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We clarify characteristics of the electronic structure of the carrier system in small semiconductor particles, and
investigate the size dependence of this electronic structure with the doping level fixed. We assume spherical doped
semiconductor particles in an insulating medium or in the vacuum, and calculate the carrier density distribution and the
effective one-particle potential self-consistently. Irrespective of the particle size, a prominent peak appears right inside the
carrier-deficient surface layer in the carrier density profile. With increase of the size, the density oscillation inside the
prominent peak becomes less and less conspicuous, which reduced to nearly constant density to tend toward charge
neutrality. The remarkable variation of the potential bending with increasing size depends on where the probability density
of newly occupied carrier states is concentrated. This potential variation often entails the intersection of two close energy
levels with different concentration features in their probability density distribution.
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1. Introduction

As for the electronic structure of small metal
particles, it is established that metal clusters become
stabilized at shell-closing electron numbers, and that the
electronic shell effect emerges in the size dependence of
the ionization potential.1-5) Compared with these
intensive studies, the electronic structure of the carrier
system in small semiconductor particles is still open to
close examination, though there are some theoretical 8
and experimental 7:8) works on coupled modes of carrier
plasmons and polar phonons in small semiconductor
particles.

The present analysis is concerned with small doped
semiconductor particles in an insulating medium or in
the vacuum. Carrier states of semiconductor particles
significantly differ from electronic states of metal
particles in some points. Firstly, the characteristic
length of the carrier density variation near the surface
(tens of A or longer) is much longer than the penetration
length of carriers into the surrounding medium or the
vacuum (one or a few f\), because the kinetic energy of
each carrier (tens of meV or less) is much smaller than
the barrier potential at the interface with the insulating
medium or the work function (several eV). This is in
striking contrast with electronic states of metal particles
where the penetration is remarkable in the electron
density profile near the surface. (see, e.g., Fig. 3 in ref.
1). Secondly, carriers suffer from the effect of the
dielectric polarization of the particle background which
accommodates carriers. This polarization effect reduces
the Coulomb interaction between carriers. In addition,
when a carrier approaches the particle surface, it is
affected by the image potential which results from the
difference between the dielectric constant of the particle
background and that of the surrounding medium or the
vacuum.

The aim of the present report is to highlight
characteristics of the electronic structure of the carrier
system in small semiconductor particles ®) and to
examine the size dependence of this electronic structure
with the doping level fixed. 19 Our objects of
calculation are n-type degenerate GaAs particles which
are spherical in shape. In n-type compound
semiconductors, such as n-GaAs, n-InSb and n-InAs,
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carriers readily become degenerate with increase of carrier
concentration, because an extremely small effective
electron mass and a large dielectric constant give a large
effective Bohr radius gz*, which leads to a small
effective carrier density parameter rg. Each particle
consists of the carriers and the spherical background
which is dielectric and electrically positive. The ionized
donors are assumed to be spread out into a uniform
positive charge distribution. In view of the above-
mentioned boundary condition for carriers, we assume
that the carriers are restrained in the particle by an
infinite barrier potential at the particle surface. This
infinite barrier assumption was employed to examine
carrier states at the flat semiconductor surface 11) or at
the flat oxide-semiconductor interface.12) We calculate
the carrier density distribution and the effective one-
particle potential self-consistently.

2. Theory

We employ the density-functional theory involving
the local density approximation (LDA). The electronic
structure of the carrier ground state can be obtained by
solving the following equations self-consistently:

{—(ﬁZ/Zm*)A+ Veff[r;n(r)]} wi(r)=Eqy(r), (1)

n(r) - lei (). @)

where m*, N, n(r), ¥,(r) and E, signify the effective
mass of carrier electrons, the number of carriers, the
carrier number density at position r, and the Kohn-Sham
13) single-particle eigenfunctions and eigenenergies,
respectively. The effective one-particle potential V; is
composed of the electrostatic Hartree potential I, the
exchange-correlation potential V', and the image
potential V', :
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In egs. (3)-(5), R, &, E,, and p denote the radius of
the spherical particle, the static dielectric constant of the
particle background, the static dielectric constant of the
surrounding medium, and the homogeneously spread-out
density of ionized donors, respectively. We adopt the
spherical polar coordinates, and locate the origin at the
center of the particle. The local effective density
parameter 7¢(r) is defined by

ag'ry(r) =[3/4n(r)]", ©)
where ag* is the effective Bohr radius. We employ the
exchange-correlation potential parametrized by
Gunnarsson and Lundqvist.14)

Our calculation treats the spherically symmetric
system. When the effective potential V' is spherically
symmetric, the angular part of each energy eigenfunction
is described by a spherical harmonic Y ,(0, ¢), and each
energy eigenstate is specified by the quantum numbers
n, I andm. Here n (=1, 2,---) is the radial quantum
number which labels the ascending series of energy
levels for each I. The energy cigenstates are degenerate
with respect to m. If the carriers have a closed-shell
configuration, the carrier density distribution becomes
spherically symmetric, which leads to a spherical
potential V.. If the carriers take an open-shell
configuration, we utilize the manipulation of replacing
the squared eigenfunction |y, ,,(r)]2 by its average over
m (-l sm <1}, in order to make the carrier density
distribution spherically symmetric (see eq (2.17) in ref.

5).

3. Results and Discussion

Figure 1 exhibits the carrier density distribution n(r)
and the effective one-particle potential Vg (r) for three
sizes of electrically neutral n-type GaAs particles with
closed-shell configurations. All of these particles have
the same doping level that corresponds to the bulk

carrier concentration »n; =5 %107 cm3, namely, to the

effective carrier density parameter #,=0.767. The static
dielectric constant of the surrounding medium is taken to

be £, =1 except for the case where the image potential is

switched off by setting ¢, = &,.

The carrier density profile for each size is shown by
the full curve in each upper panel of Fig. 1 (a)«(c). The
horizontal broken line in each panel indicates the density
of the uniformly smeared-out ionized donors. The
length is scaled by the effective Bohr radius g *=102 A.
The dotted curves with ! assigned represent the
decomposition of n(r) into [ components, and some of
these curves involve more than one shell. The dotted
curve labeled 'no V,,, ' in Fig. 1 (b) displays the carrier

density distribution obtained from the self-consistent
calculation in the absence of the image potential. The
dotted curve labeled 'film' in Fig. 1 (c) exhibits the
carrier density distribution in the film with the same
doping level. The thickness of this film is equal to the
diameter of the particle. Here the z-axis is taken 10 be
normal to the surface, and its origin is located right in
the middle of the film.

The effective one-particle potential and the occupied
energy levels for each size are shown by the full curve
and the full bars, respectively, in each lower panel of
Fig. 1 (a)}-(c). The energy of V', is measured from its
value at the center and scaled by the effective Rydberg

constant Ry*=¢2/2€, ag*=5.48 meV. In the lower panel

of Fig. 1 (a), the effective potential is decomposed into
the electrostatic Hartree potential V', the exchange-
correlation potential V., and the image potential V.
In Fig. 1 (b), the dotted curve and bars display the
effective potential and the occupied energy levels in the
absence of the image potential. In Fig 1 (c), the dotted
curve and bars represent the effective potential, the
subband bottoms, and the Fermi energy for the film.
The plus or minus sign indicates the parity (even or odd)
of the eigenfunction for each subband with respect to the
reflection operation z — —z.

First, we focus our attention on the carrier density
distribution (see the full curve in each upper panel of
Fig. 1 (8)-(c)). The value of the carrier density falls and
vanishes at the surface, which forms a carrier-deficient
surface layer with positive charges. Right inside this
surface layer emerges a prominent peak whose
magnitude is considerably larger than the uniform donor
density. The prominent peak is the pronounced feature
in the carrier density profile regardless of the particle
size.

The oscillatory pattern of the density profile varies
significantly as one shell after another becomes occupied
with increase of the size (see Fig. 1 in ref. 10). This
variation can be understood by taking account of the
following two facts: (1) The probability density
distribution of the newly occupied shell creates a
corresponding new feature in the density profile. (2)
Once a shell is closed, its component in the density
profile declines gradually in magnitude with increase of
the size, because a fixed number of carriers in the shell
spread over the larger region.

With increasing size, the density oscillation inside
the prominent peak becomes less and less conspicuous,
which reduces to nearly constant density to tend toward
charge neutrality.

In Fig. 1{(c), the result of the particle calculation is
compared with that of the film calculation. The density
oscillation in the film is much less conspicuous than
that in the particle.

The image potential operates to repel the carrier into
the inside of the particle, when it approaches the surface.
As shown in the upper panel of Fig. 1(b), if the image
potential is switched off, a small fraction of interiox
carrier charges transfer to the surface region, because
carriers can get closer to the surface.

Here we tumn our attention to the effective one-
particle potential and the occupied energy levels (see the
full curve and the full bars in each lower panel of Fig.
1(a)-(c)). The radial dependence of the effective potential
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" . Fig. 1. Electronic structure of the carrier ground
state of spherical n-type GaAs particles for three
sizes. N denotes the carrier number. Adapted from
Fig. 1 in ref. 10. For details, see the text.
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Fig. 2. Size dependence of the magnitude of the
downward effective-potential bending in the presence of
the image potential (filled circles) and in the absence of
the image potential (open triangles). Adapted from
Fig. 3 in ref. 10.

is characterized by the downward bending and the quick
ascent just near the surface. Figure 2 exhibits the size
dependence of the potential bending V', in the presence of
the image potential (filled circles) and in the absence of
the image potential (open triangles). The doping level
is fixed at the same as in Fig. 1, when the size is
changed. The value of Veffis measured from its value at
the center, and the potential bending ¥, is defined as the
absolute value of the minimum of V. Larger filled
circles and all open triangles correspond to closed-shell
configurations, while smaller filled circles correspond to
open-shell configurations. The newly occupied shell or
shells are specified at each closed-shell point. For
example, the 1g and 2p shells are newly filled when the
size increases from N=34 to N=58. We can acquire no
correct self-consistent solution for closed-shell
configurations and their neighboring open-shell
configurations in the size ranges where the connecting
lines are missing. This difficulty may happen when one
of two very close energy levels is occupied and the other
is empty. The self-consistent calculation assuming one
of the two levels to be occupied and the other to be
empty leads to an incorrect solution where the empty
level is slightly lower than the occupied level. We meet
with the same difficulty in the LDA calculation of the
electronic structure of small metal particles.*) The
reason why we encounter this difficulty more often in
the present calculation is that, as is described below, the
energy-level intersection often occurs with change of the
size.

The potential bending varies remarkably with change
of the size. Increase (Decrease) of the downward bending

lowers (heightens) the energy levels of the shells whose
probability density is localized near the surface.
Accordingly, the variation of the potential bending often
entails the energy-level crossing between the shells with
different localization features in the probability density
distribution.19)

The effective potential is decomposed into three
components in the lower panel of Fig. 1(a). The
downward bending of V' originates from the downward
electrostatic Hartree potential V', generated by the charge
density distribution due to negative carriers and positive
donors. The image potential V', operates against the
downward Hartree potential to suppress the downward
bending of V5 and to make the rapid ascent of V5 in
the close proximity of the surface. Switching off the
image potential enhances the downward bending of V',
which leads to an upward rigid shift of the saw-tooth
pattern of ¥, in Fig. 2. The exchange-correlation
potential VV__ only plays a subsidiary role, because our
carrier system has a small effective density parameter s,
namely, a high effective density.

The oscillatory variation of V', in Fig. 2 results from
the serial occupation from one shell to another with
increase of the size. As is mentioned above, the
downward bending of V', arises from the downward
electrostatic Hartree potential V. We can decompose
V' into constituent shell components (see Fig. 4 in ref.
10). The (n, I ) component of V', is generated by the
charge density distribution n(r; nl ) — n*(nl ), where
n(r; nl ) and n*(nl ) denote, respectively, the (n, Z) -shell
component of the carrier density and the constant
component of the homogeneous donor density which
cancels with n(r; nl ) as a whole. A downward
electrostatic potential is produced by the carrier density
component which is concentrated around the center or
well inside the particle. This downward potential
operates to enhance the downward bending of V... On
the other hand, the upward trend is dominant in the
electrostatic potential created by the carrier density
component which is localized near the surface. This
upward tread acts to suppress the downward bending of
ngf~ From this decomposing analysis, it is established
that the value of V), increases when we are filling a shell
whose probability density is concentrated around the
center or well inside the particle, and that the value of
¥, decreases when we are filling a shell whose
probability density is localized near the surface.

4. Summary

Taking account of semiconductor characteristics, we
have examined the electronic structure of the carrier
ground state of small semiconductor particles. The
particles are assumed to be in an insulating medium or
in the vacuum. We have performed the self-consistent
calculation for various sizes of spherical degenerate
semiconductor particles with the doping level fixed

(1) The carrier density distribution

Irrespective of the size, a prominent peak emerges
just inside the carrier-deficient surface layer in the
density profile. With increase of the size, the density
oscillation inside the prominent peak becomes less and
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less conspicuous, which reduces to almost constant
density to achieve charge neutrality.
(2) The effective one-particle potential

The magnitude of the downward bending of the
effective potential makes a remarkable oscillatory
variation with increase of the size. The downward
bending tends to increase, when the probability density
of the newly filled shell is concentrated around the center
or well inside the particle, while it tends to decrease,
when the probability density of the newly occupied shell
is localized near the surface. This significant variation
of the potential bending often involves the intersection
of two close energy levels with different angular
momental .

The present report has been concerned with
electrically neutral particles. However, the number of
carrics may not be balanced with that of ionized donors
or acceptors, if our particle system can exchange carriers
with its surroundings or surface states. Some analysis
of this imbalanced situation is presented in ref. 10.
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