have (in the frequency
0 20 40 60 80 X
Map strength, s domain)
(@) i (1) A .
0.008 i — aC % w2aél) = —FW(z w) (7.6a)
¥ 0.006 FO(z, w)
g _ 9wy (D) 4.0
= 0.004 e, T Y
E Fl @ 2 (0 +2 )% (© + (0)*, (0), (0)
S 0.002 z Uy | Ug u; | Ug U U’ Uy,
(7.6b)
0
0 20 40 60 80 which is written in a more convenient form as
Map strength, s 5
() LB_C [ué )exp(LCwQ/Q)} = —FW(z w) exp (iCw?/2) .
Fig. 7. Normalized growth rate of (a) timing jitter; /= and (b) amplitude (7-7)

jitter p/= versus map strength obtained from (5.5) and (5.6) with (5.1) and In order to remove secularities, namely to avoid resonant growth
(5.2) calculated numerically. of u§ so that the expansion af in powers ofz, in (7.3) is

remained to be well ordered, we require the following condition:
where the second and third term of the RHS is intrachannel

XPM and FWM term, respectively, wheje# 0 andl = m +n

(m, n # 0) from the phase-matching condition (3.3). In order to
model strong dispersion management, we decompose the GVD
D(z) into two parts: a path-average constail and a rapidly This condition yields the following equation fof:
varying functionA corresponding to local GVD

/.1 FO (2 w) exp(iCw?/2) d¢ = 0. (7.8)
0

olly (D) -
i O—QUJZUO

D(z) = (D) + - Alz/z) a2 :
" =- <9(C) exp(iCw? /2) < U )‘ UEO)}

wherez, (< 1) is the map period. Note that represents a large
variation about the average due to strong dispersion manage- + ]_-{2 ‘ugo)‘ u(o)} +]_—[u(0)*u(o)u(o)D>
ment and thus, the proportionality factiotz, is inserted in front ’ 0 Lomem
of A(z/z,). Both(D) andA are order one quantities. Since the —_ (4 4 7o
pertlgrl;ed)N LS eéugtion witP(~) given by (7.2) contains both N (ISPM oxev o+ Irw M) (7.9)
slowly and rapidly varying terms, it is convenient to introducghere
the fast and slow scales gs= z/z, andz, respectively. We o oo
also expand the field,. (k = 0, I, m, n) in powers ofz, Tspm = / / r{wiw2)Uo(2, w + w)Uo(z, w + wa)

we(Gy 2 1) = (G 20 )+ zawg (G 2 ) oo (7.3) X U5 (2, w + w1+ wz) dwy dws (7.10a)

The perturbed NLS equation is now broken into a series of equagy .., = / / rwiw2)o(z, w + wl)l (2, w+ ws)
tions corresponding to the different powers:ef At the leading

order in the expansio®(1/z,), we have U* (z, w+ws + wQ) dwy dws (7.10b)
. auio) A(C) aQU,;CO) IFVV]\T / / («Ul(«UQ (Z, w + («Ul)ﬁn(za w+ CUQ)
% B¢ + 2 972 =0 (7.4)
X Ul (2, w4 w1 + wa) dwy dws (7.10c)

namely the evolution of the pulse is determined solely by the
large variations ofD(z) about the average, and nonlinearitand r(w;w») = [1/(27)2(g(¢) exp(iC({)wiwo)) is a kernel
and residual dispersion represent only a small perturbationrépresenting the structure of the dispersion profile and a function
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of s. In a lossless system (i.e., whefr) = 1), the kernel-(x)  analytical treatment of multiple scale approach will be presented
for a two-step dispersion profile shown in Fig. 1 is found to bén future publications.
1 sinsz
() = g ———. 7.11 .
r(x) O ( ) VIIl. CONCLUSION
h he k W) for th di ) We have developed an analytical model which clarifies fun-
Wheng(z) # 1, the kernelr(x) for the two-step dispersion y,mantal properties of nonlinear intrachannel pulse interactions

map depends on the relative location of the amplifier within ong o ,as-linear DM transmission systems. Periodic dispersion
dispersion map period; (|¢.| < 1/2) andé [20] management with small average dispersion results in a resonant

1 G exp(2G) situation because of periodic forcing due to lumped amplifica-

r(x) = 272 (sa + 2iGO)(sz — 2G(1 — 9)) tion [see_(3.9)] supported by phase m_atching in the time domain
) ) (3.3). This energy exchange process is fundamentally analogous

X (252 exp[2G(1 + 2¢,)] sin(sz — 2iG(1 — 6)) to nonlinear quartet resonance in dispersive waves (i.e., FWM)

+ i exp(2iszCy /6) cosh(2G) (sz — 2iGO(1—6))]. which appears in avariety field of physics and engineeripg such
as those occur in water waves (cf. [22]). Simple analytical ex-

(7.12) pressions to estimate timing and amplitude jitter are obtained

In particular, wherf = 1/2 and¢, = 0, (7.12) reduces to and compared favorably with the result of direct numerical sim-
ulation of the full system. Substantial suppression of transmis-

r(z) = 1 G [swsin(sz)cschG + G sion penalties may be possible by the employment of distributed
(2m)? (sz)*+G* Raman amplification, which minimizes the resonant process.

+isz(1 — cos(sz)sech@)]. (7.13) Finally, the multiple scale approach for nonlinear intrachannel
interactions is expected to provide a unified analytical frame-

If we keep 0“'¥ the terr_vism\,_q in (7.9), this is reduced to the oy describing long-scale dynamics of intrachannel nonlinear
DMNLS equation obtained in [19], which governs the longafacts.

scale evolution of a single pulse in DM systems.
We now apply (7.9) to study nonlinear intrachannel

. . : . APPENDIX A
interactions. Since the energy ofy is computed by

FREQUENCY SHIFTS DUE TO INTRA-CHANNEL FWM

Wo = (1/2n) [7_|Uo(z, w)|* dw in the frequency do-
main, the energy change is obtained from In Section IV, we computed frequency and timing shifts due
) ) to phase-independent (intrachannel XPM) tetmg?ug (n #
dWo 1 /Oo i« 9 Ny UG\ 4 0). We show here that frequency shift caused by phase-depen-
dz ~ 2nJ_\ ° 9z 0 0z dent (intrachannel FWM) termg w,,u, (I # m, n; m, n # 0)
PR vanishes and thus, they are not responsible for timing jitter. Dif-

(U 6 Zrwni — Uoj?wm) dw. (7.14) ferentiatingQo = Im[[~_(Juo/0t)w; dt]/ Wy with respect to

2 J oo z, from (2.4) we find

When (D) = 0, this formula agrees with (3.7) (see Ap- 0o [ 4 ou; p
pendix B). Equation (7.14), however, provides a more general dQo _g(z) I (“l Um'lin 5 + C'C') A1)
result wher{ D} # 0 and the pulse is prechirped by the cumu- dz I uol? dt ' '

lative dispersiorCy. We computé¥y by rewritingU(z, w) as For a signal given by a Gaussian pulse (3.4), (A.1) is written as

Uz, w) =U(z w)exp [—i(Co + (D) 2)w? /2] (7.15)  dQo  g(z)a?B(m +n)T [ B(m? + n2)T1
20 wp| AN TR I
2
and substituting taewar (7.10¢) andiiy /dz (7.14). Further- % 2v2r () , 2[¢(2)| .
more, when we take a limit — 0, this equation allows one to N {COS [m”C(z)T } o) o [m”C(z)T } }
describe the evolution of energy change in a highly dispersed |€(2)|? Jé; [€(2)|2 '
system [13], [14], i.e., large and constant dispersion fibers. (A.2)

Similarly, the frequency shift ofug, is also computed | : -

. . ; ndeed whenn = 0, (A.2) is reduced to (4.8), i.edf2q/d=
from (7'30)' N9“’;9 thatoothq n;ean freq_uency IS given b}ﬁuetointrachannel xén\mzmo (n # 0). No(te t%at (A.Z(;/now
gr?iﬁ:dufe TS ;:Jg())('Pf\l/lwt/e{r_nmfo'Ubﬂ ciTéquaernf? otrfrze frequency contains rapidly oscillating terms due to large "2, which are

negligible contributions to frequency shift once they are inte-

O (U;; 9o 4 g, 6540) dw grated with respect te.
dz - oo ~ |2
2 UO‘ dw APPENDIX B
oo . [ n NN ENERGY CHANGE COMPUTED FROM DMNLS EQUATION
o iw (U oLxrm — Uoﬁm\q) dw : : : .
= 5 . (7.16) In Section VII, we derived the averaged equation (7.9) which
= Ul dw describes the pulse dynamics and interactions over a slow scale.

Here, we show that the energy changewgfdue to interaction
When({D) = 0, this agrees with (4.2) with the RHS replaced byvith w;, un,, 1w, (I = m + n; m, n # 0) derived from (7.9)

its path-average (see Appendix C). The timing shifigfs then provides the same result as those obtained in Section Il when
computed by substituting this to (4.5) and (4.6). The detailéd®) = 0.
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Equation (7.14) yields APPENDIX C
AW ; oo oo FREQUENCY SHIFT COMPUTED FROM DMNLS EQUATION
0 ? ok
dz on {/_ dwlUg(z w)/_ dwr dwzr(wiws) The averaged equation (7.9) derived in Section VII also pro-

vides an analytical framework which allows one to compute the

frequency shift ofug due to interaction with:; (7 # 0). Here,

% U;»-(z’ w+wy +ws) — C_C_} we compute the frequency shift from (7.9) and show that when
(D) = 0 this gives the same result as those obtained in Sec-

X Um(zv w +w1)Un(zv w +CU2)

i 1 -0 ) tion IV.
= (2;)3 {/ dCQ(O/ dwy dwy dwl(z, w) The numerator of (7.16) yields
0 —o0
X lArn <y + lAn ) + o0 A A Ao
(7, w+w)Un(z, w+ w2) / i (UBIXPM 3 UOI;(PM) o
X U?(Z, w4 wy + w2) exp(iCwiws) — c.c.} —oo - -
(B.1) =2 {/ dwiwU (2, w)/ dwy dwar(wiws)
where we referred to the definition of the kernélw,) = x Uo(z, w +w1)Uj(z, w + ws)
[1/ (2m) ”o d¢g({) exp(iC(Q)wiwz). From (7.5), we have % U’f(z, W+ wy + ws) _C_C_}
Uiz, w) = ué )(C, 7, w) exp[iC(¢)w? /2] and obtain ’
1 [e9)
dW, i ! > _ 2 / / .
T @ /0 gld) /_oo o doz d (2r)? { , W) | e den die
[a5(¢, 2, w) exp(—iCw? /2) i, ((, 7, w 4 w1) x Ub(z, w)Uo(z, w + w1)U; (2, w + w2)

x exp(iC(w + w1)?/2), (¢, 2, w + wo) X (A];“I(z, w+ wy + w2)exp(iCwiws) — c.c.}
x exp(iC(w + w2)?/2)17 ({, 7, w + w1 + w2)

(C.1)
x exp(—iC(w + wi + w2)?/2) exp(iCwiwz) —c.c.]
] ! e where we referred to the definition of the kernély w,) =
~ (203 /0 deg(¢) /_ G dwz oo [1/(2m)2] [ dCg(C) exp(iC(()wiws). From (7.5), we have
X [QB(C7 2, w)ﬁ’nl(Cv Z, W +wl)an(C7 Z, W +CU2) o
X 4 (¢, 2, w +wy +w2) —ccl]. (B.2) / tw (USjXPM UOj;(PM) dw
By employing the inverse Fourier transform, we find
/ d¢g(¢ / dw1 dws dwiw
WMo L [*, "ty dty dbs ity duon duos d
2z~ @y ), G9tQ) | dbvdtzdts dty duy dwp dw x ru0<c, 2, w) exp(—iCw? /2)ito(C, 7, w +wy)
X {U’S(C’ Z, tl)u"l(C’ Z, tQ)U’n(Ca Z, t3)u’>lk (C’ Z, t4) X eXp(LC(w + CU1) /2)uJ(Ca Z, W + CUQ)
X exp[—iw(—t1 + t2 + t3 — t4)] exp[—iwi (t2 — t4)] x exp(iC(w +w)?/2)03 (¢, 2, w + w1 + wa)
X exp[—twa(ts — t4)] — c.c.} x exp(—iC(w + wy + w2)?/2) exp(iCwiws) — c.c.]
) 1 =) 2 1 =) )
I'L/ ng(C)/ dt[ud (¢, =, Dum((, 2, 1) = W/ ng(C)/ dwi dws dwiw
0 —o0 0 —o0
X un((, 2, uj((, 2z, t) — c.c] (B.3) x [u5(¢, 2, w)lo((, 2, w+ w)i; ((, 2, w+ w2)
where we used the identity” _dw exp(iwt) = 2m§(t), and X 56 2wt Wit ws) —ccl]. (€2)
t = t;. Energy chang& Wy (z) = Wy (z) — Wo(0) is computed ) ) ) )
by integration of (B.3). WhegD) = 0, 4, is independent of, By employing the inverse Fourier transform, we find
so that the RHS of (B.3) is constant in terms.pand thusA Wy oo
grows linearly with respect to distance / iw (UEfXPM - f]oj;(mq) dw
AWo(2) =@, 2 o op oo |
@ /1 dC (C) /Oo ; = W /0 ng(C)/ dtl dtQ dtg dt4 d(U1 dCUQ dwiw
m,n :Z t * i *
S T N x {uf(C, 2 t)uo(C, 2, t2)us(C, 2, taul(C, 2, ta)
x [ug(C, H)um (€, Dun(C, Hur(C, ) —c.c] x exp[—iw(—t1 + ta + t3 — ty)] exp[—iwi (t2 — t4)]
(B.4) X exp[—iwa(ts — t4)] — c.c.}

dity dty

representing the growth rate. The obtained formula agrees with —9 ldc (©) -
(3.6) and (3.7). L !

— o0
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oo

dwiw expliw(t; — t4)]

X |:U3(t1)71/0(t4)|uj(t4)|2/

—o

ot e () s ()2 /m

—0

dwiw

X exp|—iw(t; — m)]}

20z [ a0 [

oug du ()
(G2 uote) + G2 o)) sl

1
—2( )/0 dCg (C)/ ar 2oy

27r/d<g / dt|u |28|“f|

where we have used the relatiofiS’  dw exp(iwt) = 2m§(t)

[
o
)

(C.3)

/_ O:o d f () /_ O:o dwiew exp[iw(t’ — )]

=27 /Oo dt'(df /dt )6 (t —t)

and¢ = t4. Thusd()y/dz is obtained from (7.16) and (C.3) as

@_2/1 il f_ uo(¢, 2, O G lui(¢, = O dt
dz " Jo Joo eo(G 2, )2 dt

where we used

OO N 2 oo
/ ‘Uo(z, w)‘ dw = / [to(C, 2, w)|* dw

— o0

—on / o (C, 2, )| dt.

(C.4)

Note that when D) = 0, 4, is independent of, so that the
RHS of (C.4) is constant in terms ef Thus the frequency shift

AQy = Qo(2) — Qo(0) grows linearly with respect to distance,
and the growth rate is given by
= ' foo | O(Cv ) 22|UJ(C7 t)|2dt
S, = 2/ d —= C5
; Cg(<) T™ oG, 2 df (C.5)

which is the path average of the RHS of (4.2).
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