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Synopsis

Current progress of molecular dynamics (MD) simulation on silicate melts has
been summarized for recent 15 years. MD simulation is now recognized as one of
the useful techniques for providing the short range orderring structures of the
melt expressed by the radial distribution function. The long range orderring
structures in the melt, on the other hand, have not fully investigated by MD
simulation, and the number distribution of -(Si-0-)» rings or chains is the unique
index for characterizing the network structures of silicates. Transport
properties and other atomistic dynamics for silicate melt have not also
sufficiently investigated except for ionic diffusivity. For further development
of the MD simulation studies, one of the most important subjects may be to prepare
more physically reliable interatomic potentials which can be used for various

composition of silicates.

I. Introduction

Since the first molecular dynamics (MD) study of Woodcock et al.! on silica
given in 1976, MD simulation has been widely used for analyzing the structures and
properties of silica and silicates. Especially in the beginning of 1980's, many
studies have been carried out on various compositions of silica and silicates in
both molten and glassy states. The basic techniques of MD simulation seems to be
completed in this period, and recent studies focus, more or less, on the specific
subjects such as surface structures.

The purpose of MD simulation for silicate system may be summarized into the
following three categories: investigation of crystal structures and rheological

properties of silicates for geochemistry, characterization and design of silicates

* The 91-R2 report of Institute for Research Institute of Mineral Dressing
and Metallurgy (SENKEN)

+ On leave from Kimura Metamelt Project, ERATO, Research Development
Corporation of Japan (JRDC).
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for glass science and metallurgical engineering, and an experimental tool for
verifying a theoretical model for explaining the particular features of liquid and
glassy silicates. Molecular dynamics simulation may be valuable in cases where
conventional experiments are found to be technically difficult. High temperature,
high pressure experiments, and time-consuming scan for many compositions might be
the cases in point. Now MD simulation is recognized as a new 'experimental’
technique, however, several important problems have been still unsolved in MD
simulation for practical uses.

The purpose of this paper is to summarize the current progress in MD studies
on silicates including its future prospects. The subjects matter is treated
selectively rather than comprehensively and then the results of silicate melts are
mainly included. Several important topics on glassy and crystalline states will

also included for supplements.

II. Interatomic Potentials

The interaction between silicon and oxygen may be characterized by the harmony
of various factors such as ionicity, covalency, and directional dependence
originated from sp® orbital of silicon. Compared with other cation-oxygen pairs,
the interaction of Si-0 pairs has a large negative potential energy at the
minimum. This strongly attractive potential contributes to the formation of the
tight -Si-0- network structures in both molten and glassy states.

Various proposals are available for interatomic potentials for silica and
silicates. They are classified into two types: pair potential and three-body
potential. Both types may be further classified into empirical and non-empirical

ones.

Empirical puair potentials : This type potential is given by an appropriate
functional form and the relevant parameters determined so as to fit some
macroscopic physical constants such as compressibility. For silicates, the Born-

Mayer-Huggins type given by the following equation is widely used.

BMH . _f?2:;2;e® , GitO T Cily
i ) = Tpeer *Aiiexp(TTE) B (1)

where r is the distance between i and ,j species, Z is the formal charge of the
ion, e is the electron charge (unit: C), ¢s is the dielectric constant, and 7,

Ai;, 0i, pi; and c¢; are so-called potential parameters. Each terms in eq.(1)
correspond to the Coulomb, repulsive, and dipole-dipole interactions,
respectively. In the equation, for example, the number of potential parameters is
sixteen in the case of M20-Si02 system. (Note that the parameters 4;, and ¢; are

not independent to each other.) Their determination is not an easy task. In
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Si—0-Si angle / deg.

Fig. 1. The potential energy surface for HeSi207 cluster estimated by ab initio
calculation (ref. 7). The numerical values in this figure are given in kcal/mol
from the energy minimum.

order to reduce the number of independent parameters, the following approximations
are usually employed:

Foa, (22)
pi i ~ const. = p, (2b)
pij ~ bi + by, (2¢)
Aij = (bi + bj) x 6.94Tx10" ' !N, (2d)
ci =~ 0. (2e)

Equation (1) with egs.(2¢) and (2d) is called Gilbert-Ida form.

Various experimental data are used for determining the potential parameters.
They include the interference functions obtained by X-ray and neutron diffraction,
stability of crystal structures, compressibility, etc. Even all of these data are
taken into account, however, the potential parameters cannot be determined «
priori. For this reason, several sets of the potential parameters are proposed,
and their usefulness are discussed in the actual MD simulations.

Woodcock et atl.! proposed numerical examples of potential parameters for
silica. Mitra® used the potential form of Pauling type and proposed another set
of parameters for silica. The potential parameters for alkali- and other
silicates are proposed by Soules® and Kawamura.” For future convenience, the
potential parameters proposed by them are listed in Table 1. It may be added that
the empirical pair potentials for silicates are discussed in detail by Catlow et

al.®
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Fig. 2. Total energy and the atomic charge of oxygen estimated by ab initio
calculation for Si0Os4--4e* cluster (ref. 8).

Non-empirical pair potentials : The interatomic forces for Si-O and 0-0 pairs
have been estimated from ab initio calculation on a small cluster of silica by
Newton et al.® Recently two groups independently determined the non-empirical
potentials for silica. Lasaga and Adams” (LA) calculated the potential surfaces
concerning to the bending of HeSi20t7 cluster by Hartree-Fock self consistent field
(HF-SCF) method as shown in Fig. 1. This approach enables us to reduce the
potential parameters in the form of eq.(1) with full ionic charges. Using an
Si04*~-4e* cluster, Tsuneyuki et al.® (TTAM) calculated the potential energy
concerning to the deformation of tetrahedron (Fig. 2). They proposed the
potential parameters with adopting the partial ionic charges of # = 0.6. The
potential parameters proposed by these two groups are also listed in Table 1.

Procedures employed by these two groups are almost the same, but the final
potential parameters proposed are considerably different. Such differences are
illustrated in Fig. 3. The LA potentials are similar to those of Woodcock et ai.}
The TTAM potential, on the other hand, shows unrealistic behaviours in the region
less than 0.15nm. This is mainly due to the dipole-dipole term. This unusual
feature may not give a serious problem in simulation study at low temperature, but
any correction should be required for high temperature study.

Any non-empirical potential for silicates has not been proposed yet.

Three-body potentials : Silicate structures characterized by 3-dimensional
network are known to simulated by using pair potentials only. However, some
reservations are automatically involved in the simulated structure because the
information on directional dependence due to the covalent bond is not included in
pair potentials. For this reason, it is desirable to include the three-body term
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Fig. 3. Potentials for Si-0 and 0-0 pairs proposed by several authors
(refs. 1, 4, 7 and 8).

Table 1 Born-Mayer-Huggins Parameters for Silica and Silicates
Proposed by Several Authors

authors f i-J A4; ;710723 oi;/nm pis/pm ci;/10-2'J-nm®

Woodcock! 1. 0 -0 4.05 .284 .029 0.

Si-0 26.38 .275 .029 0.

Si-Si 68.40 .266 .029 0
Tsuneyuk13 0.6 0 -0 2.441 .40948 .035132 0.03440

Si-0 1.449 .29162 .020851 0.01133

Si-Si 0.4564 .17376 .006570 0.00373
Lasaga2+ 1. 0 -0 146470. .0 .03354 0.

S8i-0 165590. 0 .032356 0.
Soules® 1. 0 -0 16.90 .284 .029 0.

Si-0 42.25 .275 .029 0.

Si-Si 67.60 . 266 .029 0.

Na-0 29.58 . 259 .029 0.
Kawamura® 1. 0 -0 1.181 .3258 .0170 0.

Si-0 1.146 .2641 .0165 0.

Si-Si 1.112 .2024 .0160 0.

Na-0 1.146 .2889 .0160 0.

Z2i2;e?

+ Aijexp(- L ).

t Expressed in the form of @i (r) = dmcor p:
iJ
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in the potential.
The Stringer-Weber type® given by the following equation is widely used for
a three-body potential form.

SW
¢, (g, rie,Biik) = (3)
Jjik

ai + ai
rii-ri° riga=-r;°<
for riy; <ri® and rie < ri€

Bi(cosB; i x-cosé;i¢)2exp

0, for ri; 2 ri® or rix 2 r:i°

where r;; and 6,:+ are the distance for i-j atoms and the angle of j-i-k atoms,
respectively, and B:, 6:°, @; and r;° are the potential parameters. Only two
combinations of 0-Si-0 and Si-0-Si are considered for the three-body j-i-k
potentials of silicates. To reproduce an ideal SiOs4 tetrahedron, the value of

@si® is chosen to be 109.47° . The parameter r;* corresponds to a cut-off distance
for three-body terms, and is taken to be about 0.3nm for silicates.

There have been, however, very few studies including the three-body potentials
mainly arising from the following two reasons.

a. So called the "double loop" in the MD program must be altered to
triple loop, and this 1eads¥ to the increase of the computing time in
proportional to N%, where N is the number of atoms in the basic cell.

b. The large memory arrays stored for the numerical values of the

potential are required, or the potential values must be calculated
within the triple loop if such an arrays are not used.

The three-body potential for silica have been employed firstly in the Monte-
Carlo simulaion.'® Feuston and Garofalini,'! and Vashishta et a?.'? proposed the
three-body potentials for MD simulation of silica. Newel et ¢!.'3 simulated the
Naz0-Si02 system by using three-body potentials for 0-Si-0 and Si-0-Si
combinations. The three-body potential parameters are listed in Table 2 for

convenience.

Table 2 Stringer-Weber Parameters for Silica and Silicates
Proposed by Several Authors

authors j-i-k Bi/10°'%J ¢;c/deg. ai/nm  ri°/nm
Feuston!! 0-8i-0 18.0 109.47 .26 .30
8i-0-8i 0.3 109.47 .20 .26
Newell!® 0-8i-0 24.0 109.47 .26 .30
Si-0-Si 1.00 109.47 .20 .26
Vashishta!? 0-8i-0 0.807 109.47 .10 .260

Si-0-Si 3.228 141.00 .10 .260
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Obviously, non-empirical potential is preferable to the empirical one.
However, it is difficult for give the definite comment about the actual validity
of the three-body term at the present time. Nevertheless, the following results

may be cited. Feuston and Garofalini!?

simulated the structures of vitreous
silica with and without the three-body terms, and their results are shown in Fig.
4 for the radial distribution function (RDF) and the distributions of 0-Si-0 and
Si-0-Si angles. It is found that the variation of the angles in the case of
three-body potentials is smaller than that of pair potentials, and the essential

structural features are in sensitive to the selection of the potentials.

III. Procedures of the MD Simulation on Silicates.

Although silicate melts are known to form rather complex network structure,
the fundamental procedures of MD simulation is unchanged in comparison with those
for simple liquids or molten salts. Of course, several cares must be paid in the
simulation with relevant to the characteristic -Si-0- networks which provide their
high viscosity and low ionic diffusivity. Differences from an ordinary simulation
are as follows.

a. To reproduce a realistic network structures, size of the basic cell
and hence the number of atoms should be chosen sufficiently large.

b. Since the Coulomb interactions are efficient in long distances,
potential energy, forces and virials should be calculated by using
the Ewald summation.

¢. In order to erase the memory of initial configration, first hundreds

or thousands steps must be carried out at high temperature, for
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Fig. 4. Comparison of the results of MD simulation using two-body and three-
body potentials: (a) radial distribution function, (b) the 0-5i-0 and Si-0-Si
angle distribution (ref. 11).
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Fig. 5. Internal energy versus temperature of silica observed in MD simulation
with a cooling rate of 1.35x10!*K/s (ref. 17).

example 6000K, where the ionic diffusivity is large. For precise
discussions, if possible, several independent simulation should be
carried out from different initial configurations.

d. The quenching speed, equilibration time, and sampling time must be

chosen properly by considering the long relaxation time.

IV. Some selected examples of the MD simulations for silicate melts

1. Thermodynamic Properties

Various thermodynamic properties such as enthalpy, thermal expansivity,
compressibility, and heat capacities of silicate melts can be estimated from the
simulated values of temperature 7, internal energy E, pressure P, and molar volume
V.

The density is known to be a good criteria for judging the significance of
interatomic potentials used in MD simulation by checking whether the density is
correctly estimated or not. In the case of constant volume simulation employing
the experimental density value, the resultant value of pressure must be compared
with the assumed one.

The glass transition temperature, Ty, can be estimated in the simulation by
the turning point in the curve of internal energy versus temperature. However,
the simulated value of Tz is found to be several hundred degrees higher than the
experimental one mainly due to the large cooling rate (~10'%K/s) in the
simulation. Kinetic mechanism of glass transition have also been investigated by

14,15

MD simulation. Habasaki®® simulated the molten Li20-Si02 system at several
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temperatures, and explained the glass transition mechanism by packing topology of
oxygen ions around Li that the glass transition occurs when the cage structure of
oxygen looses its freedom.

Soules!?

simulated the internal energy of molten silica up to 10,000K (Fig. 5)
and found the specific heats at temperatures higher than 8000K are almost the same

with the value in the glassy state.

2. Static Structures

Short range structures : Most of the MD studies for disordered system discuss
the short range structures by using the RDF, pair correlation function (PCF), and
the running coordination number (RCN). Comparison between calculation and
experimental data is usually made with respect to the interference function or RDF

1,11,18,19

determined by X-ray or neutron diffraction. There have been found

fairly good agreements between the simulation and the experimented data of silica
glass as shown in Fig. 6.11.2°

Angell et al.?! simulated the structures of molten Na20-3Si02 at high
pressures, and reported the coodination number of oxygen around silicon
increasesfrom 4 to 6 with increasing pressure from 1 to 83MPa as shown in Fig. 7.
It may be added in these results that the first and second neighbouring distances
are hardly changed.

Iwamoto et al.?? counted the number of bridging (BO) and non-bridging (NBO)
oxygens for silicon in the 2Li20-Si0O> melt and glass. The simulated histogram of
Q 7 (where @ 7 means the silicon ion of which number of coordinated BO's is n) is
consistent with that observed by Raman scattering.

Distribution of bonding angles for 0-Si-0 and Si-0-Si is another information

RO————

A % MD ]
s eXPp t

1.0

S(q)

S10;

. N N ] N 2 X . ] N N .
0 50 100

—1
g / nm

0.0

Fig. 6. Structure factor of Si0: glass estimated by the MD simulation (ref. 11)
together with the experimental data (ref. 21).



29

20 ' I ' T " 1
[ Na;0-35i0, _{qg
N 10 1 \%
= 45
— 1.05GPa
................... : ---83.0 GPa
0 - ! 0
0.0 0.2 0.4 0.6
r / nm

Fig. 7. The pair correlation function of Si-0 and running coordination number
of oxygen for silicon in the Na20-3Si02 melt at low (a) and high (b) pressures
(ref. 286).

of the local structures of silicates. The variation of 0-Si-0 angle from the mean
value is a measure of the deformation of SiOs tetrahedron, and the Si-0-Si angle
itself is directly connected with the local network structures of silicates. It
should be, however, kept in mind that they are sensitive to the potential employed
as shown in Fig. 4(b).

Analysis of Voronoi polyhedra is also one way to obtain the information of the
short range structures of disordered systems. However, Voronoi polyhedra analysis
is not reported for silicates probably due to the fact that no unique definition

of Voronol polyhedra is given in multi-component system.

Long range structures : The description of 3-dimensional structures of -Si-0-
networks is a key for the study on the structure of silicate melts. The RDF, RCN
and RCN are not sufficient for describing the long range structures of silicates
less sensitive to the structures at long distances. The variation of the bond in
the nanometer order because they give only one-dimensional information and
areangle or 7 distribution provides the basic feature of the networks, but is
not a good index for the long range structures.

Statistical analysis of -(Si-0-)» rings or chains gives an almost unique index
for explaining the long range structures of silicates. Matsui and KawamuraZ®?
reported by MD simulation that the 5 to 8 membered rings are frequently observed
in the CaAl2Si20s melt. Ogawa et al.?* counted the number of -(Si-0-). chains in
molten Na20~-Si0O2 system, and suggested that the vibrational motion of these chains

is one of the mechanisms of ionic diffusion in alkali-rich compositions.
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Fig. 9. Ionic diffusivities in Na20-Si0O2 melt at 6000K as a function of
pressure (ref. 34).

Surface structures : The ordinary method for generating the free surface in
the basic cell is used for silicates by filling the atoms in a part of the
elongated (usually toward the z axis) column-like cell with the periodic boundary
conditions.

Simulation of silicate surfaces have been investigated by several authors for
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glassy states. Surface structures and their temperature dependences were
investigated for silica and alkali-silicate glasses.?2®-2%® Behaviours of adhesive
atoms on silica surface were also studied for Pt, Li, K, H20, and Lennard-Jones

o
atoms.2%-32

3. Dynamic Properties
One of the advantages of MD technique is the direct sampling of atomic motions
of interest. Such information cannot be obtained by other molecular simulation

techniques such as Monte-Carlo and Molecular Mechanics.

Self-diffusion coefficient : The self-diffusion coefficient of i species, D;,

is calculated from velocities » and positions r as,

D; = %J <p; (fo+1)-v; (to)>dt, (4a)

0

or equIi’ale:ntl))
D’ 6 lf <(I’ (toli) I'(f‘o)) >. (ll‘b)

To obtain a quantitatively accurate result, simulation must be carried out for a
sufficiently long time interval (100ps, for example).

Soules®® has estimated the self diffusion coefficients of anions in several
network-forming liquids as shown in Fig. 8. The anion diffusivity in pure SiO: is
found to be very small compared with those in other oxide melts or molten salts.
When Na20 is added to SiO2, on the other hand, the anion diffusivity increases and
its temperature dependence shows deviation from the Arrhenius law. It may be
worth mentioning that diffusivities of network-modifying ions éuch as Na, Li or K
in alkali-silicates are about 12 orders faster than those of Si and O.

Angell et al.?!':** estimated the diffusivities in the molten Na20-Si0O2 system
at high pressures and the results are given in Fig. 9. As shown in this figure,
the values of Dsi and Do depend irregularly on the pressure and they increase with
increasing of pressure at lower pressures regions of 0 ~ 20GPa. This is
consistent with the experimental result of shear viscosity at high pressures.®%
The diffusivity of Na* ions, on the other hand, show monotonic decrease as the
pressure increases. These facts imply that the viscosity of silicate melts is
dominated mainly by the mobility of the network forming ions.

The atomic motions relevant to the ionic diffusion in silica has been
investigated by Woodcock et al.! Recently Kubiki and Lasaga®® investigated the
ionic motions in silica by using non-empirical potentials. The results are shown
in Fig. 10. They suggested that the disconnection of #1 oxygen and connection of

#5 oxygen occur through the temporal 5-fold state of central silicon just after



32

the large displacement of #1 oxygen.

Shear viscosity : Shear viscosity n may be calculated in MD simulation by the
similar formulae to those for self-diffusion coefficient, as

w0

I <P aB({g+t)-P =B (tg)>dt, (5a)

0

T Rl

where P =8 is the off-diagonal element of stress tensor, ke is the Bolzmann
constant, and aff corresponds to the permutation of xy, yz and zx. The equivalent

formula to eq.(5a) is given by

n= 2k;;T 77 <G “F(to+f) - G =B (t0))?>, (5b)

where G «B(t) = P *B(¢t), Ogawa et al.®" calculated the shear viscosity of molten
Na20-2Si02 along the way similar to eq.(5a) and using other two independent
methods. Based on these results, the MD simulation enables us to give semi-
quantitative discussion only due to the present limitation of scales of few
hundred atoms and few hundred picoseconds. The decay of stress autocorrelation

functions of melten Na20-2SiO2 is given in Fig. 11.

Qther transport properties and structural relaxation . Thermal conductivity
and electrical conductivity of disordered systems can also be estimated, in
principle, by the way similar to egs.(4a) and (4b). However, no report is

Si-0 bond distance / nm

600 700 800 900
time steps

Fig. 10. Motions of nearest neighbour oxygens around a silicon in Si0O2 melt at
6000K, 6MPa (ref. 36).
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available for these transport properties of silicates at the present time.

Since the relaxation time in silicate melts is quite long, the structures
obtained by the MD simulation gradually change even after getting the initial
equilibration. Figure 12 shows the time variation of the local structures of
silica during 75ps for the equilibrium simulation by Soules.'? In this case, the
structural relaxation takes place so as to decrease the defects of odd-number

coordinated states with the time scale of 100ps.

V. Concluding Remarks

Current views on the MD studies of silicate melts were surveyed by summarizing
the results for their various properties, in order to facilitate the understanding
of the present status including future prospects in this relatively new field.

The techniques of MD simulation have not yet been completed. Of course, a number
of preparations will be required before the full potentials of MD simulation can
be assessed as a reliable tool for materials design.
a. To improve the quantitative accuracy of the simulated results of
silicate melts, more precise and realistic interatomic potentials
must be given not only for Si-0, 0-0 and Si-Si pairs but also other
possible pairs contained in silicate systems.
b. Unknown factors arising from the initial configuration, cell size,
or time schedule of the simulation must be determined with clear
physical meaning.

c. New index for describing the long-range network structures

Na, O+25i0;

l' 1000K
A i i -

Do
W» ]
1 M 1500K A

STRESS AUTOCORRELATION
o

"'.' _
2000K Y,
‘ ‘l-l oY\ 'l'
VAV T,
ApAnn A \ LT
0.0 “ .~“ LA AW
4000K |
R P S | N PP BN
107! 10° 10t
TIME / ps

Fig. 11. Normalized stress autocorrelation function observed in MD simulation
for molten Na20-2S8i02 (ref.37).



Fig. 12. Structural relax-
ation in Si0O2 melt observed
in MD simulation at 1500K

already built up a rather wider base for the useful MD method. When further
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characterizing the structure of silicate melts is also strongly
required.

Nevertheless, as mentioned in this paper with some selected examples, we have

studies with a highest priority could be continued for solving the above subjects,

the MD method will be possible to provide a significant impact on the structure

and various properties of silicate melts in a relatively short period.
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