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The ground-state electronic structure of small spherical metal shells is examined on the basis of a model
system which consists of valence electrons and a spherical jellium shell (JS). The electron density
distribution and the effective one-particle potential are calculated by means of the density functional theory
involving the local density approximation (LDA) and the self-interaction correction (SIC). By varying the
electron number and the inner radius of the JS under the charge-neutrality condition of the whole system,
we closely examine how the electronic structure evolves from a jellium-sphere system to an electron system
sharply localized around a spherical surface. By comparing the results in the SIC-LDA scheme with those
in the ordinary LDA scheme, we evaluate effects of the SIC especially on energy levels of occupied electron
shells.

KEYWORDS: spherical metal shell, electronic structure, jellium model, local-density-functional formalism,
self-interaction correction

1. Introduction the SIC-LDA scheme closely approximate
quasiparticle energies, namely, removal energies
Metal coating to small particles forms small including orbital relaxation effects. Accordingly,
spherical metal shells, where electron systems are we can accurately evaluate the ionization potential
localized in the radial direction and have the inner by the highest energy level of occupied orbitals.
and outer surfaces. In such electron systems, Application of the SIC to jellium spheres has proved
surface plasmons occur at the outer and inner that the SIC is very effective for precise energy
surfaces, which interact with each other according to analysis.16)
the shell thickness.1»2) These surface excitations The purpose of the present work is to investigate
can be observed in photoabsorption spectra.**) In the ground-state electronic structure of small
addition, an electron system in a spherical metal spherical metal shells. By using the SIC-LDA
shell is intermediate between that in a solid metal scheme, we calculate the electronic structure of our
sphere and that confined on a spherical surface. mode] system made up of Valqnpe electrons and a
This intermediate character is considered to show spherical jellium shell (JS). Fixing the outer radius
itself in electronic structures and in electronic and the smeared-out ion density of the JS, we
excitations. Recently, this subject has been change the electron number and the inner radius of

the JS at the same time, under the charge-neutrality
condition of the whole system. With increase in size
of the hollowed-out core, we follow the variation of

investigated both experimentally® and
theoretically.319) This subject is also connected

with fullerene molecules such as Ceo'!) whose the electronic structure from a solid jellium sphere

electronic statefzare localized around the hollow- to a spherical thin layer. In order to estimate effects

cage structure. ) of the SIC, we compare the results of the SIC-LDA
The electronic structure of metal spheres has calculation with those of the ordinary LDA

been examined on the basis of a spherical jellium- calculation. Details of the present work have

background model by using the density-functional a]ready been reported in refs. 7 and 10.

theory involving the local density approximation

(LDA).13-16) Results of this examination support 2. Theory

experimental observations such as the stability of

metal clusters at shell-closing electron numbers and We briefly describe a theoretical framework for

the effect of electron shells on the size dependence the present study. We use the parametrized

of the ionization potential.17-18) exchange-correlation (XC) potential!® obtained
By incorporating the self-interaction correction from Ceperley and Alder's Monte Carlo

(SIC)lg) into the ordinary LDA scheme, 20) we can calculation.?)) In the following equations, energy

obtain a significant improvement in orbital-energy and length are measured in the Rydberg unit 13.61

and total-energy calculations. In the SIC-LDA eV and the Bohr radius 0.5292 A, respectively. We

scheme, we subtract the self-interaction contribution employ spherical polar coordinates and locate the

from each of the electrostatic Hartree part and the origin at the center of the JS. Our electron systems

exchange-correlation part of the effective one- treated here have no spin polarization. For

particle potential, such that each occupied orbital simplicity, we eliminate spin indices in the following

does not interact with itself within the LDA expressions.

framework. Eigenenergies of occupied orbitals in Following Perdew and Zunger,!?) we incorporate
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the SIC into the ordinary LDA scheme. The
effective one-particle potential becomes dependent
upon orbital in the SIC-LDA scheme. The ground-
state electronic structure can be obtained by solving
the following set of equations self-consistently:

-2+ Ve (1) ]palr) = cavalr), M

- falwalr)F, @)
p(r)= ZZ Pa(r), )
Vert® (r) =g (r) +Vxc® (r) ) 4)

where two components of Vefr  are constructed by

O)(r 3,104
Ve®(r)=Vg Zfdrl""l
r)+2 d3r1ﬂr_l_2 d3r’M)‘ 5)
{ AT e R e
and

Vic®(r) = ch(o)[l)(r)]' Vac" [Pa (r)] . (6)

In these equations, Ya(r) and eq denote the Kohn-
Sham single-particle eigenfunction and eigenenergy
for orbital o, and fa(=1 or 0) and pa(r) signify,
respectively, the occupation number and the orbital
density of a state with orbital o and up- or down-
spin. The density p(r) is the electron number
density including both spin orientations. In eq. (5),
Vis(r) represents the electrostatic potential produced
by a uniform positive-charge distribution of the JS.

In eq. (6), VxcD[p] denotes the XC potential for an
unpolarized electron gas with density p, while

Vxc¥[poi] signifies the XC potential for a fully
polarized electron gas with density py. The

electrostatic Hartree and XC potentials V'g* and

Vxc® are, respectively, obtained from Va® and

Vie©® by subtracting the electrostatic and the XC
contribution of the relevant orbital density pa. The
eigenfunction and the eigenenergy for each orbital
are given by the solution for the effective potential
which does not include the self-interaction
contribution in each of its electrostatic and XC
components.

Our calculations are concerned with closed-shell
configurations. Each orbital is specified by n, [, and
m, namely, the radial, the orbital-angular-
momentum and the magnetic quantum numbers.
Energy eigenstates for />0 are degenerate with
respect to m, and a set of 2(2/+1)-fold degenerate
states including spin form an electron shell, which is
labeled by n and /. When />0, before building up
Vett™ by egs. (4)-(6), we sphericalize the orbital
density pg(r) by averaging it over m.

In order to analyze the thickness dependence of
each eigenenergy, we decompose the eigenenergy
ga into the radial kinetic energy &rk,a., the

centrifugal potential energy €cp,a., the electrostatic
Hartree potential energy €H,a. and the XC potential
energy exc,o.:

Eq = Exk,a tEcp,a + €H,a T+ Exc,a > (7)

where four components are defined by

Erk,q = —<a a>, 8)

rtor\ o
Ecp,a =1(l+1)(a|1/r2|a), ©)
EH,a = (alVﬂala), (10)
and
Exca =<a|cha|a>- (11)

The first two components €rk,a and €cp,a add up to
the total kinetic energy ex,a.

3. Results and discussion

Having fixed the outer radius R2 and the spread-
out ion density po of the JS, we vary the electron
number N and the inner radius R1 of the JS
simultaneously under the charge-neutrality
condition of the whole system. The outer radius R2
is taken to be R2=20.67 in atomic units, and the
fixed ion density po corresponds to the density
parameter rs0 =(3/4mp0)Y/3=4. When R1=0, our
system becomes a solid jellium sphere in which 138
electrons have a closed-shell configuration. With
increase of R1, we follow the variation of the
electronic structure from a solid sphere to a
spherical layer sharply localized in the radial
direction.

Figure 1 displays the variation of the electronic
structure with increase of R1. The results in the
SIC-LDA scheme are compared with those in the
ordinary LDA scheme. Three full curves and three
dotted curves in each upper panel of Flgs 1(a)-1(d)

indicate the radial dependence of VD, Vie® and

Vett® in the SIC-LDA scheme and in the ordinary
LDA scheme, respectively. The effective potential

Vest® is given by
Veft(o)(r) = VH(O)(r)+ ch(o)[p(r)] ) (12)

and VH(Y is already defined in eq. (5). A full curve
and an unlabeled dotted curve in each lower panel
of Figs. 1(a)-1(d) exhibit the electron density
distribution in the SIC-LDA scheme and in the
ordinary LDA scheme, respectively. Broken lines
signify the spread-out ion density of the JS. Dotted
curves labeled with / as s, p, d, -** indicate the
decomposition of the electron density distribution
into constituent / components, and some of these
curves include more than one electron shell. Each
electron shell is specified by # and /, often in the
form of nl, and energy levels of electron shells for
each / are numbered by n(=1, 2, 3,--*) in order of
increasing energy. Figures 2(a)-2(d) indicate
energy levels of occupied electron shells for four
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Figure 1. Electronic structure of four spherical jellium shells with R2=20.67 a.u. and rso=4.

Electrons in each system have a closed-shell configuration. Adapted from Fig. 1 in ref. 10.
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Figure 2. Energy levels of occupied electron shells of four spherical jellium shells with
R2=20.67 a.u. and rso=4. Full and open circles represent the results with and without the
SIC, respectively. Adapted from Fig. 3 in ref. 10.
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JS's in the SIC-LDA scheme (full circles) and in the
ordinary LDA scheme (open circles). The energy-
level points for each number n are connected by
broken lines. The panels (a), (b) and (d) in Fig. 2
corresponds to panels (a), (b) and (d) in Fig. 1,
respectively. Figure 3 displays the shift of energy
levels of occupied electron shells with change of R1
in the SIC-LDA scheme. A series of energy-level
points for each electron shell are connected by
broken lines.

When N=132, the 3s shell is closed and the 1j
shell is empty, as exhibited in Fig. 3. If we assume
this electron configuration and perform a self-
consistent calculation in the ordinary LDA scheme,
we obtain an incorrect solution where the occupied
3s level is slightly higher than the empty 1j level.
The reason why we can obtain a correct solution in
the SIC-LDA scheme is that the SIC operates to
lower occupied energy levels, and consequently the
3s level becomes lower than the 1j level.

First, we pay attention to characteristics of shell
density distributions pni(r), namely, shell
components in the electron density distribution, in
the jellium sphere with N=138. As exhibited in the
lower panel of Fig. 1(a), the s and p components in
the electron density distribution have their
substantial intensity around or near the center, while
the g, # and i components, which involve only the
1g, 14 and 1i shells, respectively, are well localized
near the surface. The s and p components are
decomposed into ns- and np-shell components
(n=1, 2, 3) in Figs. 2(a) and 2(b) in ref. 10. What is
characteristic of the jellium sphere is that the shell
density distribution pni(r) varies remarkably with
angular momentum / for each number n. This
variation is most outstanding in the 1/ shells. As a
centrifugal potential operates more strongly with

increase of /, an electron shell transfers its
substantial probability density remarkably to an
outer region, and has its probability density more
concentrated in the radial direction.

Next, we examine the variation of the electronic
structure with increase in size of the hollowed-out
core. Figure 3 implies that with increase of R1, the
shell levels with n=2 ascend quickly, passing
through the occupied shell levels with n=1, and
become empty. This is manifest in Fig. 2 also. By
following the series of Fig. 2(a)-2(d), we notice that
the variation of shell-level occupation is analogous
to the thickness dependence of subband occupation
of an electron system in the film. A series of shell
levels for each n can be regarded as a subband in
the film electron system. With decrease of the film
thickness, subbands become further separated from
one another in energy, less and less subbands
become occupied, and finally the lowest subband
remains occupied.

Here, we examine the variation of shell density
distributions pni(r) . As a core is hollowed out with
decrease of N, electron shells with lower [ such as ns
and np shells make a great outward shift of their
probability density, and have their probability
density more localized in the radial direction. In
sharp contrast to this remarkable change, the
presence of the hollowed-out core has no significant
influence on electron shells with higher / such as the
1g, 1k and 1i shells, because originally these
electron shells have their concentrated probability
density in an outer region near the external edge of
the JS (see the g, & and i components in p(r) in each
lower panel of Figs. 1(a)-1(d)). When N=98, only
the electron shells with n=1 remain occupied, and
an electron shell with higher / has its probability
density somewhat more concentrated in a somewhat
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outer region (see Fig. 1(c)). With further decrease
of N to 72, eigenfunctions of occupied orbitals with
n=1 take almost the same radial dependence
regardless of /, and each expectation value in eqgs.
(8)-(11) becomes almost independent of /.
Consequently, each occupied 1/ shell takes almost
the same probability density distribution irrespective
of J, apart from a proportionality constant (see the
lower panel of Fig. 1(d)), and its energy level varies
as I({+1), aside from an additive constant (see Fig.
2(d)). This energy-level variation is the same as in
an electron system confined on a spherical surface.
As suggested in Fig. 1(d), these characteristics in the
final stage are well established when the JS becomes
so thin that a considerable fraction of the electron
density penetrates into the vacuum and the
maximum of the electron density becomes lower
than the ion density level of the JS. We can put the
above variation briefly as follows: in the jellium
sphere, an n/ shell with higher [ has its substantial
probability density in an outer region and has its
probability density more concentrated in the radial
direction. As the hollowed-out core becomes larger,
an electron shell originally having its radially
extended probability density in an inner region
undergoes a larger intensity shift of its probability
density to an outer region and a greater variation in
radial localization of its probability density, and in
the final stage, all the occupied 1/ shells take almost
the same probability density distribution irrespective
of 1.

As exhibited in Fig. 3, energy levels of occupied
electron shells tend to increase, as the bored core
becomes larger. This energy increase can be
examined by decomposing an eigenenergy € into
four components, as defined in egs. (7)-(11). As
typical examples, figure 4 shows the energy
variation of 1p and 2p orbitals and its
decomposition into four components. The symbols
k', 1K', 'cp', 'H' and 'xc' signify &k,q, Erk,a, Ecpsa, EHior
and €xc,q, respectively. Note the relation
€k,a=Erk,atEcp,a. 1he three components €xc,a, EHa
and &rk,o cooperate to increase €q as the hollowed-
out core becomes larger, except that €H,1p operates
to decrease €1p when N drops from 98 to 72. On
the other hand, the component &cp,a Operates
against erk,q to decrease g, and consequently the
total kinetic energy ek, makes a reduced
contribution to the increase of gq.

The XC effects are taken into account within the

LDA, and the XC potential Vxe® decreases at
higher electron density (see Fig. 1). The SIC

potential Vxc®* can be obtained by subtracting the
self-interaction contribution of orbital o from Vc(®

(see eq. (6)). The potential curve of Vxc® still
retains the well form, though the SIC causes a

considerable upward shift from VD to Vxc® where
Po is higher. In the jellium sphere or in a thick JS,
an orbital with lower / has a greater part of its
density profile curve embedded in a higher
electron-density region well inside the jellium
sphere or the JS. This character of the orbital

density distribution lowers the XC component €xc,q.
However, as our electron system becomes more
localized in the radial direction with increase of R1,
the orbital starts to extend a larger part of its density
profile curve to a lower electron-density region at
the inner or outer surface. This process gives rise to
the increase of €xcq.

The increase of €H,q can be understood in the

same manner, The gotential VH* has a well-shaped
profile curve as ViY) which bends up at the inner or

outer surface, though the curve of Vy® lies

considerably below that of VO because of
subtraction of the self-interaction contribution.
Therefore, the component €H,o, increases with
increase of R1, because the orbital extends a larger
part of its density profile curve to the surface region

where VH* turns up. However, this can not explain
the decrease of €H,1p when N falls from 98 to 72.
When N decreases from 98 to 72, the potential curve

VH® of each occupied 1/ orbital varies its form from
a double-minimum to a single-minimum well and
the potential well becomes deeper, because at N=72
a considerable fraction of the electron density
penetrates into the vacuum and the peak of the
electron density becomes lower than the ion density
level of the JS (see Figs. 1(c) and 1(d)). This

variation of VH* lowers en,q of each 1/ orbital which
has its substantial orbital density in the potential
well.

As the hollowed-out core becomes larger, the
radial kinetic energy €rk,a increases because our
electron system becomes more localized in the
radial direction, while the centrifugal potential
energy ecp,o. decreases because an orbital with its
definite angular momentum !/ shifts its probability
density to an outer region (see eq. (9)). When [is
lower, the contribution of &rk,, to variation of €,
predominates over that of €cp,a, as shown in Fig. 4.

Here, we examine the ionization potential (IP) of
our JS systems. In the SIC-LDA scheme, we can
make a good estimate of the IP by the absolute
value of the highest energy level of occupied
orbitals. Accordingly, we can evaluate the IP for a
series of JS's with closed-shell configurations by
following the highest energy level of occupied
electron shells in Fig. 3. In view of the size
dependence of the IP in jellium spheres including
open-shell configurations (see refs. 13-16), we can
expect a saw-tooth variation of the IP due to the
electron-shell structure for our JS systems also. The
variation of the IP with increase of R1 indicates the
transition of the highest occupied shell in the order
of 3p, 3s, 2f,2d, 2p, 2s, 1i, 1k, --. Therefore, this
variation of the IP involves the quick ascent of shell
levels with n =2 which is characteristic of our JS
systems.

Finally, we compare the results in the SIC-LDA
scheme with those in the ordinary LDA scheme.
The SIC causes a considerable downward shift of
occupied energy levels (see Fig.2), though it makes
no significant difference in the electron density

distribution p and in the potentials VHO, Ve® and
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(b) 2p orbital
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Figure 4. 1p- and 2p-orbital energies, €1p and €2 , and their decomposition into €rk, np,

Scp:

from Fig. 6 in ref. 10.

Vet (see Fig. 1). The SIC components in €H,q
and €xc,o can be expressed as

a\l ) g\l

AEH,oz = —Zfd3r dsr’ |r _r,| ’ (13)

and

Agxc,o = —fd3rpa (r)chP[pa (r)] ’ (14)

respectively (see egs. (5), (6), (10) and (11)). The
former Aen,o operates to decrease €¢ because it is
negative, while the latter Aexc,q acts to increase €q
because it is positive. However, the former is more
influential than the latter, which results in the
downward shift of each occupied energy level.
Here, we focus our attention on the / dependence of
this downward energy shift in a series of orbitals for
each n. In the jellium sphere, an orbital with lower [

has larger values of |AgH,| and Agxc,q, because a
normalized orbital with lower / has its substantial
density in a smaller » range, which gives higher
orbital density there (see eqgs. (13) and (14)). Note
that the XC potential VxcF[pq] decreases at higher
orbital density py. The negative component Agp,q
makes more contribution to the / dependence of €
than the positive component Aexc,o. Consequently,
an orbital energy €o with lower / makes a greater
downward shift due to the SIC, though it is not so
remarkable because Agxc,q Operates against AgH,q,
(see Fig. 2(a)). With increase of R1, an orbital with

nps €H, np and €xc, np (n=1,2) for a series of spherical jellium shells. Each arrow in
panelp (a) appoints a scale on the left or right side relevant to a series of points. Adapted

lower [ suffers a greater intensity shift of its
probability density to an outer region, and
eventually all the occupied 1/ orbitals take almost
the same radial dependence in their probability
density distributions. Along with this evolution of
orbital density distributions, the / dependence of the
downward energy shift becomes smaller, and finally
all the occupied 1/ orbitals make almost the same
energy shift regardless of / (see Fig. 2(d)).

4. Summary

The electronic structure of the jellium sphere can
be characterized by the remarkable / dependence of
the shell density distribution pn; for each n.

Because of a stronger centrifugal potential, an
occupied electron shell with higher / has its
substantial probability density in an outer region,
which is more localized in the radial direction. As
the hollowed-out core becomes larger, the electronic
structure varies as follows:

(a) The occupied shell levels with n>2 ascend
rapidly and become empty one after another.
This change of shell-level occupation is
analogous to the thickness dependence of
subband occupation in a film electron system.
This shell-level change should be reflected in the
variation of the ionization potential.

(b) In a sequence of occupied electron shells for
each n, a shell with lower / initially having more
extended probability density in an inner region
of the jellium sphere suffers a larger intensity
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shift of its probability density to an outer region
and a greater variation in radial localization of its
probability density.

(c) In a series of occupied shell levels for each n, a
level with lower [ increases more significantly,
because its shell is more seriously influenced by
the increase in size of the hollowed-out core, as
mentioned in (b). This level increase can be
analyzed by decomposing each orbital energy
into the radial kinetic, the centrifugal, the
electrostatic and the XC part.

After passing through the above process, we
reach a sharply localized electron system where all
the occupied shells with n=1 take almost the same
probability density distribution independent of /,
and the occupied shell level €17 varies as /(/+1) apart
from an additive constant. Such a sharply localized
system is well established when the thickness of the
JS becomes close to the electron penetration length
at the surface, and a considerable fraction of the
electron density penetrates into the vacuum. The
above [ dependence of €1 is the same as in an
electron system confined on a spherical surface.

Secondly, we have investigated effects of the SIC
by comparing the results in the SIC-LDA scheme
with those in the ordinary LDA scheme.

(a) The SIC lowers each occupied shell level
significantly. We have obtained a correct self-
consistent solution in the SIC-LDA scheme for a
delicate case also (N=132) where one of two very
close shell levels is occupied and the other is
empty.

(b) We have analyzed the [ dependence of the
downward energy shift due to the SIC in a series
of occupied shell levels for each 7. In a jellium
sphere or in a thick JS, an electron shell with
lower / makes a greater downward shift of its
energy level. As the hollowed-out core becomes
larger, this / dependence of the downward shift
of the shell level becomes less outstanding, and
in a sharply localized system, all the occupied 1/
shells make almost the same energy shift
regardless of /.
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