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Characteristic properties of three kinds of dynamics (evolution on continuous time, heat bath method
and Metropolis method) are discussed in the Ising model with three spins as a simple example by solving
the master equation directly. The key problem to consider the relationship between dynamical properties
such as “damage spreading” and properties of the corresponding Ising percolation model are pointed out.
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1. Introduction

Equibrium properties of ordered phases in the Ising
system with random interaction such as the &J model
have been studied by many physicist from many as-
pects with several methods (numerically and analyti-
cally) and the distinct properties from those of uniform
systems has been made clear. Dynamical properties of
such systems are very difficult to study due to the exis-
tence of the long time tail of relaxation and the vague
distinction of the dynamical properties from the equib-
rium ones.

Dynamical properties in paramagnetic (P) phase of

the +J model are distinct whether T > T%*"®) or not.

Slow relaxation appears in the phase T < T2 which
is called Griffith phase. The slow relaxation is caused
by the existence of arbitrary large ferro-like cluster with
arbitrary long relaxation time. The idea of cluster is
not so clear in frustrated models but clear in dilute
ones. Therefore the slow relaxation is not a character-
istic property of frustrated models.

On the other hand, a kind of dynamical property
which is called “damage spreading” has been a key
to characterize the dynamical properties of frustrated
models! ). There is a characteristic temperature T, at
which the property of damage spreading change dras-
tically. In general, the temperature Ty is located in P
phase in frustrated models and it means 7y > T,. It
is noted that the temperature Ty appears even in regu-
lar (not random) system such as an antiferromagnetic
model on the triangular lattice.

The Ising percolation model is constructed from
the original Ising spin model by interpreting lo-
cal Boltzmann weight e=21/l as the probability of
connection® (explained more correctly in section 3.) In
non-frustrated cases, the probability with which two
given spins connect with each other in the Ising perco-
lation model corresponds to the correlation function in
the original Ising model. It means that the Ising perco-
lation picture has the same information as that in the
original model. In frustrated models, the Ising percola-
tion picture has more information than the equibrium
quantities of the original Ising model. For example,
mean percolation cluster size which is a typical quan-
tity in the percolation model shows a divergence at the
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temperature 7T, which locates in P phase in the original
Ising model®~® .There is no singularity in the equib-
rium quantities in the Ising model at 7,,. It is reported
that the relation T, ~ T, holds in several frustrated
models®~®), It is not clear whether the relation is al-
ways true or not. If it is true, the physical reason of
the relation is not clear. Before discussing the theoriti-
cal reason, it must be noted that the property “damage
spreading” depends on the practical construction of the
dynamics in the present stage. It seems that the con-
struction of practical dynamics in computer simulation
has developed in pursuiting the speed of the conver-
gence to the equibrium state. It is necessary to recon-
sider what is a physically reasonable dynamics even in
the transient process so as to discuss damage spreading
as a property which is not artificial but physical.
Characteristic properties of three kinds of dynamics
(evolution on continuous time, heat bath method and
Metropolis method) are studied in the present article
by solving the master equation of the stochastic process
directly. A Speculation in section 5 suggests probability
of connection in the Ising percolation model reflects a
kind of dynamical property in the original Ising model.

2. Damage spreading

The idea of “damage spreading” is convention-
ally introduced in the following way. Hamming dis-
tance dy ({0}, {o!}) between two spin configulations
{0:},{0}} is defined as follows:

du({oi},{oi}) = t({ilo: # o1}), 1

where §(A) denotes a number of the member of the set
A. The time evolutions are observed using common
random forces for two different initial spin configura-
tions {ai(l)(t = 0)},{o\®(t = 0)}. Then the following
property holds.

7> 0,du({o(M} (e (D =0 =

Vi > T, du({cPOh {eP®N =0 (2)

Survival property P(t) for two given initial states is
defined followingly.
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P(t) = Prob(du({o{” (O}, {o{"()}) £0)  (3)

The basic idea of “damage spreading” is to study the
long time limits lim,;_, o P(t) and lim;_, ., D(t). Espe-
cially the transition temperature T; from P(co0) = 0 to
P(oo) > 0 is a very relevant quantity. It is reported
that several frustrated systems have a transition tem-
perature which satisfies the inequalities T; > 0 and
Ty > T.. The data are shown in succeeding section.

3. The Ising percolation model

The Ising percolation model is costructed from the
Ising model whose Hamiltonian is

H=- Z Jijoi0;. 4)
(i29)
The Ising percolation model has two kinds of variables
which are spin variables and the states of linking. The
weight for updating of each state is also divided into
two parts which are Boltzmann weight of spin states
and the weight for linking states. Boltzmann weight
for a given spin state {o;} is

Wi({oi}) = ™. ()
Linking proberbility p;; is defined as

e~ 2B81Ji;)
Pi=q

The weight W, for linking states is expressed using p;;
followingly.

for J,ij','O‘j >0
for J;; = 0 or J;50;0; < 0

(6)

Wi =[] )
(44)
The total weight W is
W =w,W,. (8)

Then the following relation between the quantities of
the Ising model and the Ising percolation model holds
rigorously.

(00} = Py ~ P_, (9)

where

Py = Prob( o; and o; are connected and o;0; = £1).
(10)
Especially for ferromagnetic cases,

(0i0;) = Py. (11)

It leads to the following results by taking the limit |r; —
rj| — oo.

Long range order lim (o;0;) #0. <
o

ITi—r;|—

The system is in percolated phase.  (12)

The relations (11) and (12) illustrate Ising percolation
model has the same informations as those of the Ising
model in ferromagnetic cases. The properties of non-
frustrated models are similarly discussed by reducing
to ferromagnetic models after appropriate gauge trans-
formation.

On the othe hand, the relation (9) shows that the
Ising percolation model has more information than
those of the corresponding Ising model in frustrated
cases®).For example, the condition P, = P_ =0 (non-
percolated phase) leads to the existence of the long
range order but the inverse statement is not true. The
present result is expressed in the form 7, > 7, where
T, denotes a percolation transition temperature. Sam-
ples of already obtained results for T; and 7}, are listed
below.

(a) The 2D =+J model
TED =0 < T, = T, ~ 1.82 < TU™) < 2.26(13)
(b) The 3D +J model
T =TV 218 < TP T ~ 3.95
< TUer) ~ 451 (14)

(¢) AF model on the triangular lattice
TP =0 < T, ~ Ty ~ 2.6 < T ~ 3,60 (15)

Td(l) and sz) in the case of 3D +J model denote two
kinds of dynamical critical temperature.

(a) T>T?
dy(t — o0)/N = 0. N is a total number of the
spins.

() TV < T < TP
di(t — o0)/N = Dy, > 0. The value D, is inde-
pendent of initial two configurations.

(¢) T < TV
dg(t — 00)/N = Do > 0. The value D, depends
on two initial configurations.

It is noted that the relations Ty > T,, T < Tc(f erro)
and Ty ~ T, hold in any case. The reason of the first
relation is discussed previously. It is not clear whether
the second and third relations always hold or not. It
seems that the coincidence of Ty and 7T}, in three cases
suggests some relation of mechanism between dynami-
cal phenomena of the Ising model and equibrium prop-
erties of the Ising percolation model.

4. Various constructions of dynamics

Damage spreading depends on practical construction
of dynamics by definition. The naturality of each prac-
tical dynamics must be checked in a physical sense in or-
der to confirm the fact that damage spreading is caused
by some physical reason.

Dynamics on continuous time is reasonable as a stan-
dard dynamics compared with other ones on discrete
time. The first condition of a proper dynamics is that
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the distribution function converges to the canonical dis-
tribution in the limit ¢ — co. The first condition is
satisfied by imposing following two subconditions.

¢ Evolution process is ergodic. It means that each
states makes effects on other states within finite
time. (This condition is very delicate in infinite
systems.)

o The process has a property called “detailed bal-
lance”. (Additional comments on this condition
are shown in constructing dynamics on discrete
time.)

In the standard dynamics, each spin evolves by
watching the states of the nearest neighbour spins, be-
cause spatial correlations arrives only via the nearest
neighbour states. These arguments propose to adopt
following dynamics as a reasonable standard dynamics.
D({o;}|{s!}) is an infinitesimal operator for the time
evolution of the stocastic process.

p fordy({o:},{cl}) =1
g for dy({o:},{o}}) = 0(16)
0 otherwise

D({oi}{ei}) =

p =y FAE (7 is some constant.) (17)

AE = H({ei}) - H({ei}) (18)

g is determined satisfying the relation

Y D({oi}{ol}) =0. (19)
{3

Then the distribution function p(t) at the time ¢ is
given as the form:

p(t) = P p(0) (20)

The infinitesimal operator D has only real non-
positive eigenvalues A < 0 and only one stationary
mode A = 0. It means that the process has no osccila-
tinig modes of ralaxation. The present result proved
mathematically has also a physical meaning. The rea-
son of no osccilating modes is that effects of one spin
on surroundings feed back to itself without delay and
the feed back prevents the overrun of relaxation.

Let me consider two widely used dynamics on discrete
time (heat bath method and Metropolis method) and
only one spin flip process in the elementary process for
the comparison with the case of continuous time. The
elementary process for each dynamics is constructed fol-
lowingly.

(a) Heat bath method

b for () = (o)
- foro; =oi(i #j
B({oil{oi}) = | T 1o = olli 72d)
3= J
0 otherwise

(21)

(b) Metropolis method

(1-e 285 for {o;} = {0}
and AE >0
1/2 for {o;} = {0}}
and AE =10
e~ 2AE for o; = ol(i # j),
Pi({oi}{oi}) = 4 oj = —0j; and
AE >0
1/2 for o; = ol (i # j),
0j = —o} and
AE =0
0 otherwise

\

(22)

Total processes are constructed from the elementary
processes followingly.

P = Pit)Pitn-1)- - P2y Pi1) (23)

There are various constructions with a selection of the
series j(m). It is noted that the series j(m) must in-
clude all integers I (1 < I < N) in order to ensure
the ergodicity. Though each elementary process satis-
fies the condition of detailed ballance, the total process
does not always satisfy the condition. Nevertheless the
present construction of the total process ensures con-
vergence to the proper final distribution. In genaral,
the operator P has non-real eigenvalues due to the un-
commutability of the elementary processes P;. (Ran-
dom independent choice of the spin j(m) recovers the
property of real eigenvalues for the total process.)

5. Analysis of a system with three spins

In the present section, One very simple system with
only three spins is analyzed by applying the dynamics
constructed in the previous section and the character-
istic properties of each dynamics are made clear.

The Hamiltonian of the system with three spins is

H:—J(010'2+0'20'3+0'30'1) (24)

Dynamics on continuous time and with heat bath
method are studied for the ferro- and antiferromagnetic
case and dynamics with Metropolis method is studied
only for the antiferromagnetic case.

(a) Continuous time

Infinitesimal operator D of evolution for the present
Hamiltonian is constructed by applying the general ex-
pression (17). D is easily diagonalized exactly using the
spin inversion symmetry ({o;} — {~0;}) and trasla-
tional symmetry (1 — 2 — 3 — 1) of the Hamiltonian
H. The eigen-states are classified as symmetric or anti-
symmetric modes under the spin inversion whose relax-
ation times are 75 and 745 respectively. It is noted that
the modes whose total magnetization M = E?:l o; Te-
laxes are antisymmetric. Symmetric modes are a sta-
tionary mode (canonical distribution) and the modes
whose relaxation times are 7 (translationally invari-
ant mode), 75 and 75. Relaxation times of the anti-
symmetric modes are 7%’ (translationally invariant),
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Figure 1: Relaxation times of evolution on continuous
time

745 and 74'5. The relaxation time of each mode is ex-

pressed as an analytical form. Instead of listing explicit
forms, the order of length of relaxation times and the
behavior of 7's near T = 0 are listed.

o J> 0
- <1 <1 =74°(1<a<3)
< s (25)
o J< 0
s <1 =m{<i(2V3-3<a<])

¥ < o AS . .S _ .8
<t <=1 (0<a<2/3-3)
<788 = 1S (26)
a= 7
o —0
o J> 0(a—o0)

T~ ol'-3073 15 =1 ~al - 3272
3 %;— + %, S ~ o7l — 4072,

1 « o 4da?

AS ~ - bl AS ~ o

i+ R T S S a
= ¥ ~l-a (28)
a= (29)

Relaxation times 7's behave as in fig.1. The characters
of evolution on continuous time are summerized follow-

ingly.

e Only the mode with the longest relaxation time
#%5 diverges at T — 0 for the ferromagnetic case.
Because the mode relaxes total magnetization M,
relaxation time of M diverges at 7' — 0 reflecting
symmetry breaking of the ground states.

¢ Relaxation time for any mode does not diverge at
T — 0 for the antiferromagnetic case reflecting the
relaxation between the ground states with a finite
relaxation time due to the zero energy barrior be-
tween the ground states.

e No oscillation modes exist as shown in the general
theory in section 4.

Using the results as those of a standard dynamics,
characters of the dynamics on disrete time are analyzed
in the succeeding parts.

(b) Heat bath method

The operator of evolution P is constructed by apply-
ing the general formula (21) in section 4. The series
j(m) in the relation (23) is taken as j(m) = m regu-
larly to see the effect of uncommutability of elementary
processes. The total process P is constructed as the
form:

P - P3P2P1 (30)

The operator P has a spin inversion symmetry and
no translational symmetry. It follows that each eigen-
mode is symmetric or antisymmetric under the spin in-
version and its eigen-value is not real in general. It is
noted that the eigenvalues of the total process P can
take complex values even if the elementary processes P,
have only real eigenvalues. It means that some eigen-
modes can have an oscillating property. The operator
P is easily diagonalized exactly. Relevant properties
obtained from the results are listed here. We put the
eigenvalues of P in the form A; = A? for a technical rea-
son and show the results for \'s. One stationary mode
whose eigen-value Ag = 1 corresponds to the canoni-
cal distribution. The results for other modes are given
followingly.

A=A =M5=2%=0 (31)
o J> 0
M5 <0< Af < MY
P <IME] < MY (32)
o J< 0
AT] <A (33)
T —0
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Figure 2: Relaxation times of the dynamics by heat
bath method. Continuous, dashed and dotted lines de-
note the modes which is non-oscillating, oscillating with
a period 2 and oscillating with a variable period respec-
tively.

o J>0
/\f—>1/2, Af_f—%l, /\ff-—-)—l/? (34)
o J< 0

-1+ /T
/\‘19 — —1/2, /\ﬁf — —Zﬂ

(IME] = 1/v2) (35)

MY take complex values for the case J < 0 and A£S
is a complex conjugate of A{{. Its corresponding mode
oscillates with a variable period. /\ff takes a negative
value for the case J > 0. The osccilations reflect the
time lag of feed back in a physical sense. The behavior
of relaxation times is shown in fig.2.

The characters of dynamics of heat bath method are
summerized followingly.

e There are four modes whose eigen-value A = 0.
(Total number of modes is eight.) Each elementary
process P; has two eigen-values A\ = 1 (stationary
mode) and A = 0. It implies that each elementary
process F; relaxes the local spin state to equibrium
one perfectly after once operation P;. The local
zero modes of P; survive in the zero modes of the
total process P.
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Figure 3: Relaxation times of the dynamics by
Metropolis method. Notations are in common with
those in fig.2.

¢ The mode with the longest relaxation time diverges
at T — 0 for the case J > 0 and no divergent
modes exist for the case J < 0. The reason is
in common with that for dynamics on continuous
time. It is interesting that the symmetry (antisym-
metric under the spin inversion) and the degener-
acy of the modes with the longest relaxation time

are common to two dynamics both for the cases
J>0and J <0.

(c) Metropolis method

In the present part, the dynamics P (eqn. 23) con-
structed from the elementary processes (22) is analyzed.
Only the antiferromagnetic case J < 0 is discussed
here because there is no unified form of the elementary
process (22) available both for the cases J > 0 and
J < 0. The operator P has a spin inversion symmetry
and no translational symmetries as in the case of heat
bath method. There is one stationary mode (canonical
distribution) whose eigen-value A\g = 1. The relevant
properties of other eigen-modes are listed followingly.
(Notations are in common with those in the part (b).)

M o =MS=0 (36)
MAS :{ real negative' value _ (e <1/8) (37)
complex conjugate pair (a > 1/8)
w= o2V
of -0 (a—0)
AL ~—a, A ~-1/24+a

S ~—a, M S %@
(1M = 1/v2) (38)

The behavior of relaxation times is shown in fig.3.
Obtained results are summerized followingly.

e There are two zero modes (A = 0) which have ex-
actly same elements as those for heat bath method.

e There are no divergent modes at T — 0.
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Figure 4: The Ising model on the A— chain and the
equivalent Ising chain.

o All relaxation modes have oscillation. Oscillation
of the modes whose eigenvalue 75, translate from
the constant period 2 to continuously variable pe-
riod at o = 1/8.

6. Percolation properties of thermodynamically
equivalent systems

The Ising percolation models have more information
than the original Ising models as discussed in section 3.
In the present section, it is shown that the connection
proberbility between two distant spins in the Ising per-
colation model takes distinct values even for thermo-
dynamically equivalent Ising systems. It implies that
the connection proberbility is not characterized by the
equibrium properties of the Ising model. Taking the
Ising model (A) on the A-chain (fig.4) as a sample, the
connection proberbility is analyzed. The Hamiltonian
is given as

Ha=—-J4 Z 0iGiy1 — Jo Z(Uz’a{ + Ui+1d¥)' (39)
: %

By summing up the Boltzmann weight over the states
for ois, the Ising chain (B) with a renormalized cou-
pling constant J is obtained. Two spin systems (A)
and (B) are thermodynamically equivalent and the fol-
lowing correlation equality holds.

(010n)a = (0104)B (40)

The system (A) is frustrated for the case J; < 0.
Two kinds of percolation proberbility Py and P_ (eqn.
10) of frustrated systems have non zero value from the
general results in section 3. Then using the relation (9),
the following relations are obtained.

PA=PL+P2>|P{ - P4 =|(0104)4] (41)

=oron)p| = PP

PX is a total probability to percolate in the system
X. The inequality (42) implies that the quantity PX
takes distinct value for two thermodynamically equiv-
alent systems. To take a subtrace is interpreted physi-
cally as the operation to relax the substate much more
rapidly than the rest. The fact that the procedure for
subtrace lead to erroneous results suggests the quantity
PX has some informations for the dynamical proper-
ties.

7. Summary and future problems

The properties of three kinds of dynamics have been
analyzed on the simplest system only with three spins in
the present article. Two kinds of dynamics on discrete
time have the properties similar to those in the case on
continuous time concerning the mode with the longest
relaxation time. The process by heat bath method have
more zero modes than that by Metropolis method. The
fact does not mean that dynamics by heat bath method
converges more rapidly than that by Metropolis method
because relaxation depends on the slowest mode. No
prominent differences are found in the two dynamics.
In fact, each dynamics can be deformed to another one
continuously via the proper intermediate dynamics.

Relevant properties of dynamics of frustrated systems
seem to be missed in observing only the relaxation of a
small number of quantities with specific symmetries be-
cause such systems have no easy axis. Damage spread-
ing is a method extracting the dynamical properties of
topologically complex modes by comparing evolution
from two initial conditions. The picture is interpreted
as observing a dynamics on two replicas with dynam-
ical interlayer interactions. It is a future problem to
study dynamics on two replicas and make clear the re-
lation between the property “damage spreading” and
the percolation property.
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