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A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward neural
network, and a learning equation similar to that of the Boltzmann machine algorithm is obtained. By
applying a mean field approximation to the same stochastic feed-forward neural network, a deterministic
analog feed-forward network is obtained and the back-propagation learning rule is re-derived.
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1. Introduction

Since Rosenblattl) proposed a learning machine,
named perceptron, one of the problem has been to find
an efficient learning algorithm for a multi-layered net-
work which is capable of solving complicated problems.
The error ba,ck—propa,gationQ) algorithm in the multi-
layered feed-forward neural network, and the Boltz-
mann machine a,lgorithm‘i) in the symmetrically con-
nected neural network®) are the basic and typical learn-
ing algorithms and architectures of neurocomputers of
these days. However, the relation of these models are
not revealed sufficiently. The reasons of it would be
that the both models were proposed in rather different
fields, the models look completely different at a glance
in the propagation of neuron activities, and that the
both models usually adopt different type neuron units.
A unit of the multi-layered feed-forward neural network
is required to take a continuous value in order to be dif-
ferentiable in the back-propagation learning algorithm.
On the other hand, a unit in the symmetrically con-
nected neural network usually takes one of two discrete
values. Thus the models are different in two points: the
synaptic connection, and the value of units. A typical
Hopfield model or Boltzmann machine is a symmetri-
cally connected digital unit model, and a multi-layered
network adopted in a standard back-propagation algo-
rithm is a feed-forward analog unit model (see Table I).
Other choices such as feed-forward digital unit network
(considered in the present paper), or symmetrically con-
nected analog unit network may reveal the relation of
the two models: the feed-forward analog model and
symmetrically connected digital model.

In this paper, we formulate a learning algorithm of
a stochastic feed-forward (SFF) digital network in the
association problem, and compare it to the Boltzmann
machine algorithm. The obtained learning rule is a
kind of positive reinforcement with Hebbian and anti-
Hebbian learning terms, which are very similar to those
of the Boltzmann machine algorithm. By applying
a mean field approximation to the model, the model
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becomes a deterministic analog feed-forward network,
and the present learning algorithm reduces to the back-
propagation algorithm. Thus the SFF digital network
bridges the well-known two models.

2. SFF Model and its Learning Algorithm

We consider a feed-forward neural network consisting
of L layers. The Ith layer contains M () neurons, and
each neuron takes one of the two states with a certain
probability. The state of the ith neuron on the lth layer
is represented by 0'1(1) which takes values of £1. The Oth
layer is an input layer and the Lth layer is an output
layer. The neurons on the [ — 1th layer are connected
to neurons on the (th layer via synaptic interactions.
A state of neurons on the {th layer is represented by
{UZ{I)}‘ When neurons on the [ — 1th layer are at a state

{agl_l)}, the neurons on the {th layer take a state {az(-z)}
with a conditional probability,
M) eﬁay)h(})
P({e"}{e!"V}) = SR , (1)
RIS V8 Prrr

J
where § is the inverse temperature of the system, and
h{Y is an internal field at the jth neuron on the [th
layer which is given by

B = Zwm (=1) 4 40 (2)

(-1

is the synaptic efficacy from o; )

)
to o,

)

Here wj(i
and —9”51) is the threshold of the neuron aj(-l).
The conditional probability of an output layer to take

the state {o,(cL)} when an input state is {(TEO)} is given
by

P{o" Yo"}
> P({a),

{ohn(L-1)}

A, ()

where
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Table 1: Classification of typical neural network models (and its learning algorithms) by types of a synaptic

connection and of a unit.

unit synaptic connection

symmetric connection

feed-forward connection

digital unit Hopfield model®)

(Boltzmann machine)3)

stochastic feed-forward (SFF) model

(present learning algorithm)

analog unit

(mean field annealing?))

mean field approximationﬁ) of Hopfield model

deterministic multi-layered network

(back—propagation)Q)

P{o"}, - {otP (o)
GF9 POINS) Bo I pE)
€
= = 4
H 2 cosh ﬁh(l) EI 2 cosh ﬁhgf‘)] @

We consider an association problem where the tar-
get patterns are given with probabilities. We assume
that the pth pattern is given on the input layer with
the probability p(u), where p(u) satisfies p(p) > 0, and

F—1p(r) = 1, and the probability of the vth tar-
get pattern on the output layer for the pth input pat-
tern is given by @ ({O'(L)} [{0'(0)} ). Hereafter in this
section and in the next section, we abbreviate condi-
tional probabilities, Q(v|p) = Q({a(kL)},/Hcrgo)}“), and
Pwlp) = PEoM}, {ol},), for the simplicity. The
quantity which should be minimized by the learning
process is a relative entropy averaged over input pat-
terns,

S

Zp(”‘)srel(”)a

B i 2
;Q( )1 Qi) (5)

i

Srer(p)

The derivatives of the relative entropy with respect
to w%) and 9(-1) are given by

Zp(u) ZQ(Vlu

6(5 “’
[« 01(:1—1)0,?) > ogl_l)tanh ﬁhg»l) >u), (6)
7 a(’>) -> #)ZQ(VIH)
I

[« (1) >,y — < tanh ﬁhg” >uvls (7)

where < O >, is a weighted average by the conditional
probability P({U(l)} {akL)} |{0'(0)} )

The decrease of the relative entropy in the learn-
ing process is realized by the following change of the
weights,

o = 85 ag =, 5
o (ﬁw“)) ! 5(50%")

for the sufficiently small and positive 7, the learning co-
efficient. The learning process in egs. (6) and (7) con-
sist of Hebbian like term (first terms) and anti-Hebbian
term (second terms). On the averages in egs. (6) and
(7), spin states are counted with the probability of that
the desired final pattern is realized, so that the learning

(8)

is a kind of positive reinforcement.”)

3. Reformulation of the Boltzmann machine
learning algorithm

For the system with the same layered structure but
neurons between nearest layers interact symmetrically,
we have a similar learning algorithm in the Boltz-
mann machine. The Boltzmann machine learning al-
gorithm for the association problem was originally for-
mulated by the gradient decent of the relative entropic
measure.) This algorithm can be reformulated by the
minimization of the difference of the free energies of
two systemss), one is the clumped system where neu-
rons on both the input and output layers are clumped
in a given pattern g, the other is a free-end system
where only the input layer is fixed and the output layer
is kept free. The conditional probability in the free-end
system Is given by,
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P(v|p) =

Y ewrnz-ny BUG Y ot} {otP L)
O ;D oo )

Z{a<1),-~~,(L)}B({Uz‘ }u:{(’j bLeder )}

where B is a Boltzmann factor, exp(—BFE), of the sys-
tem, whose energy F is given by

ZZUU)(Z“’(D (- 1)+6](.’)). (10)

=1 j

The numerator of eq.(9) is the partition function of the
clumped system, and the denominator is the partition
function of the free-end system. Thus the logarithm
of the conditional probability becomes the difference
of the free energies of the clumped system and of the
free-end system,

In P(v]u) = —(F

Therefore, the relative entropy without constant terms,
>, Qv|p) InQ(v|u), is equivalent to the difference of
free energies averaged over input patterns,

S=) p(w) Y Quln)(F;, — FL*). (12)

, — Fi). (11)

Where F, and F/f‘e‘ are free energies of the clumped
and free-end systems. The derivatives of S with respect

to w(l) and 0(.') are given by
, Zp ) > Q)

5(ﬁw( ) ~

[ (( 1) (I) uy < 0'1(1_1)0'](0 >_‘f‘.e.]’ (13)
)

7 v
(<ol >e, — <ol She, (14)
where < O >¢, and < O >£‘e' are weighted averages by

the Boltzmann weights. The learning process to mini-
mize S is performed by updating weights and thresholds
as follows:

85 o_ 85

1N Dy’
T 5(65")

]l

(15)

The equations (12 ~ 14) are very similar to egs. (6 ~
8), except the calculations of thermal averages: the
one is averaged over the conditional probability with
which a desired answer is obtained, and the other over
the Boltzmann factors. At a glance, the second terms
(anti-Hebbian terms) of egs. (12) and (13) seem dif-
ferent from those of eqs. (6) and (7), but these terms
are related physically, since the free-end condition in
the symmetrically connected network corresponds to
the free-end probabilities (including all the right and
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Wrong answers on the output layer) in the feed-forward
network, and the thermal average of 0](-1) with the free-

end probabilities is given by tanh 5h§-l)

4. A mean field approximation to the SFF
model

By applying a mean field approximation to each
layer successively, we have a deterministic analog feed-
forward network where the thermal average of 0'](-1), de-

0

noted by m;”, is determined by thermal averages of
o*}l 1 as
m{) = tanh{ﬁ(z wim{ ™D 4 i)} (16)

In the mean field approximation, the conditional prob-
ability P({U,(CL)}|{0§U)}H) in eq.(5) is factorized by con-
,(CL)|{0'§0)}N) for each output
)= [[p(et"H{e!},). As

k
suming the same factorization to the desired probabil-

ditional probabilities p(c
unit k as P({O’ScL)}l{O'ED)}#

ity as Q({oy” 1{o{V}) = [ a(et {ol"} ), ea (5) is
reduced to ’
Smta = —Zp(u Zz(:) CUC
— 4
xmdewWhy (17)
Replacing p(o"|{o{”},.) by m{"), and q(o{"|{5{”},.)
by C(L)

p(e{1{e"},)

a(otP1{e},)

1

S+ o mis),

1

S+aMeh, (18)

derivatives are given by

8Smia ) __(-1)
5(Bw (1)) = _ZP )85 umi
6Smfa ()
= - o; (19)
I) ZP(H) !
6(565") p
where
6870 = Branh (A7) S 60wl
k
for 1=2,...,L, (20)

with 6](-’1;‘) = C(L) EL) tanh’z = 1 — tanh® z, and
hEIL =3 wgi) Elu b4 9(1) Thus we have the standard
back-propagation learmng equation, except only that
the derivative of the activation function on the output
layer is missing.

The similar equations in this section were given by
Hopﬁeld6) as equations for an analog perceptron, which
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is a deterministic analog feed-forward network. Hop-
field, however, proposed a quantity S onta rather intu-
itively, and did not derive these equations as a mean
field approximation to the stochastic feed-forward dig-
ital network.

5. Conclusions and Discussion

We formulated a learning algorithm of a stochastic
feed-forward (SFF) digital neural network. By mini-
mizing an entropic measure which is analogous to the
Kullback divergence, a learning rule similar to that of
the Boltzmann machine is obtained. The present learn-
ing rule consists of Hebbian and anti-Hebbian terms,
and the learning is a kind of positive reinforcement.

Numerical calculations of the SFF network on AND
and XOR problems show very similar results to those
of the Boltzmann machine.®) This similarity suggests
that the learning algorithm of the Boltzmann machine
can be interpreted by the positive reinforcement mech-
anism. In other words, the backward connection of the
Boltzmann machine can be explained as an effective
feed-back resulting from the positive reinforcement.

The application of the mean field approximation to
the present stochastic feed-forward digital network re-
sults in a deterministic analog feed-forward network,
and the learning rule similar to the standard back-
propagation algorithm is obtained. Thus the present
model bridges the two well-known neural network mod-
els with the learning rules, namely the Boltzmann ma-
chine algorithm in the symmetrically connected digi-
tal network and the back-propagation algorithm in the
feed-forward analog network.

The positive reinforcement learning mechanism for
the present model may be explained by a synaptic
global feed-back loop. This learning mechanism might
be possible by also a chemical feed-back loop such as
emitting chemicals around the target units when the
desired pattern is realized and the chemicals reinforce
the synaptic weights and thresholds which gave a right
answer.

We are now proceeding the learning processes of more
complex problems in the stochastic feed-forward and
Boltzmann machine networks. Preliminary numerical
calculations show that 1) the both networks learn sim-
ilarly even in these complex problems, 2) the both net-
works are robust: damages of neurons are recovered by
other neurons, 3) well deal with the generalization prob-
lem, and 4) the optimized construction of the network
is achieved automatically: an automatic recruitment of
other useful units and a detachment of useless units
in the learning process. These are very important fea-
tures of the real brain function as well as in the design
of neurocomputers.
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