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The mechanism of force detection of Atomic-Force Microscopy (AFM) is theoretically investigated. First, a
theoretical simulation of contact AFM images is performed, and a tip apex structure is studied. It is clarified how
the AFM images and the force distributions change as the load varies. It is also revealed that the characteristics of
the AFM images such as their detailed microscopic pattern, the symmetry, and the corrugation amplitude, depend
strongly on the tip apex structure. Secondly, fundamental features of the atomic-scale friction in Frictional-Force
Microscopy (FFM) are studied. Simulated FFM images are in good agreement with observed ones. Then we discuss
the mechanism of the image pattern of FFM by an analytical method. It is revealed that the part of the boundary
of the stable region of the cantilever basal position, appears as the boundary between the bright and the dark area
of FFM images. Thus we clarify the physical meaning of the FFM image patterns. Lastly, we studied dynamics
of the large amplitude cantilever oscillations in the noncontact AFM (nc-AFM). The oscillation of the cantilever
is treated as a forced oscillation periodically interrupted by collisions with the surface. By solving this extremely
nonlinear problem numerically, some remarkable features of the cantilever oscillation are revealed. We observed
strange behaviors of the cantilever such as a bimodal state of dynamical touching and non-touching motion, as well
as a fractional resonance features.

KEYWORDS: AFM, FFM, contact, friction, noncontact, forced vibration, tip, cantilever, graphite, Lennard-Jones po-

tential

1. Introduction

Among various sorts of scanning probe microscopies
(SPM), Atomic-Force Microscopy (AFM) [1] is a power-
ful method for the determination of surface structures,
because it can resolve both conducting and insulating
surfaces in an atomic-scale. Therefore AFM has become
a basic experimental device not only in the field of sur-
face science but also in many other basic and applied
fields such as semiconductor devices, catalyses, electro-
chemistry and biological science. However the micro-
scopic mechanism of AFM has not been clarified yet.
Therefore, in this article, we investigate systematically
the mechanism of force detection of AFM and give a
physical interpretations of AFM images.

First, in Section 2, we focus on ”contact AFM”. The
principle of contact AFM is detecting a force exerted
between a tip apex mounted on a cantilever and a sam-
ple surface. The force is directly detected by measuring
the static cantilever deflection. Here we perform overall
studies on the effect of the tip apex structure on contact
AFM. The detailed feature of the force distributions be-
tween the tip and surface, effect of the tip apex tilting,
and influence of the orientation, are clarified. [2, 3]

When contact AFM is used in the measurament of fric-
tion, it is called ”Frictional-Force Microscopy (FFM)”,
which has enabled us to observe the atomic-scale fric-
tion, [4] and has opened a new research area of friction
— nanotribology. Therefore FFM is a powerful tool for
understanding the basic friction mechanism between a
single asperity and an atomically flat surface. However,
from a theoretical view point, the basic issue, i.e., *what

kind of physical information is included in FFM images
?’, has not been fully discussed yet. Therefore, in Sec-
tion 3, we simulate FFM images numerically based on a
static model, and compare them with experimental re-
sults. [6—8] Then we will provide a comprehensive phys-
ical interpretation of FFM image patterns, by using an
analytical method. [9] Based on the analysis of the stick-
ing region of the tip atom position, the ’sticking domain’
of the tip atom is clearly defined. The quasi stable equi-
librium condition can be rewritten as a mapping relation
between the tip atom position (z,y) and the cantilever
basal position (z;, ys ), which provides an important clue
for an understanding of the FFM image.

Recently "noncontact AFM (nc-AFM)” [10] has been
developed, the operating condition of which is quite dif-
ferent from those in contact AFM and FFM. In this
mode, the cantilever is forced to oscillate near its res-
onant frequency. At the stable oscillation state, the tip
height which keeps the resonance frequency or oscillation
amplitude constant, is monitored during the scan. From
this information one obtains the nc-AFM image which,
in a certain condition, achieves an atomic-scale resolu-
tion. Noncontact AFM is expected as a non-destructive
method of measurement of the sample surface, and has
succeeded to observe atomic-scale images of them. How-
ever the mechanism of this nc-AFM has not been clari-
fied at all. For example, so far, it has not been studied
what physical quantities are actually obtained by the tip
to form the image. Therefore, as the first step toward an
understanding of the force-detecting mechanism of the
nc-AFM, we performed a preliminary study of a large
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Figure 1. Contact AFM system of the diamond [111] tip
made up of 54 atoms and the graphite surface. Z denotes
the vertical distance between the fixed basal plane of the

tip and the first layer of the surface before relaxation.
0.y is a tilt angle of the tip.

amplitude movement of the cantilever. Dynamics of the
cantilever in nc-AFM is discussed in Section 4.

2. Effect of the tip structure on contact AFM

2.1. Cluster model of the contact AFM system

The tip-surface system of contact AFM is represented
by the cluster model composed of the multiple-atom di-
amond [111] tip comprised of 54 atoms and the graphite
sample surface, as shown in Figure 1. In the simulation,
another multiple-atom diamond [111] tip made up of 50
atoms as shown in Figure 2 is also used. Any possible
effects of the reconstruction of the tip surface are ne-
glected. Considering the symmetry, the cluster model
of the graphite surface is formed by adding hexagons
around the center hexagon. If the surface deformation
near the tip-surface contact region is noticed, the small
surface cluster with 96 cluster atoms per layer is enough
for the AFM simulations. Therefore, as a cluster of the
sample surface, the graphite made up of 288 atoms with
three layers, each of which consists of 96 atoms, is used.
As a boundary condition, all of the 96 atoms of the third
layer, and 42 atoms on the edges of the first and the
second layers are fixed. Following the standard nomen-
clature of bulk graphite, the atomic site of the first layer
just under which there exists an atom or not is des-
ignated as the A or the B site, respectively. And the
center of the hexagon is called the H site.

Then, model potential energy we use in the simulation
is explained. The total energy V of the system consists
of the potential energy of the tip Vr, that of the sample
surface Vs and the tip-surface interaction Vrg as follows:

V({rup}, {reurt}) = Vr({rup}) + Vs({rsur})
+ Vrs({rup}: {rsur}) (1)

where {ryp} and {reus} are the positions of the tip
atoms and the sample surface atoms, respectively.

First, Vr is assumed to be a simple harmonic potential

for the diamond [11]. It is expressed as the sum of two

Figure 2. Multiple-atom tip made up of 50 atoms.

different types of harmonic terms as follows:

1 1
Vr({rup}) = 52/\r(7‘ir’“0)2+§ > Xord(Biix—00)*.(2)
i—j i—j—k

Here the indices of the summation i-j and i-j-k represent
the nearest-neighbor bonds and bond pairs, respectively.
Therefore the first term means the bond-stretching en-
ergy due to the change of each nearest neighbor bond
length, r;; from the equilibrium one, ro. Furthermore
the second term represents the bond-bending energy
corresponding to the change of each bond angle, 8k
from the equilibrium one, 83. The parameters of Vp are
ro = 1.5445A, A, = 29.512eV /A2, 0y = cos™(—1/3)rad
and \g = 3.5213 eV /A2

Similarly, Vs is also assumed to be a harmonic poten-
tial for the graphite [12], which consists of four different
types of harmonic terms as follows:

1
Vs({rsurt}) = 3 Z#r (rij — 7”0)2
i—j
1
* 3 > norh (Gijx — 60)?
imj—k
1
+ 5 D, waldij—do)’
i—j:interlayer
1 8z; + 8z + 02\ 2
+ 2 E #p(azi—-—l————gk——l)(g)

i_(jvkrl)

Similar to V7, the first and the second terms correspond
to the bond-stretching, and the bond-bending energy, re-
spectively. In this case, 6;;r denotes the angle between
the bond i-j and the bond j-k within the same honey-
comb net plane. Unlike Vp, Vg has the third and the
forth terms. The indices of the summation ’i-j: inter-
layer’ and i-(j,k,l) represent the interlayer bond, and
bond triplets, respectively. The third term is the in-
terlayer bond-stretching energy for the change of the
interlayer distance, di; from the equilibrium distance,
do. The fourth term is the bending energy of the lo-
cal planar structure due to the normal displacement of
the ith atom from the coplanar position with respect
to the three neighboring atoms j,k and [ dz; denotes
the normal displacement of the ith atom from the in-
tial position. The parameters of Vg are assumed as
ro = 14210 A, p, = 41.881 eV/A?, 6y = 27/3 rad,
pe = 2.9959 eV /A2, pg = 0.34765eV /A2, dy = 3.3539 A
and p, = 18.225 eV /A2, respectively.

The sum of the 6-12 Lennard-Jones potential is chosen
for Vrs, i.€.,

Vrs({reip}, {tsurs}) = Z vrs ([Ttipi — Tsurf,j])
iJ
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Here, we assume that every tip atom interacts with
all the surface atoms only through a pair potential and
that this potential is the same for all the pairs of the tip
and the sample surface atoms. Although the parameters
€ and o are not necessarily unique, those used by Gould
et al., [13]—e = 0.87381 x 1072 eV and o = 2.4945 A
are employed. The merit of this potential is that the
corrugation amplitude is well reproduced [2, 3, 13]. This
potential is used with a cutoff at r, = 2.30.

2.2. Method of simulation
In this section, the method of simulation is explained.
Atoms in the AFM system are assumed to be always

Figure 3. Multiple-atom tip made up of 54 atoms posi-
tioned on the (a) A, (b) B, and (c) H sites. The small
and the large black circles correspond to the first- and
the second-layer tip atoms, respectively. The white cir-
cles correspond to the graphite atoms.

located at a stable equilibrium state, and the adiabatic
theorem holds good. This assumption is valid because
the cantilever scanning speed in experiment, vapm, 18
almost in the limit of zero, compared to the velocity
of lattice vibration vy. In most of AFM experiments,
varMm ~ 10711-1078 m/s, while vf, ~ 103-10* m/s.

After the tip basal plane is fixed at a certain
position above the sample surface, the total energy
V({rtip}, {rsurt}) is minimized to relax the sample sur-
face by using the Polak-Ribiere—type conjugate gradient
(CG) method [14]. Then, total force F(z) acting on the
tip is obtained for the respective values of z. Here z is
the coordinate parallel to [111] axis of the diamond, that
is to say, perpendicular to the graphite [0001] plane, as
shown in Fig. 1. In the calculation of AFM, only the
perpendicular deflection of the cantilever is allowed, and
we focus on the z component of F(z), F,(z).

Here we set the convergence criterion as follows: the
maximum of absolute values of all the forces acting on
the movable atoms is lower than 107° nN, i.e.

-5
[z (1F3]) < 107°nN, (5)
where N is the total number of movable atoms both of
the tip and the sample surface, and F; is a force acting
on the ith atom.

We performed calculations as mentioned above for
several values of z for a fixed lateral (z,y). Further,
according to the method adopted by Tang et al. [15], 2-
F, relation (force curve) is obtained by a polynomial fit
from the calculated values of F, corresponding to these z
values. The six order polynomial is used and the residue
of this fitting is less than the order of 10~° nN. Then
the equation

F,(z) = Fy, (6)

is solved and the tip height z for the scanning force Fji.
is calculated. If this procedure is repeated for each (z,y)
value in the region of the tip scanning, the AFM image
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Figure 4. Force-distance curves on the A, B and H sites
for a multiple-atom tip made up of 54 atoms.
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Figure 5. (a) Constant-force images and (b) force distributions for a multiple-atom tip made up of 54 atoms. In
(a-1) and (b-1), the lateral dimensions are 13 A x 13 A. In (a-2) and (b-2), the tip is placed right above the B
site. The larger black circles represent surface B sites or tip atoms, and the smaller black circles represent surface
A sites. The solid curve denotes the section of the paraboloid that includes four tip apex atoms. The broken lines

denote the boundary of the cluster models.

with a constant scanning force Fys. can be calculated.
On the other hand, when z is fixed, the constant-height
image is obtained by the values of F,(z) over the (z,y)
domain.

2.3. Multiple-atom tip made up of 54 atoms

One of two multiple-atom tips is made up of 54 atoms
with the axis parallel to the diamond [111] direction.
This tip consists of eight layers, and has one apex atom
and three atoms in the second layer as shown in Fig. 1.
The tip orientation is fixed as shown in Figures 3(a)-3(c).
In this orientation, the calculated force - distance curves
are presented in Figure 4. We note that 2, is defined as
a position of the fixed basal plane of the diamond tip. It
is shown that the H site is lower than the A and the B
sites, and that the B site is a little higher than the A site.
The reason for the difference of the height between the
three sites is explained below, with the interpretations
of AFM images.

The tip detects forces mainly by one apex atom and by
three atoms of the second layer as seen in Figures. 5(a-2)
and 5(b-2). In a weak repulsive force of F; = 0.5 nN,
one apex atom detects the dominant repulsive forces,
and three atoms of the second layer feel rather small at-
tractive forces as shown in Fig. 5(a-2). Therefore, the
forces between the tip and the surface approximately
concentrate only on one atom of the tip and the surface,
and the single-atom contact occurs. However, as F, in-
creases, repulsive forces distribute over many atoms. In
a strong repulsive force of F, = 5.0 nN, the forces felt
by three atoms of the second layer also become repulsive
and larger, and multiple-atom contact occurs as seen in
Fig. 5(b-2). However, the image reflects the periodic-
ity of the graphite lattice and has an apparent atomic
resolution [Fig. 5(b-1)]. Both AFM images of Fig. 5(a-
1) and Fig. 5(b-1) correspond well to the experimental
ones [16, 17].

Although the interpretation of the calculated images
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Figure 6. Constant-force images for a multiple-atom tip

made up of 54 atoms with the scanning force of 0.1 nN.

The tilt angle 9, is (a) 19.5°, 11{ 10°, (c) 5°, and (d)
. 'The lateral dunenswns are b A xb A

is generally difficult, the brightness of the site in the
particular example mentioned above can be qualitatively
explained by the location of the tip atoms. For the case
of F; = 0.5 nN, the simulated image shows basically
a honeycomb lattice pattern, in which the B site is a
little brighter than the A site if we look at the image
of Fig. 5(a-1) closely. When the tip is placed above the
A site, three atoms of the second layer of the tip are
located above neither the A site nor the B site as shown
in Fig. 3(a).

Therefore, the attractive forces between the surface
and the second layer of the tip, obtained when the
tip is placed above the A site, becomes larger than
those obtained when the tip is situated above the B site
[Fig. 3(b)]. However, the repulsive force between the
surface and the tip apex atom above the A site is al-
most equivalent to that above the B site. Therefore, the
net repulsive force above the B site is larger than that
above the A site. With the increase of F,, the bright
spots tend to form a triangular shape, as seen in the
case of F; = 5.0 nN. At the same time, a wire net pat-
tern combining the A and the B sites is also emerged as
seen in Fig. 5(b-1). When the tip is placed above the
B site, each of the three tip atoms of the second layer
can easily interact with the A site as shown in Fig. 3(b).
In this location, the repulsive forces between the surface
and the second layer of the tip become the largest. Fur-
thermore, the effect of the interlayer interaction becomes
more enhanced in the case of Fig. 5(b-1) than the case in
Fig. 5(a-1). Thus, the net repulsive forces above the B

5
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Figure 7. Force distributions for a weak repulsive
force of F; = 0.1 nN when the tilt angle ,, is 0°.
The y and z coordinates of the atomic sites and

of the forces are presented.

site are larger than those above the A site. In this strong
repulsive force mode, the physical quantity represented
by the AFM image is the sum of the forces distributed
over many atoms that are self-consistently determined,
together with the microscopic atomic deformations of
both the tip and the surface. Therefore its correspon-
dence with the surface corrugation is rather complicated
and a simple explanation is rather difficult.

The corrugation amplitude Azpy (the difference in
the tip height between the B and the H sites) is about
0.14 A for Fig. 5(a-1), and 0.08 A for Fig. 5(b-1). One of
the reason why the corrugation for the stronger repulsive
force is smaller than that for the weaker repulsive force
is probably that the edge effect is not negligible for the
multiple-atom tip even at F, = 5.0 nN. Another reason
is due to the structure of the tip apex.

The effects of the tip apex structure on the image are
also investigated by the tilt of the tip. The tilt of the tip
causes a change of the effective tip apex geometry which
influences the net forces between the tip and the surface.
The tip is tilted around the axis parallel to the & axis
passing the tip apex atom. The tilt angle is denoted as
0y. presented in Fig. 1, and it is varied from 19.5° to
0°. At the respective 8,,, the tip is scanned with a con-
stant force of 0.1 nN. At 6y, = 19.5°; an effective tip is
composed of one apex atom and three atoms in the sec-
ond layer, and it has threefold symmetry. On the other
hand, when 6,, = 0°, the tip consists of two apex atoms
and two second layer atoms, and it has approximately
the twofold symmetry. Corresponding to this change of
the tip apex symmetry, the threefold symmetry of AFM
images also turns into the twofold symmetry as shown in
Figures 6(a)-6(d) in the order of §,, = (a)19.5°, (b)10°,
(c)5° and (d)0°. With the decrease of 6, the A sites
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Figure 8. Multiple-atom tip made up of 50 atoms posi-
tioned on the (a) A, (b) B, and (c) H sites.

become darker and the stripes along the z-direction be-
come brighter. Fig. 6(d) is obtained because the forces
are distributed dominantly on two apex atoms of the tip
as shown in Figure 7. This image corresponds well to
the experimental images [17, 18].

2.4. Multiple-atom tip made up of 50 atoms

The other model of a multiple-atom tip is made up of
50 atoms with the axis parallel to the [111] axis. This tip
consists of six layers, and has three apex atoms on the
top layer and six atoms in the second layer as presented
in Fig. 2. Therefore it is a rather dull tip. The tip
orientation is fixed as shown in Figures 8(a)-8(c).

This tip detects forces mainly by three apex atoms
and by six atoms of the second layer [Figure 9(b)]. The
image of the graphite surface with a scanning force of
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Figure 9. (a) Constant-force image and (b) force distri-
butions for a multiple-atom tip made up of 50 atoms.
F, is a weak repulsive force of 0.5 nN. In (a), the lateral
dimensions are 13 A x 13 A. In (b), the multiple-atom
tip is placed right above the A site. Only the z and 2
components of the atomic sites and the forces are shown.
The larger black circles represent surface A sites or tip
atoms, and the smaller black circles represent surface
B sites. The broken lines denote the boundary of the
cluster models.

0.5 nN shows a honeycomb lattice [Fig. 9(a)]. In this im-
age, both the B and the H sites are brighter than the A
sites. Similar to the case of the tip made up of 54 atoms,
the brightness of the site is explained as follows: When
the tip is placed above the H site, the three first-layer
atoms and the six second-layer atoms easily interact with
the B and the A sites respectively [Fig. 8(c)]. Above
the B site, only three apex atoms significantly interact
with the A sites [Fig. 8(b)]. However, when the tip is
placed above the A site, only six atoms of the second
layer are located above the B sites [Fig. 8(a)]. There-
fore, the repulsive tip-surface interaction above the B
and the H sites becomes larger than that for the case
with the tip placed above the A site. The corrugation
amplitude Azgya is 0.14 A, and the H site is as bright
as the B site. Thus, although the multiple-atom contact
occurs, even the rather dull tip can observe a honey-
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Figure 10. The rotational angle 6, of the tip. The
smaller black circles denote the tip apex atoms and the
larger black circles denote the atoms of the second layer
of the tip. The white circles denote surface atoms.

comb lattice. Unlike the image of the single-atom tip,
the bright spots do not match the real atomic sites any
longer. Although the A sites are atomic sites, the image
of the A sites is dark. This dull tip observes the forces
distributing over a wider region than the multiple-atom
tip made up of 54 atoms as shown in Fig. 9(b). However,
in the orientation mentioned above, the projection of the
tip apex to the surface is nearly commensurate with the
graphite lattice, and eventually the honeycomb image is
obtained. Therefore, this image of Fig. 9(b) reflects the
periodicity of the graphite lattice. We should be careful
that the periodic AFM images can be always obtained
with an unusual tip as used here, if the surface has an
ideal two-dimensional translational symmetry. Thus the
tip apex structure is an important factor in determining
the contact condition and the region of force distribu-
tions.

2.5. Tip orientation

In this section, the effects on the AFM image of the tip
rotation around its axis are investigated for two kinds of
multiple-atom tips; 1) 54-atom tip which has one apex
atom and three atoms in the second layer, and 2) 50-
atom tip which has three apex atoms and six atoms in
the second layer. First, we will discuss the results for
the multiple-atom tip made up 54 atoms. When the tip
is rotated clockwise around the [111] axis parallel to the
z axis with a scanning force of 0.5 nN [Figure 10], the
image varies as shown in Figures 11(a)-11(d). The def-
inition of 0, is illustrated in Fig. 10. At 0zy = 0°, the
B site is brighter than the A site [Fig. 11(a)], and the
corrugation amplitude is about 0.13 A. As 05y increases,
the difference of the brightness between the A and the
B sites decreases [Fig. 11(b)]. At 6,y ~ 30°, the A site
is approximately as bright as the B site and the im-
age becomes a nearly perfect honeycomb lattice pattern

7/;\'/\?
L/AU

Figure 11.

Constant-force[F, = 0.5 nN] images for
contour-plot expressions obtained by the multiple-atom

tip made up of 54 atoms. Thick curves denote the
boundaries of the bright spots of the A or the B site.
The rotational angle 0y is (a) 0°, (b) 20°, (c) 30°, and
(d) 60°. The lateral dimensions are 5 A x 5 A.

[Fig. 11(c)]. In our calculation, the precise angle where
the A site is exactly as bright as the B site is about
27°. When 6., increases still more, the A site becomes
brighter than the B site and the corrugation amplitude
becomes larger and takes the maximum value, 0.15 A at
fry =~ 35°. These results show the mechanical inequality
between the A and the B sites based on the interlayer
interaction. At 0, = 60°, the brightness of the A and
the B sites i1s perfectly reversed compared to the case
of 65y = 0° [Fig. 11(d)], and the corrugation is about
0.14 A. Thus AFM images reflect the rotation of the tip
for 60°, and the rotation causes the reverse of the site
brightness between the A and the B sites. This reverse is
caused mainly by the interaction between three second
layer atoms of the tip and the surface sites.

Next, the rotation of the multiple-atom tip made up
of 50 atoms is discussed. This tip has three atoms on
the truncated plane of its apex. The influence of the
tip orientation is rather different from that for the tip
made up of 54 atoms. The tip is also rotated clockwise
around [111] axis with a scanning force of 0.1 nN. The
image varies as shown in Figures 12(a)-12(c). For this
tip, the brightness between the A and the B sites for
fzy = 60° is also perfectly reversed compared to that for
sy = 0°, similar to the case of the tip made up of 54
atoms. However, variation of the corrugation amplitude
for a 50-atom tip is much larger than that for a 54-atom
tip. At 8, = 0°, the tip is nearly commensurate
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Figure 12. Constant-force[F, = 0.1 nN] images for
gray-scale expressions obtained by the multiple-atom tip
made up of 50 atoms. The rotational angle 0, is (a)
0°, (b) 10°, and (c) 20°. The lateral dimensions are
54 x5 A.

with the surface and the honeycomb image is obtained
as shown in Fig. 12(a). In this case, the corrugation am-
plitude is about 0.17 A. However, when 0, increases,
the tip apex structure becomes incommensurate with the
surface, and the corrugation amplitude becomes smaller.
At 8., = 10°, the corrugation of the image changes a lit-
tle [Fig 12(b)]. However, at 0, = 20°, the corrugation
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Figure 13. Corrugation amplitude as a function of the
rotational angle 04, for (a) 54-atom tip under the con-
stant scanning force of F, = 0.5 nN (white circles and
dotted curves), and (b) 50-atom tip under F; = 0.1 nN
(black circles and solid curves).

rapidly decreases and the image becomes rather dark
[Fig 12(c)]. At @zy =~ 30°, the tip apex structure be-
comes the most incommensurate with the surface and
the corrugation takes the minimum-0.01 A. Therefore,
although the image still has a threefold symmetry, it can
be thought that the image obtained around this orienta-
tion cannot be observed in the experiment [Fig. 12(c)].
This restricts the region of rotation angle for observing
the AFM images, and the region in which AFM images
are impossible to obtain appears at every 60°.

The corrugation amplitude as a function of the tip ori-
entation (fyy) is presented in Figure 13. The difference
between the maximum and the minimum corrugation
for the tip made up of 54 atoms—0.01 A—is much smaller
than that for the tip made up of 50 atoms. Thus, the
AFM image is sensitive to the tip rotation. Moreover,
the sensitivity of the image to the tip orientation de-
pends strongly on the tip apex structure.

3. Atomic-scale friction in FFM

3.1. Cluster model of FFM system

In the numerical simulation of FFM, a single-atom tip
connected with a cantilever is scanned on a rigid mono-
layer graphite surface. Figure 14(a) schematically rep-
resents the cluster model of the FFM system. In the
simulation, only the small loading condition is treated.
Therefore, under this low loading condition, the surface
deformation is very small, and the effect of the second
layer of graphite can be neglected. This is why a sec-
ond layer of graphite is not necessary. The model of
the graphite monolayer surface consists of 600 carbon
atoms and 271 hexagons, and the lattice constant of the
graphite is-assumed to be 1.421 A. In this case, the
range of the tip scan must be limited near the center
of the surface model, in order to avoid any of the ar-
tificial boundary effects. The total potential energy V
is assumed to consist of the elastic energy of the can-
tilever Vi, and the microscopic tip-surface interaction
Vrs. This relation can be written as follows:
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Figure 14. (a) Schematic illustration of the FFM sys-
tem used in our calculation. The single-atom tip con-
nected with the cantilever spring is scanned on a rigid
monolayer graphite surface. (b) Lattice structure of the
graphite. c¢p is the length of a unit translational vec-
tor of graphite. bg is the C-C bond length of graphite.
co=2.46 A, and by = 1.42 A.

V({{rup}) = Ve ({rep}) + Vs ({rsip}) (7)

where {ry,} = (z,y, 2) denotes the actual tip atom po-
sition. Here, the # and the y directions parallel to the
surface are defined as shown in Fig. 14(b), and the z axis
is perpendicular to the surface, z — y plane. The origin
of the z axis is defined as the position of the graphite
surface.

The cantilever is mimicked by an equivalent three-
dimensional spring, and Vr is assumed to be harmonic
as follows:

e =5 3 e -z, 8

ileylz

where k;(i = 2,y,7) is an elastic constant of the can-
tilever spring parallel to the i(i = z,y, z) direction. This
spring is also assumed to include the effect of the mi-
croscopic interatomic bonds of the tip. And (z,,ys, 2;)
denotes the equilibrium position of the tip atom for the
system without the interaction with the surface. The
vertical component £, is assumed to be 0.25 N/m, which
1s of the same order as realized in most of the experi-
ments. k, and k, are treated as parameters.

9

Tip-surface interaction Vps can be obtained as the
sum of all the pair interactions between the single-atom
tip and the sample surface atoms. The Lennard-Jones
potential mentioned in Section 2.1, is employed here as
follows:

o N\ 12 o\ 6
Vrs({riir}) 2346[(r0i) 2] ®
Here, rq; 1s the distance between the tip atom and the
1th atom in the graphite surface, and the parameters
are just the same as those mentioned in Section 2.1: ¢ =
0.87381 x 1072 eV, and o = 2.4945 A.

The simulation has been performed under the
constant-height mode. Therefore, {z;,y,) is varied with
the lever basal position along the z direction fixed un-
der the repulsive-force condition, and the FFM system
comprised of the tip and the surface, is totally relaxed
for each (zs,ys), based on the CG method mentioned in
Section 2.2. Then the optimized position of the tip atom
(®,y,2), and the lateral force F;(i = z,y) acting on the
lever basal position are obtained. The lateral force F;
acting in the —¢ direction, as defined in Fig. 14(a), is
given by

Vo
AL

i=2z,y). 10

0 | wrmtoagney Y 1)
3.2. Tomlinson’s mechanism

In the simulation, we assume that the friction on an
atomic-level is originated based on Tomlinson’s mecha-
nism [19]. Therefore in this section, Tomlinson’s méch-
anism 1s described in detail. First, the following two
conditions are assumed: (1) The tip-surface system is
considered under the condition of the absolute zero tem-
perature T = 0 K. In this case, thermal activated pro-
cesses can be perfectly neglected. (2) FFM system is
always located at a stable equilibrium state. Because,
the adiabatic theorem holds well in the tip-surface sys-
tem of FFM as mentioned in Section 2.2.

Based on the assumptions mentioned above, the tip
apex atom is always located at an equilibrium position of
the potential surface as shown in Figure 15 for each can-
tilever basal position. Therefore, it is implicitly assumed
that the energy of the system is supplied or removed
instantaneously by the external force driving the can-
tilever. The potential energy surface of the tip-surface
system for a given cantilever basal position is very slowly
changed in time with the scan of the cantilever. It is
noted that the adiabatic potential surface itself evolves
in time by the external force driving the cantilever. This
evolution is schematically understood by a simple one-
dimensional model as shown in Figure 15. In this fig-
ure, it is assumed that V(z) = Vp(z) + Vps(z). And
the coordinate z of the tip apex atom is taken in the
cantilever scan direction. By changing the stiffness of
the cantilever, two types of the potential energy sur-
faces appear as shown in Figs. 15(a) and 15(b). For the
stiff cantilever, the total energy V is nearly parabolic
and only single minimum appears. However, for the soft
cantilever, several metastable points corresponding to lo-
cal minima appear. Thus the appearance of the case of
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Fig. 15(a) or Fig. 15(b) is determined by the ratio be-
tween the magnitude of the spatial variation of Vr and
Vrs.

Therefore, for the stiff cantilever, the representative
point of the system (the tip atom in this case) is always
moving trapped in the single minimum of the poten-
tial energy surface and shifts continuously as shown in
Fig. 15(a). On the other hand, for the soft cantilever,
discontinuity of the motion of the tip atom occurs as
shown in Fig. 15(b). In this case, for some period of
the cantilever scan, the tip atom is moving continuously.
But it makes a sudden jump from one minimum to an-
other deeper minimum, when the barrier between two
minima disappears. The energy of the FFM system is
dissipated instantaneously when the tip atom slips from
a local potential minimum to another. This mechanism
of energy dissipation mentioned above is a Tomlinson’s
mechanism. We discuss various features of atomic-scale
friction based on this mechanism.

3.3. Comparison between simulation and exper-
iment

Figure 16 shows the comparison between the simu-
lated and the experimental FFM images of Fy/k; and
F,/ky for the case that the cantilever is scanned in
the z-direction. Both the simulation and the experi-
ment are performed under the constant-height and the
repulsive-force mode. In the numerical simulation, the
lateral components of the spring constant are fixed as
ky = ky = 2.5 N/m, and z, is varied. As the cantilever
basal position approaches the surface, z, decreases, and
the average value of F,, < F, >, increases. Further,
detailed experimental setup is described in Fujisawa ef
al. [20]. In Fig. 16, simulated image patterns reproduce
fairly well experimental ones.

Here, the load of simulation [< F, >=1.42 nN] is by
two orders of magnitude smaller than that of the exper-
iment [< F, >=327 nN]. This is due to the fact that we
adopt a single-atom tip model in the simulation. Abra-
ham et al. [22] pointed out that the flake tip actually
detects force on the graphite surface in contact-AFM ex-
periments. Therefore, if the calculation is performed by
the flake tip including a large number of carbon atoms,
a magnitude of the load in the simulation becomes as
large as that in the experiment.

3.4. Analysis of FFM image

As shown in the last section, similar features of pat-
terns are obtained in both the simulated and the exper-
imental images. Therefore, in this section, we clarify
the physical meaning of these patterns, by using an ana-
lytical method whose concept is presented by Gyalog et
al. [21].

3.4.1. Method of Analysis

The method of analysis is described below in detail.
First the potential V is converted from the function of
three variables, #, ¥ and z, into a function of two vari-
ables, z and y. For that purpose z should be chosen as
the point corresponding to the minimum of V', satisfy-

Ing,

(b)

Scan
e

@ Vp

@
can
weormeredin.

Vr (1) (1)

Figure 15. Schematic illustration of the total energy V
obtained by the sum of the elastic energy of the can-
tilever spring Vr and the tip-surface interaction Vrg.
Two cases for a (a) stiff and (b) soft cantilever are pre-
sented. (1)-(4) denote the time evolutions of the poten-
tial by the cantilever scan. For the stiff cantilever, to-
tal energy V is nearly parabolic, and the tip atom (the
shaded circle) is always located at the minimum. How-
ever, for the soft cantilever, several metastable points
corresponding to local minima appear, and the tip atom
jumps to the deeper minimum at these points, when the
barrier between two minima disappears.

OVrs(z,y,2)
AL S R 11
P (11)

The solution z of eq.(11) can be obtained as z(z,y; 2s).
V is therefore represented as

F,=-— =k, (z— 25)-

%(kw(:” - “'3)2 + I"y(y - ys)2)
(12)

V(x;yQ xs;ysazs) =
+ V(z,y2),

“4)
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Figure 16. FFM images of F;/k, and Fy/k, obtained by numerical simulations and experiments with a tip scanned

in the « direction of Fig. 14.

where

) 1
Ve y;2,) = Ekz(Z(x,y;zs)—zs)z

Vrs(z,y, 2(z,y; 25)). (13)

In the next step the lateral coordinates of the tip atom,
z and y, can be determined by

ViV =0 (i==z,y), (14)

for each cantilever basal position (z,ys, 2z, + lo).

To satisfy the quasi-stable equilibrium condition of the
two-dimensional position of the tip atom (z,), it is nec-
essary that Hessian of V is positive definite. Therefore
the relation:

0°V/0z;0z;| >0 (i,j = 2,y) and 8°V/dz> > 0,
(15)

1s required in addition to eq. (14).

Further, the equilibrium condition, eq. (14), can be
rewritten as follows:
13V (2, y; zs)

(es,m) = (24 —

5V'(.7:, y;zs))

1
Ve

(16)

Eq. (16) is the condition of the lateral components of
the cantilever basal position (z,,y,) which can realize
the equilibrium tip atom position (z,y).

Thus the quasi-stable equilibrium region of the two-
dimensional tip atom position (z,y) is obtained, and it
is mapped to a domain of the cantilever basal position
(zs,9ys). It should be noted that the mapping to (z,, Ys)
from (z,y) is monovalent, but the inverse mapping to
(z,y) from (z,,y,) is not necessarily monovalent.

3.4.2. Stable tip atom domains

The region of the stable atom position (z,y), where
the real solution (z,,ys) of eq. (15) exist, changes with
the value of z,. Under the low loading condition (for
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Figure 17. The mapping relation between (z,y) and
(2s5,ys) for < F, >= 1.42 nN. A top figure represents
sticking domains A-D, A'~C’, and A"-C" in the (z,y)
space indicated by hatched regions. By eq. (3-6), each
sticking domain is mapped into a domain in the (z,y;)
space, as shown in the bottom figure. The mapping
relation between domains B; or C;, and the sticking do-
mains B or C, are clearly shown. Solid lines represent
C-C bonds of the graphite surface. The region of these
figures is 0 < # < 3 ¢g and 6.5 by < y < 9.5 by, cor-
responding to the region surrounded by a framework in
Fig 16. Here cg = 2.46 A, and by = 1.42 A.

large z,), the region covers the whole (z, y) space. How-
ever, as the load is increased in the frictional-force
regime (with the decrease of z;), the region becomes
to be separated into mutually disconnected domains.
Hatched domains B and C in Figure 17 show discon-
nected stable domains of the tip atom (z,y). Fig. 17
corresponds to a region within the box in a simulated
image of Fig. 16. The tip atom moves discretely between
hatched domains. Therefore we call such domains as B
and C, ”sticking domains”, hereafter. Thus the exact
boundary of the sticking domain can be clearly defined
based on eq. (15).

FEach sticking domain is mapped into a domain in
the (z,,ys) space, by eq. (16), as shown in Fig. 17.
It is assumed that the sticking domains A-D, A'-C

and A”"-C" are mapped into the domains A,-Dj, A;—

Cls and A;—C;’, respectively, hereafter. In the frictional-

¥s 9.51[bg}
2
( 8).75
(1
7.25
2
( )6.5 | ] i
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. e [C ] X §
Start line of scan XScan

Figure 18. Thick curves, AB, BC,CD, A'B',B'C’, A’B’
and B"C", represent analytically predicted fringes of
FFM image patterns for the x scan. Two different types
of FFM image appear. Solid lines represent C-C bonds
of the graphite surface. Start line of scan (z = 0.25 ¢o)
is also shown by broken lines.

force regime, although the function defining the map-
ping (z,(z,y),ys(z,y)) is univalent, its inverse relation
(z(zs,ys),y(zs,ys)) is generally multivalent. Therefore
the mapped domains in the (z,, y,) space are partly over-
lapped with some other mapped domains. In Fig. 17,
mutually overlapping domains B; and C; in the (zs,ys)
space, which are the maps of the sticking domains B
and C in the (z,y) space, are clearly shown by hatched
regions.

3.4.3. Predicted fringe of FFM image patterns

Tn the simulation, it is assumed that no lateral devia-
tion exists between (z, y) and (z;,ys), for the initial scan
condition. Therefore, the initial position of the tip atom
is the hollow site which is the center of the honeycomb
lattice where the start line of the scan exists. While the
cantilever basal position is scanned, the tip atom con-
tinuously moves within the sticking domain. Here we
set a simple assumption as follows: When the cantilever
basal position comes to the boundary of the sticking do-
main in the (z,,y;) space, the tip atom discretely moves
into the sticking domain in the (2,y) space, whose cen-
ter is the nearest hollow site to the present cantilever
basal position. Then, the cantilever basal position on
the boundary of the domain in (z5,ys) plane, is marked
as the part of the image fringe between the bright and
the dark area along the scan direction.

Based on this assumption, fringes of FFM image pat-
terns for the z scan are predicted by the thick curves
as shown in Figure 18, where two different types of im-
age fringe appear as follows: region (1) of 7.25 by <
y < 8.75 by, and region (2) of 6.5 by < y < 7.25 by or
8.75 by < y < 9.5 by. For example, the tip atom mo-
tion in the case that the starting position exists within
a region (1), is considered. The tip atom (z,y) exists
within a domain A in Fig. 17, for the initial state of
scan. When the cantilever basal position comes to the
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Figure 19. The cantilever-tip system is mimicked by a
material point connected with one-dimensional spring.

boundary of the domain ’A;’ in the (x,,y,) space, the
tip atom discretely moves from the sticking domain A’
into the sticking domain ‘B’ in the (z,y) space, whose
center is the nearest hollow site to the present cantilever
basal position. Therefore, for all the x scan within the
region (1), the discrete jump of the tip atom from the do-
main A to the domain B, occurs, and, a thick curve AB,
a part of boundary of domain A;, appears as a fringe
of an FFM image pattern. For the case of region (2)
in Fig. 18(b) and all the cases of Fig 18, just the same
explanation as mentioned above can be done.

Thus it is clarified that, not all of, but some part of
boundaries of the domains in the (z,,y;) space are ob-
served in the FFM image. Which part of the boundary
of the domain in the (z;,y,) space is actually observed,
is determined by the scanning direction.

4. Dynamics of the cantilever in noncontact
AFM

In this section, we discuss some results of preliminary
calculations of the dynamics of the cantilever of a non-
contact AFM. In the numerical simulation, the system
comprised of the cantilever and the tip is mimicked by
a mass point connected with a spring as shown in Fig-
ure 19.

Here the cantilever vibration can be expressed by a
forced vibration of the mass point around the equilib-
rium position with repeated collisions with the surface
in a certain condition. The collision itself is governed
by the microscopic response of the atoms in the tip and
the surface in the touching region. Through this process
the local microscopic information is picked up by the
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Figure 20. Schematic illustration of the energy spec-
trum. The relation between w/wy and cantilever energy
is presented. Two kinds of energy spectra for linear and
nonlinear are shown.

cantilever. In order to investigate the effect of the colli-
sion, i.e., the touching process between the mass point
and the surface on the macroscopic motion of the can-
tilever, we made a numerical simulation with assuming
Lennard-Jones potential as the tip-surface interaction.
If only the motion along the vertical z direction is con-
sidered, the cantilever-surface system is described by a
differential equation as follows:

. . 7 13
resivaia-z) + o5~ (5)

= wo?dsin (wt), (17)

where, 7 is a vertical coordinate of the material point,
and Zj is an equilibrium position. Further, wg is a reso-
nant frequency of the cantilever, w and A are frequency
and amplitude of the external force. C is a parameter
of the Lennard-Jones potential. In the simulation, the
above parameters are fixed as follows: wg = 1, Q = 10,
C=12,0 =05 A= —0.2. w and Z; are assumed as
parameters.

By solving eq.(17) for each w /wg, the stationary oscil-
lation state is obtained. Figure 20 shows energy spectra
with and without nonlinear tip-surface interaction. In
the absence of the tip-surface interaction, or in the case
where the tip height is significantly large, the Loren-
zlan type spectrum Sy, corresponding to a normal forced
vibration appears. However, when the tip-height is de-
creased, a remarkable feature appears in the spectrum
Sni as follows:

For w <« wy, energy spectrum Sy, is just the same as
St.. In this case, the cantilever does not touch the sur-
face during vibration. However, for the specific case of
w=uwg/n (n=2,3,...), the cantilever touches the sur-
face by the period which is n times as much as 27 /wg.
We call this strange type of resonance ’fractional reso-
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Figure 21. Schematic illustration of bi-modal states
within phase space: (1) non-touching slow motion (2)
touching fast motion.

nance’. For w ~ wyp, above a critical frequency number
wei, Sni, discretely deviates from S, and the cantilever
comes to touch the surface. Under the stationary vi-
bration, the cantilever touches the surface once during
one period. The oscillation amplitude for Sy, becomes
smaller than that for St,. In this case the cantilever takes
a ”unimodal touching”, since there is only a single state
of dynamic motion, as contrast to the neighboring higher
frequency region. As w is increased over the frequency
wes where Snr, crosses S, the bimodal touching regime
appears. In this frequency region, two kinds of oscilla-
tion modes are possible. These two modes are switched
from time to time by a little change of the initial con-
dition or stochastic forces from the surface. These two
modes are schematically presented in the phase space
in Figure 21. As w is further increased above a critical
frequency number wcs, a jump of the energy spectrum
occurs, and Syj, becomes the same as Si, again. The
cantilever takes only the non-touching motion.

Further, the effect of the cantilever height (equilibrium
position) from the surface Zj is investigated. Figure 22
presents a relation between Zy and the cantilever en-
ergy. Above a critical value of Zyc, the energy is kept
constant, which means that the cantilever takes a non-
touching motion. However, with the decrease of Zyc,
the energy discretely increases at the point Zy = Zgc,
and then it gradually decreases with Zy. In this case,
the cantilever takes a large amplitude touching motion,
just with the same condition as the small amplitude non-
touching motion. Therefore the former might be called
as the ”dynamic touching” of the tip to the surface.

5. Conclusions

In this article, we performed a systematic study about
the mechanism of AFM, based on both a theoretical sim-
ulation and an analytical method.

®/mWy= const

Cantilever Energy

[y

Tip Height (Equibrium Position) Z

Figure 22. Schematic illustration of the energy spec-
trum. The relation between the tip height (equilibrium
position) Z; and cantilever energy is presented.

First in Section 2, physical meaning of contact AFM
images in the repulsive force mode is clarified. From this
calculation, several fundamental features of the effects
on the contact AFM images are systematically clarified.
Generally speaking, contact AFM images represent not
only the surface geometrical structures, but also are in-
fluenced by many other microscopic features of the tip
and the surface such as the force distributed over atoms
in the contact region, deformation, tip apex structure,
and orientation.

Secondly in Section 3, fundamental feature of atomic-
scale friction appearing in FFM images is investigated.
Simulated FFM images are in good agreement with ex-
perimental ones. Then, based on an analytical method,
general features of the FFM images of graphite surface
can be completely understood. There exists a mapping
relation between the tip atom position (z,y) and the
cantilever basal position (zs,ys). In the frictional-force
regime, disconnected domains in the (z,y) space can be
defined as sticking domains. It is clarified that part of
the boundary of domain in the (z,ys) space into which
the domain in the (z,y) space is mapped, appears as a
fringe of FFM image between the bright and the dark
area along the scan direction. This analysis gives a clear
explanation to both simulated and experimental FFM
images. '

Lastly in Section 4, it is clarified that the collision be-
tween the tip and the surface gives a significant influence
on the large amplitude cantilever oscillation in nc-AFM.
Especially, there exists a region where both the touching
and the non-touching motion appear, depending on the
initial condition and the stochastic forces from the sur-
face. It can be thought that the dynamical touching of
the cantilever with the surface plays an important role
for obtaining an atomic-resolution of nc-AFM.
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