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Synopsis

The isostructural phase transition of cesium metal, CsII«+~»CsIII,
under pressure is discussed in terms of the crystalline energy as a
function of volume. Using the augmented plane wave (APW) method and
the quantum defect method, the energy bands are calculated at symmetry
points in the Brillouin zone for the range of relative volume V/V0 (VO:
the volume at normal pressure) from 1.30 to 0.24. As the volume de-
creases, there appears a pronounced tendency of d-states to fall lower
relative to s-states, which rise significantly at V/VOsO.G. Besides
overall rise of the band energy with decreasing volume, a small humped
portion is found at 0.45V/V050.5, this being attributed to the shift
of electrons into the vicinity of X. The transition beyond this portion
is accompanied by a significant volume change. Thus the CsII<+>CsIII
transition is interpreted as an electronic one. A calculation using
the Green's function method is also carried out and the results are
compared with those by the APW method.

I. Introduction

Bridgman measured the compressibility and the electrical resis-
tivity of cesium metal under high pressure and found phase transitions
CsI«~>CsII and CsII++CsIII'(2).
a volume change larger than 10 percent. Since structures of both CsII

He reported for the latter transition

and CsIII' were assigned to be close packed, this large volume change

* The 1747th report of the Research Institute for Iron, Steel and
Other Metals. This work constitutes a part of the doctorial thesis
submitted by T. Kamimura to the Department of Physics, Faculty of
Science, Tohoku University, 1971. A short report on this work is
found in ref. (1).

** College of General Education, Tohoku University.
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(3)

attracted much attention. X-ray analysis by Hall et.al. (Fig. 1)

indicated that this transition consisted of two successive ones, CsII

(fcc)«>CsIII(fcc) at 42.2 kbar and CsIII<«>CsIV(mixed crystal of fcc and

hcp) at 42.7 kbar. The experimental results are summarized in Table 1.
In order to explain the isostructural phase transition CSII++CsIII,

Fermi first proposed that the 6s-electron was forced into the lowered
(4)

5d-level with decreasing volume. Sternheimer investigated this

problem by calculating the energy bands using the Wigner-Seitz method.
(5)

However, Ham has pointed out that his result for the d-band has a

significant error by adopting inaccurate boundary conditions. Alekseev

(6)

and Arkipov also discussed this transition by comparing relative

positions of s- and d-levels using the Thomas-Fermi method. For expla-

Fig. 1 Volume and electrical
resistivity of cesium as a
] | f——Csg—
-0 Cs1 ' Csr H v function of pressure. V, and
Csm R, are the volume and the elec-
trical resistivity at normal
pressure (from ref. (3)).
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Table 1 Experimental results obtained by Bridgman and Hall et.al.' .
Pc: critical pressure. Vc: critical volume (normalized to the volume
at normal pressue).
P.W. Bridgman H.T. Hall et.al.
Pc Ve Pc Ve
CsI <«»CslI 23  kbar | 0.63 —0.62 23  kbar
CsII «» CsIIT 42.2 kbar | 0.46 — 0.42
45 kbar 0.50 — 0.44
CsIII<¢» CsIV 42.7 kbar | 0.42— 0.40
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nation of this transition, it is necessary to obtain an accurate knowl-
edge about the energy bands as a function of volume. In this paper, we
calculate the energy bands of the fcc structure and discuss the origin
of the isostructural transition on the basis of the crystalline energy
which includes, besides the band energy, the electrostatic energy of
electrons and the core interaction energy.

II. Band structure as a function of volume

The energy eigenvalues of an electron in a periodic crystal
potential have been calculated by using the augmented plane wave (APW)
method(7). The potential used is constant outside of APW spheres and
spherically symmetric within each sphere (the muffin-tin approxima-
tion(8)):

0

U (%) =
U0 r>rO

Uc(r) r<r
{ (1)
For Lgs half of the atomic distance is used For UO’ we use an aver-
aged value of the Coulomb potential -e /r over the shell between
spheres with radiuses Ty and Tyr where ry is the radius of the sphere
whose volume is equal to that of the atomic polyhedron. Eigenvalues
E(k) for a state of given k can be evaluated by solving the secular

equation:

[ M,

i3l =0 (2)

Elements of the determinant are defined by,

_ =2 _ 2.1j
Mij = Qo(kj E) 6ij 4WIOG (3)
with
ij _ A _
6 = (kiky E)Jl(klJ o) Z(zz + 1)
<Py (k3R 3, (K )JK(kJrO)Ri(r,E)/Rz(r,E){r=r (4)

where QO is the volume of the atomic polyhedron, P (E~R is the Lag-
range polynomial, (k r, ) is the spherical Bessel functlon R (r,E)/
Rl(r’E)!r=r is the logarlthmlc derivative of the radial functlon at
r=rg. and kikj is an angle between ki and kj (ki=k+gi, kij=kj—ki=gj-
§i, and §i is a reciprocal lattice vector for fcc). The representative
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wave vectors chosen in the present calculation are defined by twenty
symmetry points on cubic mesh of interval 7/4a (a: the lattice constant)
in the one forty-eighth independent segment of the Brillouin zone (Fig.
2). The symmetry points of the zone are labeled according to the
notation introduced by Boucheart, Smoluckowski and Wigner(g).

The radial function and its derivative at r=r, are evaluated by

the quantum defect method(S’lo)

without constructing the potential ex-
plicitly. All elements of the determinant depend on E, either explic-
itly or implicitly through the radial function. Since equation (2) can
not be solved analytically, for evaluating eigenvalues "interpolation

method with subsidiary points"(ll)

has been employed. The interpolation
in locating zero of the determinant was made successively until the
accuracy of the obtained eigenvalue attained to better than +0.0002 Ry.
The calculation was carried out for nine different volumes of the fcc

lattice. In the following, in place of the volume a parameter z=

kx
X W
U
A L Fig. 2 One forty-eighth segment of the Bri-
1louin zone of a fcc lattice (in heavy lines).
A z Symmetry points are labeled according to the

notation introduced by Boucheart et.al.

T LY

Table 2 Relation between the parameter z and the volume per atom
V, the half of the atomic distance r,, etc. at which the calcu-
lation has been made. V,, r, are respectively the values of V
and r_  at normal pressure.

z V(a.u.) TZAVO ro(a.u.) ro/rOO
6.6 913.206 1.302 5.445 1.092
6.4 759.250 1.083 5.120 1.027
6.2 627.560 0.895 4.805 0.964
6.0 515.481 0.735 4,500 0.903
5.8 426.604 0.608 4.205 0.843
5.6 340.748 0.486 3.920 0.786
5.4 273.948 0.391 3.645 0.731
5.2 218.437 0.312 3.380 0.678
5.0 172.634 0.246 3.125 0.627
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(8r0)l/2

given in Table 2. 1In Table 3 are listed representative examples illus-

is conveniently used, the correspondence between them being

trating the convergence of eigenvalues. It is found that for the state
in the valence band the trial wave function including all terms within
2=8 suffices to give the eigenvalue better than *#0.0002 Ry in its accu-
racy. The dimension of the determinant depends on the number of recip-
rocal lattice points involved [Eézfi=(i+§i)2]. The eigenvalues evalu-
ated for E2=(2n/a)2X10.l and (2n/a)“x13.1 together with the dimensions

0
of the determinant are shown in Table 4. For comparison, a calculation

Table 3 Examples of the convergence of energy eigenvalues at some symmetry

points (see Fig. 2). Qmax: maximum value of £ in eq. (4).
9 2 3 4 5 6 7 8

Fl -.4195 =~.4195 -.4194 -.4194 -.4194 -.,4194 -.4194
Al -.3606 -.3604 -.3600 -.3599 -.3599 -.3599 -.3599
Xl -.2813 -.2913 -.2801 -.2800 =-.2793 =-.2793 -.2793

z2=6.4
FZS' -.1557 =~-.1558 -.1278 -,1279 -.1242 -,1242 -,1242
By -.2216 -.1922 -.,1909 -.1872 -.1854 -,1854 -,1853
X3 -.2344 -.2344 -,2265 -,2263 -,2246 -.2246 -.,2243
ry -.3442 -.3434 -,3434 -.3429 -.3429 -.3429
Al -.2301 -.2209 -.2162 -.2160 -.2156 ~-.2156
Xl -.3355 =-.3290 -.3290 -.3264 -.3264 -.3261

z=5.4
F25’ -.1228 -.0554 -.0554 -.0464 -.0464 -.0463
AZ' -.2039 -.2002 -.1916 -.1872 -.1871 -.1868
X3 -.2947 -.2798 -.2798 -.2755 -.2755 -.,2748

Table 4 Examples of the convergence of energy eigenvalues dependent on the
number of the reciprocal lattice points adopted (z=6.4);2 Eimegs}on% of
the determinant (in egqg. (2)) are given in parentheses [k°2k§=(k+gi) 1.

1, 2 A
K r, (400) | X, L, (642)
L\ 2 -.4194 -.3599 -.2793 -.3017 -.2661
(2r/a) "x10.1 27) (43) (40) (34) (34)
(21 /a) 2¢13.1 -.4194  -.3599  -.2794  -.3018  ~.2662
(59) (52) (48) (52) (52)

2

K2 e (4000, Xy L, (642)
3 T1244  <.1853  -.2243  <-.2233 -39
(2r/a) "x10.1 (27) (43) (40) (34) (34)
2 -.1248  -.1854  -.2243  -.2233  -.2320
(2r/a) ™13.1 (59) (52) (48) (52) (52)
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using the Green's function (GF) method(lz) has also been carried out
[see Appendix].

The results of the APW calculation for Rm 2=

=8+ Ko=(2r/a)?x10.1 and
for nine values of volume are given in Table 5 and in Fig. 3. At z=6.4,
which corresponds nearly to the volume at normal pressure, the surfaces
of constant energy remain appreciably spherical except in the vicinities
of the zone boundary and distortion of the Fermi surface from spherical
shape is small. This trend is quite similar to that found for bcc
cesium by Ham(l3). With decreasing volume, however, the nonspherical

distortion increases significantly and occupied pockets at the zone

Table 5 Energy eigenvalues (Ry) at symmetry points [-k‘=(a/41T) (kx,ky,kz)]

1 st

i 2 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0

0,0,0 | -.4078 -.4194 -.4284 -.4322 -.4254 -.3998 -.3429 -.2535 -.1532
2,0,0 | -.3923 -.4012 -.4063 -.4048 -.3889 -.3489 -.2738 -.1719 -.0655
4,0,0 | -.3572 -.3599 -.3573 -~-.3454 -.3181 ~.2724 -.2156 -.1627 -.1192
6,0,0 | -.3041 -.3037 =-.3016 -.2985 -.2949 -.2920 -.2887 -.2837 -.2743
8,0,0 | -.2727 -.2793 -,2873 -.2965 -.3066 -.3170 -.3261 -.3304 -.3268
2,2,0 | -.3820 -.3888 -.3913 -.3854 -.3635 -.3159 -.2386 ~-.1453 -.0601
4,2,0 | -.3453 ~.3461 -.3410 -.3257 -.2941 -.2418 -.1732 -.11l64 -.0740
6,2,0 | -.2923 -.2894 -.2838 -,2755 =-.2651 -.2529 -.2366 -.2109 -.1671
8,2,0 | -.2588 -.2636 -~-.2688 -.2742 -.,2783 -.2797 -.2737 -.2526 -.2054
4,4,0 | -.3114 -.3076 -.2974 -.2768 -.2415 -.1945 -.1601 -.1385 -.1170
6,4,0 | -.2620 -.2554 -.2444 -,2278 -,2127 -.2017 -.1852 -.1566 -.1083
8,4,0 | -.2352 -.2385 -,2407 -.2405 -.2361 -.2237 -.1970 -.1477 -.0696
6,6,0 | -.2461 -.2492 -.2526 -.2562 ~-.2598 -.2633 -.2662 -.2670 -.2633
2,2,2 | -.3699 -.3747 -.3749 -.3664 -.3437 -.3030 -.2509 -.2005 -.1543
4,2,2 | -.3349 -.3348 -.3296 ~.3163 -.2929 -.2613 -.2253 -.1847 -.1378
6,2,2 | -.2834 -.,2796 -.2731 -.2642 -.2547 -.2464 -.2392 -~-.2323 -.2237
4,4,2 | -.3063 -.3045 -.2996 -.2907 -.2769 -.2571 -.2279 -.1864 -.1358
6,4,2 | -.2699 -.2661 -.2601 -.2505 -.2351 -.2111 =-.1755 -.1296 -.0695
4,4,4 | -.3001 -.3017 -.3025 -.3020 -.2990 -.2919 -.2778 -.2535 -.2164
5,5,0 | -.2671 -.2603 -.2485 ~-.2306 -.2209 -.2181 -.2146 -.2087 -.1086
3,3,3 | -.3290 -.3294 -.3260 -.3180 -.3051 -,2881 -.2666 -.2380 -.1997

2 nd

¥ Z 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0

0,0,0 | -.1351 -.1242 -,1139 -.1022 -.0867 -.0698 -.0463 -.0252 .0025
2,0,0 | -.1514 -.1467 -.1405 -.1328 -.1230 -.1114 -.0975 -.0818 -.0637
4,0,0 | -.1844 -,1853 -.1859 -.1864 ~.1866 -.1868 -.1868 -.1868 -.1868
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6,0,0 | -.2091 -.2141 -.2197 =-.2261 =~-.2336 =-.2423 -.2521 -.2626 -.2743
8,0,0 | -.2179 =-.2243 -.2317 -.2403 -.2502 -.2618 -.2748 -.2885 -.3005
2,2,0 | -.1653 -.1608 -.1546 -.1461 -.1343 -.1180 -.0952 -.0621 -.0128
4,2,0 { -.1893 -.1879 -.1850 -.1805 =-.1731 -.1619 -.1442 -.1035 -.0438
6,2,0 | -.2085 -.2100 =-.2109 -.2108 -.2090 ~-.2043 -.1942 -.1747 -.1393
8,2,0 | -.2156 ~-.2183 =-,2206 -.2223 -.2225 -.2205 -.2134 -.1968 -.1634
4,4,0 | -.1986 -.1937 -.1855 -.1721 ~-.1599 -.1375 -.0786 -.0124 .0718
6,4,0 | -.2181 -.2146 -.2128 -.2078 -.1880 -.1477 -.0918 -.0241 .0511
8,4,0 | -.2095 -.2015 -.1905 -.1735 -.1484 -.1131 -.0659 -.0040 .0744
6,6,0 | -.2303 -,2275 -.2233 -.2157 -.2024 -.1796 -.1431 -.0892 -.0l6l
2,2,2 | -.1807 =-.1756 -.1677 =-.1556 -.1361 -.1031 -.0465 .0394 .1400
4,2,2 | -.2040 -.1994 -.1912 -.1774 -.1531 -.1163 -.0837 -.0541 -.0147
6,2,2 | -.2241 -.2216 -.2166 -.2078 -.1930 -.1692 =-.1323 -.0779 -.0032
4,4,2 | -.2249 -,2159 -.1999 -.1738 -.1419 -.1191 -.0977 -.0706 -.0303
6,4,2 | -.2392 -.2319 -,2202 =-.2051 -.1898 -.1746 -.1562 -.1272 -.0867
4,4,4 | -.2387 =-.2233 -,1965 -.1532 -.0892 -.0021
55,0 | -.2182 -,2182 =-,2177 -.2145 -.1902 -.1416 -.0739 .0119
3,3,3 | -.2151 -.2064 -.1908 -.1634 -.1173 =-.0463

3 xd
¥ 2 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0
0,0,0
2,0,0
4,0,0
6,0,0
8,0,0 | -.1951 -.1708 -.1335 -.0788
2,2,0 | -.1332 -.1233 -.1108 -.0947 -.0742 -.0479
4,2,0
6,2,0
8,2,0 | -.1998 -.1812 -.1529 -.1121 -.0559
4,4,0 | -.1859 -,1823 -.1775 -.1720 -.1522 -.1215 -.0762
6,4,0
8,4,0 | -.1699 -.1430 -.1130 -.0792 -.0407
6,6,0 | -.2020 -.1869 -.1638 -.1298 -.0821 -.0180
2,2,2 | -.1271 -.1178 -.1057 -.0917 -.0728 -.0500 -.0229 .0084  .0435
4,2,2
6,2,2
4,4,2
6,4,2 | -.1776 -.1729 -.1638 -.1456 -.1112 -.0568 .0168
4,4,4 | -.1418 -.1354 -.1274 -.1173 -.1045 -.0891 -.0710 =-.0505 -.0295
55,0 | -.2037 =-.1946 ~.1803 -.1585 =-.1265 -.0807 -.0183 .0624
3.3.3 | -.1368 -.1294 -.1201 -.1085 ~.0940 -.0762 -.0556 -.0319
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Fig. 3 Calculated energy bands for various volumes.
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Fig. 3 ( continued )
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Fig. 3 ( continued )
V/Vo=0.3g
E (Ry)
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W
: La fas’
-01k
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X
n ‘ ¥
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r X w L r K X

faces appear in addition to the greatly warped central portion of the
Fermi surface(l4).

To evaluate the density of states, N(E), the energies at 512 points
in the one forty-eighth independent segment of the zone were determined
by linear interpolation between the evaluated values tabulated in Table
5. The band energies thus obtained against volume are listed in Table
6 and plotted in Fig. 4. As seen in the figure, the main feature of the
band energy vs. volume curve is the initial gradual fall followed by
the rapid rise with decreasing volume, the minimum being in the neigh-
borhood of the volume at normal pressure (V/Vo=l). In addition, there
appears a small humped portion at 0.45V/V050.5. This behavior of the
band energy can be understood in terms of the energies of individual
states (Fig. 5): With decreasing volume, the energy of Fl' which has
the s-character, initially decreases but rises substantially for V/Vos
0.6. The rapid rise of the energy at the bottom region of this valence
band reflects the gain of the kinetic energy in the condenced lattice.
Thus the nature of these states determines the main feature of the band
energy vs. volume curve. The energies of Xl and X3 both approximately
of the d-character fall monotonically with decreasing volume. This is
due to the reduction of the potential energy. ( A slight rise of energy
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for Xl at V/V050.3 is attributable to the s-like character possessed by
this state.) The change in the relative hight of energy values induces
a shift of electrons into the vicinity of X, this giving rise to the

hump of the band energy at 0.45V/V050.5. The volume dependence of the
band energy derived here plays a leading role in the CsII«+»CsIII phase

transition.

Table 6 Energies as dependent on z. Ep: band energy.
Eej: electrostatic energy. Eggore: core interaction
energy. Ecyys(=Ep+Eg1+Ecore): crystalline energy.

z Eb Eel Ecore Ecrys
6.6 -.3290 -.0165 -.0007 -.3462
6.4 -.3300 ~-.0152 -.0009 -.3461
6.2 -.3268 -.0137 -.0010 -.3415
6.0 -.3173 -.0118 -.0008 -.3299
5.8 -.2993 -.0096 .0005 -.3084
5.6 -.2736 -.0070 .0041 -.2765
5.4 -.2455 -.0040 .0137 -.2358
5.2 -.2203 -.0003 .0367 -.1839
5.0 -.1918 .0040 .0878 -.1000
-0.1l-
E (Ry)
..0_2_
~-03|-
02 1 1 1 | 1 I 1 H 1 1 1
2 ,OA . 06 , 08 10 1.2 V/ Vo,
30 3.5 4.0 45 5.0 I

Fig. 4 Calculated band energy (Ry) as a function of V/V,.
Half of the atomic distance r, is also shown.
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O A,
Fig. 5 Energies of the states,
Ty, X3, X3, and T'z5' as depend-
ent on V/V_,
=01+
r’ .
E (Ry) 25
_0_2_
X3
X
-Q3
-Q4F r
1 1 L 1 L L ! I 1l 1 1
Q.3 0.5 Q.7 Q.9 1.1 13

III. Discussion

For discussing the transition in detail, it is also necessary to

take account of the electrostatic interaction energy, E of the elec-

el’
tron distribution(ls) and the ion core interaction energy, Ecore' For
Eel (per electron), we used the following expression.
Egp = l.2/rs - 0.916/rs - 0.88/(rs + 7.79) (5)

The terms on the right side of this equation are respectively the self-

energy, the exchange energy, and the correlation energy*. The core
interaction energy consisting of the exchange interaction energy and

the electric dipole interaction energy between two neighboring cores is

* As yet, the correlation energy has not been calculated successfully
in the region of electron densities appropriate to real materials.
Several authors have discussed the problem of interpolating the energy
between the low and high density limits. The agreement between the
various interpolations is only fair but the volume dependences of these

(17)

values agree fairly well(ls). We used Wigner's expression in eq. (5).
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expressed as

Ecore = 12{RAexp((2r; - 2ry)/p) - C/(2r0)6} (6)

12 12

with A=1.25x10" erg, p=0.345 A, ri=l.455 ﬁ, and C=100x10" ergAG.
Numerical values for constants in eq. (6) have been obtained by Huggins

(18)

and Mayer in the study of the compressibility and the lattice con-

stant of cesium. The energies Eel and E together with the band

core

energy, Eg, constitute the crystalline energy, Ecrys' Calculated values
of these energies are tabulated in Table 6. Over the volume examined,
Eel is a slowly varying function of the volume, but Ecore increases
rapidly at V/V0s0.4. It is also observed that the volume dependence of

E is determined essentially by Eb and the repulsive energy E

crys core”

Now, the pressure dependence of the equilibrium volume is discussed.
The crystalline energy vs. volume curve in Fig. 6 has an almost linear
portion (indicated by arrows). This portion corresponds to the hump of
the band energy in Fig. 4. It can be shown that with changing pressure
a transition takes place between two volumes corresponding to both ends
of this portiongl)As has been discussed, this transition is of elec-
tronic origin. The CsII+»CsIII phase transition found by Bridgman et.al.
is ascribed to this transition. Calculated critical volumes and the
amount of volume change (V/VOzO.45++0.4) are in fairly good agreement

with the experimental values. However, the calculated critical pressure

-0.1}
E (Ry)
~0.2._
et
-03}-
| 1 1 1 1 1 i I | 1 1
0.2 0.4 0.6 08 1.0 1.2

V/Vo

Fig. 6 Calculated crystalline energy (Ry) as a function
of V/V,. The phase transition occurs between the volumes
indicated by arrows.
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(PC=—dEcrys/dV:88 kbar) is considerably larger than the observed one.
For the crystal potential, we assumed the Coulomb potential at r=rq.
With decreasing volume, however, the potential acting on the valence
electron becomes more attractive by the "outer shielding effect" of the
electron oozed out from the ion core. This effect has a tendency to
reduce the band energy and hence may lower the theoretical PC value.

We have shown the good convergence of the APW method. The accuracy
of the evaluated band structure obviously depends on the potential used.
We have not attemped to improve the self-consistency of the potential
beyond that of the Wigner-Seitz assumption and the quantum defect meth-
od. Because to do so would largely remove the advantages of the latter
method in dealing with all of the volumes on the same basis. Accord-
ingly we have no estimate of uncertainty arising from this source in the
present calculation. Another uncertainty in the present calculation
is concerned with the energy interpolation in evaluating the density of
states: It is evident that the interpolation schemes for nearly spher-

ical bands(l3'19) (20)

or narrow d-bands can not be utilized in the
present case. To estimate an error introduced by the interpolation
used here, it is necessary to compare with the results evaluated at
more than just the symmetry points in the zone.

The volume dependence of energies of s- and d-states as shown in
Fig. 5 should be qualitatively the same as those for the other alkali

metals, rubidium and potassium. From the spectroscopic data(zl)

on
free atoms, however, the energy difference between s- and d-levels is
the smallest for cesium ( AECS=E5d—E65=O'l32 Ry, AERb=O.176 Ry, and
AEK=0.196 Ry ). Hence the volume at which electrons are forced into
d-states must be the largest for cesium. The sharp rise in the elec-

(22)

trical resistivity of rubidium at about 200 kbar may correspond to

the electronic phase transition as discussed in this paper.
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Appendix

In GF calculation, the muffin-tin potential is also used. The
boundary condition required is satisfied by the Green function. The
structural and the atomic properties are segregated in terms of the
determinant, so that they can be evaluated separately. Once the "struc-
ture constants" are calculated as functions of the energy and E, the
computation of the band structure as a function of volume can be done
with reasonable ease. Some of energies at symmetry points obtained by
APW and GF methods are compared in Table 7. Numerical agreement be-

tween them is impressive.

Table 7 Comparison of energy eigenvalues using the
GF method (2<2) and the APW method.

z 6.4 6.0 5.4
r APW -.4194 ~.4322 -.3429
1 GF -.4194 -.4321 -.3429
X APW -.2793 -.2965 -.3261
1 GF -.2793 -.2966 -.3262
L APW -.3017 -.3020 -.2778
1 GF -.3018 -.3022 -.2780
K APW -.2492 -.2562 -.2662
1 GF ~-.2488 -.2555 -.2653
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