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A numerical simulation method for 3-D electron

optics in an electromagnetic field is described.
The method features the following: (1)electric
field analysis by a boundary-fitted coordinate

transformation method in conjunction with a domain
decomposition and overlapping technique;
(2)consideration of the space charge effect due to
electron beam in a self-consistent electric field;
(3)ymagnetic field analysis based on a current sheet
method and a Dboundary element method; and
(4) interactive geometric modelling and numerical
grid generation based on the same method as (1).
The method was applied to electron optics
simulation for an electron gun of a cathode ray
tube with a typical deflection yoke. The results
of comparison between computed and measured screen
spot profiles verified the method and demonstrated
its capabilities.

Introduction
Spherical aberration in the main lens and
deflection aberration in the deflection region

deteriorate the resolution of a cathode ray tube
(CRT). In order to reduce spherical aberration, it
is effective to increase the lens diameter and to
decrease the beam-to-lens diameter ratio. Because
the main lens diameter is restricted by the inner
diameter of neck tube, many CRTs now incorporate
non-cylindrical electron guns to allow for larger
lenses. An accurate simulation of the electron
beam focus characteristics in these electron guns
requires a 3-D analysis method.

There are several approaches to the electric
field analysis for electron optics in CRTs. The
finite difference method [1] is the most
straightforward, but it needs some interpolation
between grid points for complicated shapes. The
finite element method[2], on the other hand, has
geometrical advantages for matching complicated
boundaries, but it may require considerable
experience and time to divide the domain into
finite elements without using some preprocessors.
The boundary element method[3] can overcome this
problem by calculating unknown variables and its
derivatives only on the boundary, thus making
generation of the mesh division easier, but
treatment of the space charge effect caused by the
electron beam is difficult. We have already
proposed an approach to electric field analysis by
using a boundary-fitted coordinate transformation

method. This was based on an automated numerical
generation of a curvilinear coordinate system
having a coordinate 1line coincident with each

boundary of an arbitrarily shaped domain.

To provide dynamic convergence, the magnetic
deflection field consists of a pincushon-shaped
horizontal deflection field and a barrel-shaped
vertical deflection field. In order to evaluate
the beam spot distortion, raster distortion and
misconvergence due to those fields, a 3-D analysis
method is also required. Early deflection magnetic
field analysis was limited to rotationally
symmetric yokes and winding coils[4]. These days
nonrotationally symmetric deflection yokes and
winding coils are expected. We extended the
current sheet method to allow treatment of

nonrotationally symmetric shaped winding coils and
adopted a boundary element method which can give

the correct magnetic field in an open, homogeneous
space.

This paper presents a solution scheme for
electron optics simulation in a self-consistent

electric field with a magnetic deflection field.
An interactive geometric modelling and grid
generation method based on the domain decomposition
and overlapping technique are also described,
followed by results of some applications to
electron optics simulation for CRTs.

Description of Method

Basic Equations

A Poisson’s equation governs the steady-state,
self-consistent electric field for the electrode
voltage and space charge caused by the electron
beam,

V: (€ V@) =—p 1)

where ¢ 1is the electric potential, p is the
distributed space charge density, and ¢ is the
dielectric constant of free space.
Child-Langmuir’s law gives cathode current
density as follows,
1/ 2 372
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where e and m are the electron charge and mass, and
¢« 1is the calculated potential at a small distance
d near the cathode surface.

A beam trajectory of a sample electron which
carries current emitted from an area of the mesh-
divided cathode is the solution of the equation of
motion:

nr = -e(E+vxB) 3

where E is the electric field, B is the magnetic
flux density and v is the electron velocity.

The governing equation for the static magnetic
field free from current are expressed using the

magnetic scalar potential ¥ as follows,
H=-v¥,  v2¥=0 )

where H is the magnetic field intensity.
The calculation flow in the electron optics
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simulation is illustrated in Fig. 1. After the grid
generation, the static magnetic field generated by
deflection yokes and winding coils is calculated
based on eq. (4). Solutions of eqgs. (1)-(3) are
repeated until the electric field becomes self-
consistent.

Grid Generation

Boundary-Fitted Coordinate Transformation
Method: The grid generation technique used in the
present study is based on the boundary-fitted
coordinate transformation method developed by
Mastin and Thompson([5]. The transformation from
the physical space(x,y,z) to the transformed
space(£, 7, ) is shown in Fig. 2. The 3-D grid is
generated by solving the following partial
differential equations with Dirichret boundary
conditions.

Oy g 40 a Ty #0353 T (4200 3 T, 20, 3 Ty ¢
+20; 3 T +J* P +Qxr, 4R () = 0 (5)

where 1 is the vector denoting x, ¥ 2),
T e=0"T /08, X ,=9r/9f etc., and @, and J are
the transformation coefficient and Jacobian

respectively. The functions P, Q and R may be
chosen to concentrate the grid as desired.

Domain Decomposition and Overlapping Technique:
This technique[6] is a variant of the well-known
Schwarz alternating procedure. A decomposition of
the 3-D domain into subdomains is used and each
subdomain has six curved or plane surfaces. Each
subdomain grid is generated independently by the
boundary-fitted coordinate transformation method.
To ensure the composite grid remains both
continuous and smooth across the boundaries, an
overlap of two grid surfaces is adopted between any
two adjacent hexahedrons. The inner grid
coordinates are calculated using the Dirichret
boundary conditions on six surfaces of a
hexahedron, and the calculated coordinates on the
overlapping surfaces are transformed to the surface
of a neighboring one. This procedure is repeated
for all hexahedrons until the convergence
requirement is met for all grid points. This
technique is also used for potential and beam
calculations.

Interactive geometric modelling and grid
generation: The present method has the functions of
geometric modelling and grid generation for 2-D and
3-D geometries. Using arbitrary curve and curved
surface representations, it can treat an
arbitrarily shaped geometry. The 2-D geometry is
expressed by wire-frames such as lines, circles and
splines. The 3-D geometry is expressed by a
boundary-representation technique [7]. The global
curved surface is formed by patching small portions
of curved surfaces together. The 2-D and 3-D grids
are generated by using the domain decomposition and
overlapping technique in conjunction with the
boundary-fitted coordinate transformation method.

Coordinate
transformation

Physical space Transformed space
Fig. 2 Boundary-fitted coordinate transformation
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Electric Field Analysis

The Poisson’s equation (1) is transformed into

the curvilinear coordinate system (& 7,0) and
solved. The integral form of eq. (1)

[119 (e V@) dV={[ [ (-p)dV (6)
is discretized in this coordinate system. The
integral form agrees with the so-called fully
conservative form and is known to give more
accurate solutions in a curvilinear coordinate
system. The left-hand side of eq. () can be
written using Gauss’s divergence theorem and

discretized as follows,
(€ ¥¢) -ndS
=[ (e vg) -n &) ag ()] g4 [(€79) (8) 55 (85 .
+[(eavg) -0 As(n)]“_[(g0 vg) -n M As(n)]n-
+[ (& V) .D(OAS(C)] (& 79) ~n(OAS(;)] e D
where the subscripts £+, §£-, etc. indicate

evaluation on the surfaces of the volume element
shown in Fig. 3. n and AS are the normal vectors

and the area elements of these surfaces. A
generalized boundary condition is given as

Ci P+C: - Vo=cC, (8)
where c;, c; and c, are parameters. Boundary

conditions are also transformed and discretized in
the transformed space.

n®

Fig. 3 Calculation cell
defined by curvilinear
coordinate in physical
space

Magnetic Field Analysis

Current Sheet Method: Assuming the current
within thin sheets (current sheets), the effect of
the current on the magnetic field[8] can be
represented by a potential gap ¥g between the upper
and lower surfaces as shown in Fig. 4.

VYgz¥ V= 18 (nxi)dt 9)

where the subscripts 1 and 2 indicate values on the
upper and lower sides respectively, i and n are
the current and normal vectors respectively and t
is the distance along the curve L.

Current sheet(c.s.)

Fig.4 Current sheet method
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Boundary Element Method: Fig.5 shows a cross-
sectional view of a core and a current sheet. The

potential ¥(P) inside the core and ¥ (P’) outside-

it can be expressed by the following integral
equations,

YO = TQEC.O-Z@er 9iar o)
T P)= e Y @FE . 0-2 @67, 9 3ar
to s O @, 5)ar (1)

where ¥(Q) and 9¥/9n(Q) are the potential and the
normal derivative on the core respectively, and G
is Green’s function. . [.,,.dl' and fe.s.dI' indicate
the surface integrations on the core and current
sheet respectively. Solving these equations by
using the boundary element method, the magnetic
field intensity H is computed as follows,

iG
L ST U -%:—'(vc)]dr -Io s, ’!g(vg—g) dr. (12)

When the current sheet locates on the core,
the following equation is used in order to avoid
the singularity of Green’s function.

H=foo o 10-%8) 08 -2 (o6 Jar (13)

Numerical Results and Discussion

Electron Beam Analysis in an Electric Field

The method was applied to the electron optics
simulation of an electron gun with six electrodes.
Fig.6 explains the process of geometric modelling
and grid generation and shows some calculated
results. A cross-section of the electrode geometry
is shown in Fig.6(a). The 2-D wire-frame model in
Fig. 6(b) was created by connecting the input points
(asterisks) wusing 1lines and curves. After the
domain was divided into 27 subdomains, the initial
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(a) Electrode geometry of CRT
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Fig. 5 Boundary
element method

grid was generated by linear interpolation in each
subdomain (Fig.6(c)). Then the 2-D optimized grid
was calculated using the grid generation method
(Fig. 6(d)). The 3D wire-frame model was obtained
by sweeping the 2-D model along the guide curves.
The 3-D optimized grid was finally obtained by the
grid generation method (Fig.6(e)). The total
number of generated grid points was about 60, 000.
Fig. 6(f) shows the potential distribution and beam
trajectories, which are solved assuming constant
field in a cell. The space charge caused by a beam
trajectory in a cell is distributed to the
surrounding 8 grid points. Beam spot size at the
screen center was obtained by further calculation
in the deflection region, considering the space
charge effect. The calculated values agreed with
measured values within 10%.

Electron Beam Analysis in a Magnetic Field

Fig. 7 shows the surface grid generated on a
110° deflection yoke consisting of saddle and
toroidal coils and a core. There were 396 and 252
grid points on the saddle coil and the core,
respectively. Figs.8 and 9 show the distribution

of the magnetic field caused by the saddle coil and
coil respectively,
permeability i,

toroidal
specific

while changing the
from 80 to  350.
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(e) 3—D optimized grid

(c) 2—D initial grid

(f) Potential distribution and beam trajectory

Fig. 6 Electron optics simulation for electron gun
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Calculated values agreed within 5% with measured
ones at p, =80 for the saddle coil and at g =200 for
the toroidal coil. The difference in specific
permeability was due to the fact that the saddle
coil produced the stronger magnetic field than the
toroidal coil.

Electron beam trajectories in the deflection
region were calculated. The initial condition of
the electron beam was provided from the electron
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Fig. 7 Generated grid on saddle coil and core
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green
(a) Calculated

" green
(b) Measured
Fig. 10 Beam spot profiles on the screen top

beam analysis described above. Fig. 10 compares
between the calculated and measured contours of the
beam current density at the screen top. Calculated
profiles of the low current density region (halo)
qualitatively agreed with measured ones.

Conclusions

A method of 3-D electron optics simulation has
been developed. The electric field analysis was
based on a boundary-fitted coordinate
transformation method with a technique of
decomposing the analysis domain into several
subdomains. The magnetic field analysis was based
on a current sheet and a boundary element method.

The present method was applied to electron
beam analysis of a CRT. Calculated beam spot size
at the screen center agreed with measured values
within 10%. Beam spot profiles at the screen top
agreed with measured ones where the analyzed
magnetic field caused by a deflection yoke agreed
with measured values within 5%.
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