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In a strongly supercooled liquid at a temperature below the unit supercooling, a solid nucleus may grow such that the latent
heat of freezing stays essentially within the nucleus. The temperature in the nucleus is then higher than in the surrounding
liquid. We investigate the possibility that nucleation there may occur nonisothermally. We conclude that this is generally

not the case.
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1. Introduction

The formation of a solid nucleus in a supercooled lig-
uid is associated with the production of latent heat and
its diffusion into the surrounding liquid. It has been
suggested that the nucleation process|[1] for supercool-
ings below the unit suprecooling L/C, (this situation
is sometimes called “hypercooling”) is adiabatic rather
than isothermal[2], where L is the latent heat and C,
the specific heat of the liquid. Although the nucleaus
growth at the late stage is well understood[3], a possible
nonisothermal behavior at earlier stges where the nu-
cleus has a small size has not been studied so far from
the dynamical point of view. There remains the question
whether the critical nucleus remains isothermal during
the nucleation process. Obviously, it would depend upon
the relation between the rate at which the latent heat
produced during nucleation diffuses away, and the rate
at which the nucleus is formed.

In order to simulate the temporal evolution of nucleus
size and temperature we introduce a simple model[4]
that accounts for a random driving force, in addition to
the deterministic driving force, for crystalline growth,
and that describes the nucleation phenomena with heat
production and diffusion. Using the standard technique
of computer simulations, as well as an analytical solu-
tion, we investigate with this model the competition be-
tween nucleus growth and heat diffusion, and the rela-
tion to the critical size of the nucleus.

2. Model

In our model, we assume the nucleus to be a sphere
of time-dependent radius R(t). In this case, the temper-
ature distribution has a spherical symmetry and can be
written as T'(t, 7). Nucleation means then that, by virtue
of the random driving force, R(t) exceeds a critical value

(1

where Tjs is the melting temperature, Tr = T(t, R(t)
the temperature at the solid-liquid interface and ; the
interface energy. We consider the following coupled sys-
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The first term on the right-hand-side of (2) treats the
Bibbs-Thomson effect of the surface free energy. If the
radius R is smaller than R.., then the evaporation process
dominates the growth process and vice versa. The pa-
rameter a characterizes the growth kinetics. The second
term on the right-hand-side of (2) simulates the effect of
thermal fluctuations; 7(t) is the random size fluctuation
obeying (n(t)n(t')) = 26(t—t’) and € denotes the strength
of the random force. Egs.(3) and (4) represent the heat
production and diffusion, which are similar to those en-
countered in the theory of dendritic growth[5, 6]. Here
L is the latent heat and D the thermal diffusivity. The
boundary condition at the interface here is, however, not
given by Tt = Ty but by (2) and (3). Equations (2)-(4)
together with the boundary condition T'(¢,00) = Ty at
infinite radius (and R(t) > 1 atomic distance forced by
the numerical code) offer the complete set of equations
determing R(t) and T'(¢, 7).

In our detailed calculations we have approximated the
solid nucleus temperature by its spatial average. Hence
the temperature inside the solid is equal to T} every-
where: The temperature gradient at the interface evalu-
ated from the solid side, T'/8r|,.=r_o, in (3) is related
to the heat flux into the solid at the boundary and, in
this case, should be replaced by (R/3D)dT;/dt. The
meaning of this term is clear if one multiplies 47R? in
both sides of (3). That is, this equation indicates the
relation between the heat production due to the volume
change and the sift of the temperature throughout the
solid.

The present model is essentially one-dimensional in
space because all the quantities depend only on radius
r and time t. We use the coordinate frames illustrates
in Fig.1; one is the rest frame whose origin is fixed at
the center of the nucleus and the other is the moving
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Figure 1. The rest coordinate and the moving coordinate
frames. It is tractable to use the latter coordinate in
order to solve the diffusion equation. The temperature
profile is schematically shown in both coordinate frames.

frame whose origin is located at the moving front of the
nucleus. It is more convenient to introduce the latter
frame in order to solve the diffusion equation with the
mobile boundary. Using this frame, we rewrite the dif-
fusion equation (4) as
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We solve this equation analytically in the stationalry
regime. Numerically we discretize both r and ¢ using
an explicit method|7]. The time-derivative dR/dt reads
[R(t) — R(t—At)] /At. At each time step, the solution of
the diffusion equation is compared with the two bound-
ary conditions (2) and (3) in order to determine R(t)
and T7.

3. Results

We first derive an analytical result for the stationary
regime at the late stage of nucleation. The nucleus size
in this regime is so large that we may drop the terms
proportional to 1/R in (2). Then the growth velocity
dR/dt becomes /R, and, from (3), the temperature
gradient at the interface is identified as (87/07),=r+0 =
—LB/C,, where we put 8 = a/DR... we fix the supre-
cooling temperature at 7o = T'(co, t). We subtract then
T from all temperatures. The stationary solution of the
diffusion equation (5) which satisfies the desired bound-
ary conditions is obtained as
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where Ei[—z] is the exonential integral. Thus the in-
terface temperature 77 should approach its stationary
value given by

Ty —Tp = _{’./m{l + BRPE-BR)}
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If the value of 3 is not too small, then 77 —Tp approaches
the unit supercooling L/C,. On the other hand, if 8 is
equal to zero or very close to zero, then I; — 1o con-
tinues to take quite small values until R reaches the or-
der of 1/8. The important fact is that the parameter
B = a/DR, characterizes the speed of the solid phase
formation relative to the speed os heat diffusion.

In the present model, there are three physical dimen-
sions, l.e. temperature, space and time, and we choose
these units so as to L/C, = 10Ar = 500DAt = 1, in the
following. (A7 = atomic scale ~ 5x 10~8cm.) Note that,
under this choice, Egs.(3) and (5) become nondimen-
sional. Then four parameters are left: the dimensionless
growth factor A = /D, the degree of supercoolings
Tar — Tp, the capillarity length I' = 2Tpsyr /(Tar — To)L
and the dimensionless strength of the fluctuation £ =
¢/D. Since our main interest lies in the situation of
stong supercoolings, we fix the melting temperature at
T = 100 + Tp.

At the initial state of nucleation where the nucleus
repeats appearing and disappearing, the size fluctiation
considerably affects the solid temperature 77 and the
thermal fluctuation becomes large.

For large values of I' and E, which correspond to slow
nucleation in the fluctuation regime for large K., the
evolution of the nucleus is sufficiently slow to keep the
temperature close to the supercooling temperature Tp.
We show in Fig.2a the corresponding result of our sim-
ulation with the parameter set of I' = 5, £ = 60 and
A = 2. In the figure, one may identify an initial stage at
which the nucleus repeats to appear and disappear un-
der large temperature fluctuations, and an intermediate
stage at which the nucleus starts growing and 77 fluctu-
ates around 7. The similar result can be obtained also
for small dimensionless growth rate A. Flg.2b shows the
case of I' = 1, E = 6 and A = 0.1. This situation occurs
in the case of very rapid diffusion. A qualitatively differ-
ent behavior is observed in the case of small I' and large
A. Figure 2c represents the case of ' = 1, E = 6 and
A = 2. In this case, 17 starts growing simultaneously
with B when R exceeds its critical value. This indicates
a slight deviation from isothermal nucleation, but a real
effect would require an order of magnitude bigger ratio
B ~ A/T". Note, however, that the parameters of our
model are not really independent.

4. Discussion

Nonisothermal or even adiabatic nucleation requires,
that the time for the spreading of latent heat over a dis-
tance of nucleus-size is large compared to the time for
nucleus-formation. The problem consists of a static part
characterized by energy scales and a dynamic part char-
acterized by time scales. In simple liquids on atomic
length scales, all relevant energy ratios, ie.. Tu/7r,
Ta/To, yr/L and similar combinations, are typically of
of order unity|8]. Ignoring mass transport and density
differences, the liquid-solid transformation requires lo-
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Figure 2. The time evolutions of the nucleus size R (solid
line) andthe interface temperature Ty — Ty (dotted line).
The parameters of the system are set, respectively, as (a)
I'=5,E=60and A=2,(b)'=1, E=6and A =0.1
and (¢) ' =1, E = 6 and A = 2. The nucleation region
does not show a trend for temperature increase. For the
other details, see the text.

cal rearrangements of atoms as the fastest time scale,
or “phonon excitation” in a different formulation. The
competing heat transport also is mediated by the same
“phonons”. Any other process like mass transport in
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multicomponent systems or reordering of macromole-
cues slows down the time scale for the material order,
while electronic contributions to thermal conductivity in
metals speed up the heat transport. On atomic length
scales, therefore, heat transport is not slower than ma-
terial reordering. As mentioned in Section 3, therefore,
our model paramters are not independent.

Combining the static and the dynamic argument, we
conclude that, for a critical radius of atomic length, heat
transport is not slower than material reordering; the nu-
cleus is isothermal. (Note also, that on atomic scales the
fluctuations of material order and temperature becomes
independent.) For larger critical nuclei (less pronounced
supercooling), the nucleation time increases exponen-
tially[9] while the dissipation time of heat increases only
quadratically with the nucleus size. This makes isother-
mal nucleation even more favorable. We conclude there-
fore, that isohermal nucleation theory should be applica-
ble as long as the critical nucleus is not smaller than an
atomic unit or as long as one is not inside the spinodal
region.
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