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The relation between even-odd difference of metal cluster and the deformation of equilibrium shape is studied in
terms of two different models; (i) tri-axially deformed harmonic oscillator model, (ii) rectangular box model. Having
assumed the matter density p kept constant for different shapes of a cluster, we can determine the equilibrium shape
both for the two models. The enhancement of HOMO-LUMO gap is obtained and it is ascribed to Jahn-Teller effect.
Good agreement of the calculated results on ionization potential and the experimental values is obtained.
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1. Introduction

The origin of even-odd staggering of binding energy
of metal cluster has been drawing much attention from
many authors?. Having noticed the shell effect is
prominent in the abundance spectrum of metal cluster, it
is believed that the shell model provides the basic frame
for describing the properties of the system!?). Since the
spherical shell model gives highly degenerated single par-
ticle spectrum, it is obvious that one fails to obtain finite
even-odd difference in the total energy. One can imime-
diately imagine two different sort of models to account
for the even-odd difference; pairing model of interact-
ing electrons and free electron gas model in a deformed
potential. The absolute values of experimental even-odd
difference for ionization potential®® of Na are about 0.2
eV at N =~ 20. It seems to be hard to account for these
values consistently as the energy gap given by the pair-
ing model. The second model accounts for the even-odd
difference as the result of Jahn-Teller distortion. The
degeneracy of single particle states is split due to the de-
formation of equilibrium shape and this brings the origin
of the even-odd staggering of the total energy.

Within the framework of the second model, we inves-
tigate the even-odd difference and the shape deformation
for wide range of cluster size N. The fact that no quartet
structure (two teeth of a saw shape are merged into one)
is found in observed ionization potential®”) of Li and
Cu suggest Clemenger’s model® is not sufficient with
respect to Jahn-Teller distortion. Hence we choose two
extreme models of free electron gas in (i) quadratically
deformed harmonic model (DHOM), and (ii) rectangular
box model (RBM). The residual interactions (electron-
electron and electron-positive ion) will modify the result,
but we assume that their effects have no vital impor-
tance to the problem considered here and ignore them.
In order to determine the equilibrium shape of a cluster,
we further assume that the average electron density p is
the same among the different shapes for a given N and,
furthermore p is constant for different cluster sizes.

Under these assumption, we find analytic expressions
of the total energy for both of the models as functions of
limited set of variables. The lowest total energy, equilib-
rium shape and other quantities are determined by the
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condition to minimize the total energy with constant p
constraint. All of them are expressed in terms of alge-
braic functions of IV, electron configuration v over the
model basis and p. Therefore the present models are
applicable to both of alkali and noble metal clusters by
choosing single parameter p appropriately.

In this work, we study the structure of single particle
spectrum, shape and ionization potential (IP) of sodium
cluster. The brief comparison of theoretical results with
experimental data is made for IP.

2. Model

The hamiltonian H for free fermion gas in a potential
well U is given

H=Hy+U (1)

where Hy = (p}+ p} +p})/(2m). For the potential
part, we consider the following two cases;
Ug = m (wiz? + wizs + wizd) (2)
5 Wiy 2%3 3%3) »
0 ;|| < Ly, |za] £ Ly, |z3| < Lg,
Up = _ (3)
0o ;otherwise,

where Uy and Upg denotes deformed harmonic oscilla-

tor potential and rectangular box potential, respectively.
The single particle energy spectrum for each model is
given as follows;

(1) Deformed Harmonic Oscillator Model (DHOM)

E(Q;R) = thj(nj+ %)

;n;=0,1,2,--- and y=1,2,3

where Q and 71 is the collective expression of wy,ws,ws
and n;, ny, n3 respectively.

(ii) Rectangular Box Model (RBM)

(hsi) = 3 e(Ly)n? Ly=TH 1

n) = n : e(L;) =

Ax - 17155 ’ J 2m 4L§ ’
n;=1,2,3 - and y=1,2,3
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where A represents Li,L2,Ls and fi is just the same
abbreviation introduced in the previous model.

For a single particle state ny,nq, ns, the occupation
number 7 of electron can take tone of the values 0, 1
or 2. Let us adopt here a notation (n; nz n3)” by the
analogy of spectroscopy in order to represent a config-
uration of electrons over single particle basis. Then a
general configuration v over such basis can be written
as v, . .., where we v; = {ny(i) na(%) na(z))™. We fur-
ther introduce the notation N;(v) to the sum of quanta
over given configuration v with respect to the z; -axis

> minj(i) ; DHOM,
Vi€V
Nj(l/) = ) .7 = 17273 (4)
Y ni(nj(9)"; RBM.
viEv

With these notation, the total energy E of free electron
gas with configuration v is expressed as

ZZWj(ZNj(V) + N) ; DHOM7
BEn={ 5 )
3 e(L)N;() ; RBM,

j=1

where = denotes © for DHOM and A for RBM, respec-
tively.

Having formulated the method to fix the equilibrium
shape of cluster in the previous section, it is easy to see
that the shape can be found by solving the problem to
minimize the generalized energy functional F(Z ;1) with
respect to the variation of shape parameter =

F(Z;v)= H(E;v)— pp(=;v), (6)

where p is the Lagrange multiplier of constraint condi-
tion 9 = 0. Its explicit form of is given

P(E;v)=pV(E;v)— N =0, (7

where V is the volume of given system and one can cal-
culate theoretically in the present models. For DHOM,
we choose it 47 R;(v)Rz(v) Rs(v)/ 3, where R;(v) is the
quantum mechanical counterpart of a object having uni-
form density distribution with sharp surface.”) We set V
as L1L,L; for RBM. Note that V(E;v) can be repre-
sented in a explicit form of E and N;(v) in both models.

Let us use ¢; instead of wj or L; for simplicity. The
stationary point of F' must satisfy the following equa-
tions,

F .
-a—:() ; (j:1,2,3),
9; (8)
oF
ou

The “shape parameters” ¢; and the Lagrange multiplier
u are solved as functions of N;(v), i.e. the equilibrium
shape can be expressed in terms of given electron con-
figuration v. By inserting these expressions into Eq. (5),

the minimum total energy E is finally obtained as a
function of single variable v. However many different
configurations are possible for given electron number N.
Hence the problem reduces to find the special configura-
tion v which makes E(v) be real minimum(-ma) among
possible configurations for given N and p.

The present approach greatly reduces the amount
of calculation to find the real minimum(-ma) compared
with the full numerical method.!® The procedure of the
latter is separated in two successive steps; (a) search
the equilibrium shape for given configuration by chang-
ing “shape parameter”, (b) repeat the process (a) by
selecting different configurations and decide the real
minimum(-ma) among the results. The first step is ob-
viously not necessary to the approach described here,
since the result of process (a) has been already given in
concrete form.

Various physical quantities depend on cluster size N.
Among them, there are interesting quantities which tend
to certain non-trivial limiting values at N — oco. For ex-
ample, if we define the Fermi energy er of the system as
the energy of the highest occupied single particle state,
one can show that &, is just such quantity in reason-
able postulation. By using the asymptotic behaviour of
Nj(v) for DHOM at large N, one finds

(47rp)2/3 R? 59
= |3) 2

3 — N — o0. (9)
For RBM, it seems to be impossible to find simple an-
alytical relation between N;(v) and N even for closed
shell case. But we can calculate the asymptotic value of
er by assuming the average density p kept constant for
large NV,

2
ep — — (372
¥ 2m ( p

)2/3 (10)

as N — 0.

In this work, we treat a quadrupole shape of clus-
ter in DHOM and a general rectangular parallelopiped
shape in RBM, respectively. Since the standard pre-
scription to describe quadrupole deformation has been
established,!!) we follow it and introduce the deforma-
tion parameters 3 and ; once R;j{r) has been obtained,
these parameters are easily determined.!® On the other
hand, there are no standard method to parametrize
RBM. Having noticed that the deformation considered
here preserve the “volume” of an object [see Eq. ()], it
is obvious that the shape can be characterized by two
parameters. Thus let us adopt the same prescription
(use 3 and v parametrization) as DHOM case by using
L; instead of R;.

The theoretical ionization potential of a cluster is
roughly estimated by the absolute value of the highest
occupied level energy calculated by a suitable method,
e.g. Hartree-Fock approximation of the system. Un-
fortunately both of the potentials considered here have
infinite depth and therefore it is impossible to obtain the
difference of zero-energy and the highest occupied level.
Instead we calculate the first difference of ex(V)

Alep; N) = — (ep(N) —ex(N — 1)) , (11)
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and compare with the experiments. Note that the minus
sign in Eq. (11) is necessary because the each value of
€x is measured from the bottom of the potential, respec-
tively.

3. Calculation

In searching the real minimum, we need to take the
whole possible configurations for given N and compare
their total energies. The number of possible configura-
tions swells explosively as N increases when we take the
space of single particle basis sufficiently large. Therefore
we are forced to truncate the basis space into appropri-
ate size by practical reason. Thorough calculation up to
N =~ 100 shows that it is sufficient to take the model
space S which is composed by the full basis of valence
shell and upper and lower one major shells around it plus
several basis among second upper and lower major shells.
Actually we choose further large model space by adding
several basis among the third major shells both side of
valence shell to the space S. We fix p = 2.652x10"2A 3
both of the two model throughout the calculation for
sodium cluster. This choice reproduce the bulk Fermi
energy of sodium'? ¢, = 3.24 eV in RBM at large N.
We calculate the case of cluster size up to over N = 440
for both models.

4. Results

The present approach is powerful compared with the
full numerical method of Selby et al.!!), since it gives the
new ground state configurations for N = 16, 27, 28 and
29 unknown previously. In the following, we will describe
the results which are a part of our recent calculation.

4.1 Single particle spectrum and HOMO-LUMO gap

In Fig. 1 shows the calculated single particle spec-
trum for DHOM. The gross

Energy [eV]

[ occupancy atthe Fermilevel +
i

1.0 L i " P
5 10 15 20 25 30

......

Number of atoms per cluster, N
Figure 1: Single particle spectra of sodium clusters.

features are quite similar to those given by Hiickel model
and molecular dynamical model.}3-1%). The enhance-
ment of HOMO-LUMO gap due to the Jahn-Teller dis-
tortion is widely observed. The y? fitting for the en-
hancement factor to the average level distance around
the Fermi surface gives 1.838 (cluster size N = 41 to
444). Crossing of single particle orbits due to the defor-
mation are clearly seen. It is worth to point out that
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the position of the Fermi level shows saw shape as N
changes. All of these situations are also observed in rect-
angular box model.

4.2 Deformation of equilibrium shape

The calculated values of deformation parameters 3
and v with DHOM are shown in Figs. 2 and 3. As ex-
pected, 8 deformation grows in the region where par-
ticles fill half part of major shell. There often appears
hole intruder state in such region, by accompanying a
sudden shape change. Although we omit the details, the
behavior of N-dependence of the deformation obtained
by the model is very similar to the results given by more
realistic model.1®).
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50 100 150 200 250 300 350 400
Number of atoms per cluster, N

Figure 2: Deformation parameter 3 of sodium clusters.
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Figure 3: Deformation parameter v of sodium clusters.

At first glance, v parameters take relatively small
values (< 10°) except for small N region. Most clusters
are regarded as a quasi-axial symmetric objects. But
an interesting regularity on N dependence of v can ob-
served in the fine structures of Fig. 3. In particular the
variations in the oblate regions around N ~ 300 and
400 are very clear. Each small downward peak pattern
shows particle filling process to the degenerate n; mul-
tiplet. This shows that tri-axial deformation does not
developed well in DHOM and very small amount of tri-
axiality is sufficient to stabilize the whole system.

On the other hand, the calculate results show rather
vague or irregular behavior of 3 parameter in RBM. The
7 values shoe widely scattered patterns between 0 to 7 /3
(both figures are omitted). These might be the conse-
quence of sparse level density near the Fermi surface.
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4.3 lonization potential

Having described in Sect. 2, since it is impossible
to calculate the ionization potential IP(N) of N-cluster
by both of our models, we calculate the first difference
Alep; N) defined by Eq. (11). Roughly speaking, this
quantity can be regarded as the first difference of the
ionization potential IP(N)—IP(N —1) if we ignore the
effect of correlations between electrons. The results are
summarized in Fig. 4 for N = 2 to 25.

3.0
s i Deformed HOSC —=—
2, | Rectangular ——
— 20 TI\- Experiment ——
v i
Z g0}l
o
Z 0.0
3
B oot
£l
z
= 2.0
=
<

-3.0

Number of atoms per cluster, N
Figure 4: First difference of ionization potential sodium
clusters. Experimental data are taken from Refs. 3 - 5.

In calculating A(er;N) by DHOM, we rescale
the single particle energy by factor Ry = 0.7077 so
that ep(o0) reproduce the bulk value of Fermi energy
of sodium. This rescaling is obtained if we set the den-
sity p of the model is 1.579x1072A~3. Of course the
density in RBM is not rescaled.

In spite of crudeness of the models considered, Fig.
4 shows that reasonably good agreements with the ex-
_ perimental values are obtained, especially for DHOM.
However we fail reproduce the irregular structures ob-
served in the experiments (beginning from N =10 and

15).

5. Comment and discussion

We first consider the irregular structure just pointed
out previously. For N = 10, the results obtained by
molecular dynamical models!*:15) show that the equilib-
rium shape of the system slightly deviates from the axial
symmetry whereas it keeps such symmetry in DHOM.
The degrees of freedom of positive ions are partly in-
cluded in the basis of the former model'*!9, while they
are completely ignored in our models. Although we
found one shape isomer with tri-axial symmetry at N =
16, we neglect it during the present estimation, since its
Fermi energy is much higher. Its contribution gives in
the right direction to the theoretical results. As Fig. 1
shows, the complicated behavior of level splitting around
N = 16 suggests that more careful investigation will be
necessary in such region.

Both of the models we have considered so far are
over simplified free electron gas in certain potential well.
Hence it is desirable to deal with realistic model by tak-
ing into account of the residual interaction correctly. Un-
fortunately it is hard to carry out more consistent calcu-
lation, such as deformed Hartree-Fock calculation with

tri-axially deformed basis. The many-body effects for
a cluster system will be important when we investigate
the even-odd staggering of other quantities, such as for
example, the second difference of the total energy A E.
We have calculated A3 F by both two models and the
results show clear even-odd staggering (figures are omit-
ted). Roughly speaking, the strength of staggering is
more prominent for RBM than DHOM. The magnitude
of staggering in Ay F will be reduced if we include the ex-
change effect.!” An estimation in the local-spin-density
approximation (LSDA) for the homogeneous electron gas
by taking into account of the exchange and the correla-
tion effects'8) gives the reduction is 30 to 40 % depend-
ing rs = 2 to 6. After making such correction to Ay E,
we find that about factor 0.8 strength of the effective
average level distance still remains at given IV for each
model.
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